电源ic范文

时间:2023-03-06 06:53:40

电源ic

电源ic范文第1篇

AS1331采用4开关架构,效率高达90%,轻负载时的静态电流低至22μA。在关断模式下,AS1331可完全断开输入和输出,关断电流仅有100nA,从而进一步延长了电池使用寿命。AS1331在1.8~5.5V的输入电压范围内可提供2.5~3.3V可调输出电压。为减少外部元件数及缩小电路板空间,器件还提供了2.5、3.0和3.3v多种固定输出电压版本,精度可达±3%。在一节锂离子电池输入电压范围内,AS1331可供出300mA电流。AS1331外配2个小型电容和单个片状电感,可为电池供电应用提供所需的小尺寸、超薄占位解决方案。

austriamicrosystems

电话:0512-6762-2590

http://

初级端调节PWM控制器

FSEZ1016A是集成了一个初级端调节PWM控制器和一个功率MOSFET的EZSWITCH PSR PWM控制器,而FAN100是一个初级端调节PWM控制器。FSEZ1016A和FAN100具有专有的节能模式,提供关断时间调制功能,以线性方式减小轻负载状况下的PWM频率。另外,它们还通过减少次级端反馈电路和组件,最大限度地减小功耗(无负载下待机功耗

Fairchild Semiconductor

电话:0755-8246-3088

配备数字接口的输入功率监控器IC

IR3725是为12V电源而设的多功能输入功率、电压和电流监控器IC。它采用已申请专利的TruePower技术,在串行数字接口上于特定区间输出平均功率,不像同类解决方案需要依赖昂贵的A/D转换器来量度系统的功率。系统控制器以新器件提供的数据,体现极佳的整体功率消耗,达到1%的基准电流精度。

International Rectifier

电话:010―6803―8195

过压保护稳压器和浪涌电流限幅器

LT4356-3是一个新的可选版本,在故障情况下提供锁断工作。它也是一个产品系列的最新成员,这个产品系列用来抑制高压浪涌和电流,以保护下游电子组件免受损坏。性能特点:电压范围为4~80V,可调输出钳位电压;浪涌电流限制;反向输入保护至-60V,可调故障定时器;故障输出指示,备用放大器用于电平检测比较器或线性稳压器控制器,过流保护;-55~+125℃工作。

Linear Technology

电话:00852-2428-0303

Email:.cn

httpt//.cn

针对超级电容LED相机闪光应用的4A单芯片驱动器

CAT3224是4A超级电容发光二极管(LED)闪光驱动器。其支持三项关键功能:精密的超级电容充电控制、电流放电至LED闪光的管理,以及为LED手电筒模式提供恒流。CAT3224以模拟控制输入电路上的外部电阻进行简单编程,吸收达4A的LED闪光脉冲电流及达400mA的手电筒模式电流。这器件集成了双模1x/2x电荷泵,这电荷泵将堆叠的超级电容充电至5.4V额定电压,同时主动平衡控制电路确保两个超级电容单元的电压在充电周期匹配。

ON Semiconductor

电源ic范文第2篇

使用MAX16922等高频开关调节器时,合理的印刷电路板布线不仅提供干净的电源输出,还可以大大节省解决EMI问题的调试时间。本文概述了相关电路设计的要点,为优化布线提供诸多好处。图1所示为MAX16922的原理图。

MAX16922基本布线原则如下。

1 OUT1:尽量减小输入电容Cl、电感L1、二极管Dl和输出电容C2的环路面积。

2 OUT2:尽量减小输入电容C3、电感L2和输出电容CS的环路面积。

3 将电源地(第9引脚和二极管Dl的阳极)在靠近MAX16922下方裸焊盘处通过单点连接到其余地平面。这种连接方式可以降低耦合到MAX16922误差放大器的噪声。

4 采用尽可能短和宽的引线。

优化交流一直流电流通路

MAX16922的开关调节器是器件的最大辐射源。为了降低辐射,开关调节器的无源元件布线非常关键。存在电流阶跃的通路可看作是交流通路,这些交流通路可以按照开关在通、断期间电流的流向进行考察。在开关的通、断周期内可以把有电流流过的通路看作直流通路。

OUT1交流通路

DC-DC转换器(OUTl)具有五个无源元件(c3、cs、C12、L1和D1),它们直接连接在开关电流通路。这五个元件对OUTl的辐射和性能有很大影响。图2所示为开关接通期间(内部DMOs开关导通)的电流通路。图3所示为开关断开期间(内部DMOS开关关断)的电流通路。两个电流通路的过度位于电流突变期间,可看作是交流通路(图4)。元件D1、C3和cs的布线对于优化幽能最为重要,其次是L1和C12。

OUT2交流通路

同步整流DC-DC转换器(OUT2)具有三个无源元件(C10、c3和L2),直接连接在开关电流通路。与OUT1类似,这三个元件对OUT2的辐射和性能有很大影响。图5和图6所示为开关通、断期间的电流通路。图7所示为两个电流通路的过度,即最高di/dt。元件c10的布线对于优化性能最重要,其次是L2和C13。

OUT1升压电路的交流通路

Dc-DC转换器(OUTl)采用一个高边DMOS器件,它需要一个比LX1引脚(DMOS的源极)电压高出5V的电源。为了产生这个电压,采用一个自举电容连接到LX1和BST之间(图8)。DMOS断关期间,自举电容(C4)由5vLsUP稳压器充电。LSUP输出还用于误差放大器供电。因此,须尽可能保持一个低噪的LSUP电源,以消除噪声对误差放大器的负面影响。最好的办法是降低C4与MAXl6922之间的引线电感。将C4尽可能靠近第19引脚(GND)和第17引脚(LSUP)放置,不要使用任何过孔。

在LX节点增加缓冲

为了降低开关噪声,在不明显影响电源效率的前提下,LX1的上升/下降时间应尽可能慢。为了进一步降低辐射。可以在LXl节点增加一级RC衰减器,抑制LXl的振铃。作为经验值,推荐选用不超过330pF的电容,以确保不会显著影响效率,它也是达到这一目的所需要的最小电容:建议使用2Ω电阻。图1所示原理图中,缓冲器为可选电路,由R2和C13构成。

LX2的升/降时间比LXl快很多。因为LX2与主输入电源相隔离,通常不需要考虑传导辐射问题。但是,在一些案例中,LX2也会对其他器件和/或连接器造成辐射。同样可以在LX2引脚增加一个缓冲器来降低辐射。可以选择同样参数的元件,电容≤220pF,配合使用8~20Ω的串联电阻。

主电源滤波

主电源的滤波也非常重要,它是降低器件辐射的最后一个关键位置。对于MAX16922等高频开关调节器,辐射通常发生在FM射频波段(76MHz到108MHz)。为了降低辐射,可以针对该频段增加一个高阻磁珠,或谐振频率高于108MHz的电感。

结语

电源ic范文第3篇

[关键词]电源IC;移动设备;智能手机

中图分类号:IN722 文献标识码:A 文章编号:1009-914X(2014)34-0225-01

电源IC在移动设备中扮演重要的角色,随着信息技术的发展,越来越多的移动设备流入市场,人们逐渐关注移动设备的应用质量,其中,移动设备的电源处理,是一项社会极其关注的项目。移动设备在电源IC的作用下,表现出了集成控制、稳定供电的优点,彰显电源IC的作用,同时电源IC成为移动设备电源管理的重要部分。

一、 电源IC在移动设备中的角色

电源IC在移动设备中,改变了以往的传统形象,不仅仅是起到稳压、转换的作用,更重要的是电源IC拓宽了自身的领域,在移动设备中负责多项任务[1]。分析如:(1)电池管理,电源IC模拟移动设备的电源管理,在数字化管理方式的作用下,形成了新型的电池管理,实现诸多移动设备所需要的功能,非常适用于现代数字设备的应用与发展;(2)功率管理,电源IC最核心的表现是功率管理,其可在满足移动设备功率输出的基础上,稳定各项媒体的功率消耗,利用最简单的设计完成复杂的功率分配,为移动设备提供功率的保障;(3)脉冲调制,用于移动设备的处理器部分,提供可变的电压,解决移动设备中较为复杂的功率问题,完善移动设备的运行,发挥电源IC的协调作用。

二、 电源IC在移动设备中的应用

以智能手机为例,分析电源IC在移动设备中的应用,而且电源IC是智能手机的重要部分。分析电源IC在智能手机中的具体应用,如下:

1、 多功能的功率支持

随着网络媒体与信息化的发展,智能手机面临着多功能的选择。目前,智能手机已经进入4G时代,大数据、多媒体成为智能手机的主流业务,如何做到不同应用模块的优化运行,成为智能手机发展的首要问题[2]。根据智能手机多功能的需求,电源IC可以提供集成的功率控制,为多功能媒体选择提供不同的电压供应。智能手机中的多媒体应用,其在开发设计中都有相应的电源要求,多媒体之间的电压功率均不相同,对电流的需求度比较大,再加上现代网络速度的快速提升,促使智能手机的功率面临严峻的挑战,电源IC可以提供充分的功率支持,保障智能手机电源管理的优质行,电源IC可以根据功能需求,提供恰当的脉冲电流,避免智能手机的电源消耗过快。

2、 优化电压转化率

传统的手机采用的是LDO供电,其属于智能手机最直接的供电方式,但是由于LDO自身的缺陷,无法适应现代智能手机的供电发展,电源IC是取代LDO的有效方案,其可提升电压分配过程中的转化效率,确保智能手机运行中得到充分的电压支持。电源IC的转化效率与LDO不同,其对电压、电流的依赖性不高,所以其在输出所用电流时,不会耗费过多的电能,同时转化过程中具备较高的稳定性。智能手机中各个功能模块都需要高频率的转化率,特别是压差过大时,电源IC也能实现高效转化。

3、 提供恰当的精准度

电源IC在智能手机中的运行过程中,提供了恰当的精准度,精度控制的范围在±0.5%-±1%。一般智能手机生产商,会根据手机本身电路的需求,配置电源IC,尽量控制电源IC在智能手机中的应用成本[3]。电源IC在智能手机中的应用,关系到三项参数,如:(1)输出电压;(2)输入电压;(3)输出电流,电源IC能够合理的分配此三项参数的状态,提供恰当的精准度,最主要的是适应智能手机的运转,满足最低的效率后才能实现智能手机的正常运转,进而提供恰当效率,保障智能手机的运转效率,以免其发生电源供电不足或启动不当的情况。

综上所述,电源IC在智能手机中具有很好的应用效益,体现出电源IC的性能优势。电源IC满足智能手机发展的条件,提供有效的供电方案和供电支持,在智能手机领域内起到推进、规范的作用。

三、 基于移动设备电源IC的发展

电源IC的应用与移动设备的发展存在直接的关系,在移动设备的带动下电源IC能够找准发展方向。电源IC属于一项新兴的产业,但是电源IC企业的成长非常快,快速占据信息市场,表明电源IC的发展潜力。纵观电源IC的行业情况,分析其在未来的发展。如下:

1、 多领域发展

目前电源IC的应用领域较为集中,而且电源IC的生产规模各不相同,所以其在应用领域方面还存在一定的欠缺[4]。未来电源IC的发展方向应朝向多领域发展,不能仅仅集中在移动设备领域内,尽量满足不同产业的需求,在多个领域内实现电源控制,更重要的是改善更多产品的应用性能,展示电源IC在不同应用中的优势。我国电源IC的发展速度非常快,而且我国电源IC的生产企业非常注重多领域开发,致力于将电源IC应用到多个领域内,推动电源分配的集成化发展。

2、 全球化发展

根据世界电源IC在移动设备中的应用情况分析,电源IC虽然没有垄断现象,但是生产相对比较分散。不同的移动设备中的电源IC可能出自多个厂家,不利于电源IC在移动设备中应用的稳定性,因此,将电源IC的全球化发展做为一项发展方向,确保电源IC在移动设备的作用下,能够定位全球化的发展理念。我国应以全球水平为主,深入分析电源IC在移动设备中的应用,制定高效生产的发展战略,利用集中生产的方式,满足移动设备的大规模需求。

3、 精密型发展

移动设备对电源IC的需求度越来越大,促使电源IC同样遇到生产上的问题。电源IC的精密型发展,属于长期的发展主体。根据电源IC在移动设备中的具体应用,精密型发展能够保障电源IC的可靠性,同时有利于提高电源IC的控制水平,为移动设备提供足量的电源支持。

结束语

电源IC属于移动设备中不可缺少的构成,推进了移动设备智能化的发展,为其提供优质的电源基础。电源IC在移动设备领域内得到全面应用,同时移动设备也对电源IC提出了新的发展要求,推动电源IC的积极发展,促使电源IC在未来发展中取得更好的应用效果。由此可见:电源IC在移动设备中的应用效益和价值。

参考文献

[1] 闫永亮.浅谈电源IC[J].科技信息,2011,(08):436+439

[2] 戴维德.电源IC发展综述[J].今日电子,2012,(01):28-31

[3] 朱伟民.开关电源IC的绿色设计[J].电子与封装,2011,(01):1-3

电源ic范文第4篇

1 前言

开关电源以其供电效率高,稳压范围大,体积小被越来越多的电子电器设备所采用,在大屏幕电视机、监视器、计算机等电器的待机或备用(stand-by)状态会继续耗电,为此,Philips公司采用BiCOMS工艺开发出了被之为Green Chip TM(绿色芯片)的高压开关电源控制芯片。该类集成芯片(IC)的稳压范围为90~276V(AC),能将开关电源待机功耗降至2W以下,其本身的待机损耗小于100mW,并具有快速和高效的片内启动电流源;在负载功率较低时,它还能自动转换到低频工作模式,从而降低了开关电源的损耗。高水平的集成技术使IC的元件大大减少,以实现开关电源的小型化、高效率和高可靠性。本文介绍的TEA1504是Green Chip TM系列IC中的重要成员之一。

图1 TEA1504的内部原理框图

2 TEA1504的工作原理

TEA1504采用14脚双列直插式(DIP14)塑料封装,它的引脚功能如表1所列,内部原理框图如图1所示。该IC内部集模拟电路和数字电路于一体。它除含有误差放大器、振荡器、脉宽调器(PWM)、锯齿波发生器等一般开关电源控制IC的单元电路外,还集成了高压启动电流源、独特的开、关功能电路和猝发待机(burst mode stand-by)电路。TEA1504具有三种工作模式,即:正常开/关工作模式、猝发待机模式和轻负载功率低频模式。通过灵活设置工作模式可大大提高开关电源的工作效率。

表1 TEA1504引脚功能

符 号引 脚功 能

Vi1高压启动电流源输入DRIVER4驱动信号输出,接功能MOSFET管的栅极Isense5电流取样输入,连接到电流取样电阻Vaux6IC电源端,连接到辅助电源滤波电容DS7IC内部驱动电路电源,可与6端共用电源REF8参考输入,连接到参考电阻,于设置内部参考电流CTRL9振荡周期和脉冲占空比控制GND11地DEM13消磁信号输入端OOB14猝发待机模式,开/关工作模式控制信号输入端n.c.其它未连2.1 内部启动电流源和电源Vaux管理

TEA1504内部设计有先进的启动电流源,因而无需外加高耗能的连续充电电路。启动电流源由外部主电压从Vi端(pin1)输入,可为IC的电源电容Caux提供充电电流,同时也为IC的内部控制电路提供工作电流。当Vaux端的电源电容被充电到11V时,振荡器开始起振,IC输出脉宽调制信号(PWM)来驱动功率MOSFET管,从而使开关变压器的次级随之输出直流电压Vo。Caux上的电压在启动时有一次充放电的过程,启动时由启动电流源对Caux充电。当Caux上的电压上升到11V时,电路将产生振荡并输出PWM波。同时Caux上的电压开始下降,当该电压下降到下限门限值8.05V时(UVLO),开关变压器输出电压,从而使Caux被辅助绕组重新充电到11V。TEA1504的正常启动波形如图2(a)所示。

另外,启动电流源还能帮助实现系统故障状态下的安全再启动或“打嗝”工作模式。一般在故障状态下,IC将停止正常工作模式。因为当IC检测到输出故障状态时,会立即封锁驱动脉冲输出,而使Caux无法得到补充充电,从而使其电压随之下降,一旦Caux上的下降到电压下限锁定值,启动电流源将重新被激活,并将Caux充电到11V,系统又开始进入安全再起动模式,如此往复循环。而在“打嗝”工作模式(其工作波形如图2(b)所示),为了达到安全的“打嗝”工作模式,在安全再启动模式下,Caux的充电电流Irestart应为0.53mA,而正常工作模式下的充电电流Istart为1mA,因而可确保在输出短路情况下系统元件不致损坏。IC内带温度补偿的2.5V基准电压在经REF脚(pin8)外接参考电阻RREF后可产生一个不受温度影响的偏置电流IREF,但应注意:RREF的取值会影响到振荡频率。

图2 TEA1504典型波形

2.2 脉宽调制器(PWM)与振荡器

TEA1504使用独特的电压反馈结构。它的初级电压反馈信号通过RDEM从DEM端(pin13)输入,采样与保持电路通过流入DEM端的采样电流来工作,采样电流的大小与RDEM上的电压有关。次级采样电流的大小被储存在CTRL脚的外接电容CCTRL上,并由它给PWM调制器设定驱动脉冲的占空比。在次级反馈电路中,反馈电压一般通过光耦合器提供。

PWM单元由一个反相误差放大器和比较器组成,它输出的PWM波的占空比与CTR端(pin9)的控制电压成反比。来自振荡器的信号通过触发器送到功率MOSFET的驱动级可使MOSFET管开通,而来自脉宽调制器的信号或占空比限制电路信号,则可使MOSFET关断。当PWM输出波形不稳时,触发器将停止输出PWM波形。PWM波形的最大占空比为80%。

在脉宽调制电路中,将振荡器输出的锯齿波电压与误差放大器的输出进行比较,可调整PWM波形的占空比。振荡器被全部集成在IC内,通过内部电容的充、放电产生锯齿波,锯齿波的斜坡段占整个振荡周期的80%,所以IC输出波形的最大占空比为80%。改变外部参考电阻RREF的电阻值(RREF可在16.9kΩ~33.2kΩ之间选择)可使振荡频率在50~100kHz之间改变。IC内部有一个频率控制单元,它能根据输出负载的轻重自动使振荡器工作于低频或高频状态。当开关电源的输出功率小于最大输出功率的1/9时,TEA1504将转换到低频工作模式,低频与高频工作模式的频率比为1:2.5。低频工作可减小开关电源的开关损耗,而且在转换时不会影响到输出电压的调节。

TEA1504输出的驱动脉冲正向电流可达120mA,反向脉冲电流可达550mA。它允许快速开通和关断功率MOSFET管。选择较低的正向脉冲,是为了限制MOSFET管开通时的dV/dt(电压上升率),以降低电路的电磁干扰(EMI),同时减少通过电阻Rsense的电流峰值。

2.3 TEA1504的保护功能

TEA1504的保护功能主要有过电流保护(OCP)、过电压保护(OVP)、140℃超温保护和磁饱和保护等。其中磁饱和保护是为了确保能提供间断性的电源输出、简化反馈控制电路的设计以及提供较快的暂态响应,从而防止变压器和电感元件在启动时出现磁饱和或储能元件在释放能量时承受的应力过大。另外,当开关电源的输出处在短路状态时,磁饱和保护还能对开关电源提供逐周电流保护。

图3 开/关模式下的次级反馈式开关电源

3 TEA1504的应用电路

由TEA1504构成的开关电源的主要组成部分有EMI滤波器、全桥整流器、滤波电容、开关变压器、功率MOSFET管及缓冲电路等。取样电阻将初级电流转变为电压加到ISENSE端(pin5)后,IC将根据该电压来设置开关电流的峰值电流。辅助线圈用于给Caux提供能量,从而提供给IC的内部电源,该线圈也是初级输出电压调节电路的一部分。电阻RREF可决定进入REF(pin8)的参考电流。电容CCTRL的取值很小,一般为0.2~2nF,通常接到CTRL端(pin9),因此可通过内部的采样保持电路来调节初级反馈,同时这一端也是次级光电耦合器的信号输入端。输入端OOB(pin14)可选择开/关模式或猝发待机模式。主输入电源连接到Vi(pin1),可作为IC内部启动时的电流源,同时在启动和安全再启动模式下给电容Caux充电。

图3是一种采用开/关模式的反馈

式开关电源。图中,开关S1的一端连接到OOB端(pin14),另一端连接到地或2.5V电压上。如果VOOB为低电平,则IC进入关断模式,VI脚消耗电流的典型值为350μA;如果VOOB为2.5V,则IC将安启动时序开始正常工作,此时Ivi=60μA。图4是另一种使用3只电阻的开关模式开关电源,假定R3的阻值很高,那么,在IC启动时,如果VOOB=2.5V且R1>>R2,那么,由VOOB=VmainsR2/(R1+R2)可以得出:Vmains=VOOBR1/R2,这就确保了只有当主电压高于某一值(例如Vmains=80V)时,开关电源才能进行工作模式,从而使得流过R1的电流降低。IC的OOB脚(pin14)也可用于猝发待机模式。在IC待机状态下,开关电源进入一种特殊的低功耗状态,其功耗低于2W。实际上,图4也是一种利用猝发式待机和开/关模式的反馈式开关电源。图中,当微处理器(μP)将次级的开关S2、S3闭合时,系统进入猝发待机状态,开关S2将次级绕组连接到微处理器电容(Cμc)可旁路掉输出电容C0。当Cμc上的电压高于稳压管(Vz)的击穿电压时,光耦合器被触发并将反馈信号送到OOB端,以使IC停止工作而进入“打嗝”模式。系统故障状态下的“打嗝”模式与猝发模式工作期间的“打嗝方式是不同的。系统故障时,在安全再启动状态下的输出功率非常小,而猝发模式还需输出足够的功率提供给微处理器。为防止变压器发出噪声,变压器的峰值电流应减小3.3倍,也就是说,在μP打开开关S2和S3之前,猝发式待机模式一直持续。S2和S3一旦打开,系统则进入起动时序并开始正常的开关。

图4 猝发待机模式下的次级反馈式开关电源

4 主要电气性能

TEA1504的Vin脚最高重复电压为600V,工作电流为20~100μA。OOB脚的最高电压为14V,DEM脚的最大电流为±1mA,Vaux脚的最大电压范围为0.3~+18V,VCTRL和Isense引脚的最大电压范围为-0.3~5V,REF脚的最大电流为1mA,工作温度范围为-10~+140℃。

电源ic范文第5篇

需要4W或低于4W功率的应用传统上依赖于基于串联旁路稳压器电路的小型电源,这种电源如图1所示。尽管这种电路简易并且成本低,但由于出现了两种新技术,它已经失去优势。

首先,外部电源(EPS)现在必须满足严格的能效标准,这几乎排除了线性电源的使用。线性电源一般不能满足工作效率和无负载功耗的标准(见图2)。2006年开始,加利福尼亚州和澳大利亚将禁止销售不符合这类新能效标准的电源。

其次,现在的集成电路允许工程师设计低功率开关型电源(SMPS),这种电源不仅元件数量少而且成本和简便性不逊于线性电源。弄清低功率SMPS的基本使用缺点将有助于工程师基于符合能效标准的新型电源控制器件来设计电路。

低功率SMPS

直到最近,振铃扼流变换器(RCC)才出现极廉价的低功率SMPS设计,但是,RCC的一些缺点妨碍了它取代线性电路:

・能效低,

・缺少热保护,

・元件数量多。

此外,RCC的性能还取决于寄生效应和元件公差之间的相互作用,因此制造商必须经常监视和调整元件(性能)数值以确保可接受的成品率。电路的缺点集中在图3中突出的五个区域。

低效的启动电路,一般的启动电路(图3中I区域)具有一个初始工作电流来驱动MOSFET开关Q1。

但是即使正常工作开始之后,电流仍流经该电路。电阻则和R2的功率损耗使得许多SMPS(不仅仅是RCC)未能满足EPS能效标准中的无负载功耗范围。附加的元件可以在电源正常工作后阻止电流流动,但是可行的设计方案应该是在不增加元件数量或增添成本的条件下消除功率损耗。

开关频率和MOSFET栅驱动。由于RCC自身振荡,因此它们的开关频率主要取决于变压器铁心磁通量复位所花费的时间。这意味着开关频率在负载下最低,而在无负载时最高。(元件(性能)数值和公差也影响基本RCC的开关频率)。但为了满足EPS的能效标准,开关的频率必须随着负载的下降而降低。不增加电路的复杂性、元件数量和成本,设计师是无法解决这个问题的。

控制MOSFET Q1的开关需要8个元件(在图3中Ⅲ区域)外加一个变压器T1的绕组。用PWM(脉宽调制)控制IC替代这些元件将解决若干问题并减少元件数量。但是,这类IC在输出功率低于10W的电源中几乎根本不能节省成本。而且几乎没有控制IC可以随着输出负载的下降而自动降低开关频率。

MOSFET的电流灵敏度。电流灵敏型电阻器(图3中的Ⅱ区域)必须具有严格的公差和良好的温度稳定性,这使得它价格贵。此外,这种电阻器增加了MOSFET的RDS(on),这可能降低1%―2%的效率。去除电流灵敏型电阻将会降低元件数量和成本,同时增大效率,但是,已经证明4W功率范围内的电流灵敏型变压器成本太高,因此感应MOSFET电流的其它唯一方法是需要采用已取得专利的技术。

电压的感应和反馈。元件R12、R13、VR3和U1―A(图3中用Ⅳ区域)感应输出电压并将隔离的信号反馈到电源电路的一次侧来控制MOSFET的负载循环。设计师不牺牲调压精度是无法减少该电路二次侧的元件数量。但去除该电路一次侧上的D5、C6和R8就会简化设计。

漏极点箝位电路。这部分电路(见图3中v区域)是可能去除元件的最后一个地方。

尽管不是一个电路元件,但需要注意热保护,因为热保护已经成为一个EPS业界广泛应用的标准。增加温度传感器和关闭电路加大了小型电源的成本。

电源转换汇可以克服大部分的这类设计问题。一般,这些器件含有一个控制器,一个功率MOSFET和保护功能元件,集成化使得元件数量少,并使设计和原型制造时间年降至最低程度,同时降低厂生产和测试成本。另外,与线性电源或RCC相比,围绕这类IC设计的电源一般为最终用户提供了优异的安全性、现场可靠性和能效性能。

围绕电源转换IC设计的某种2W SMPS示意图(图4)展示了一种电路,它的元件的含量仅为图3中振铃扼流变换器电路的一半。将材料、设计时间,制造和其它成本进行比较表明制造商是可以生产这种类型的电源的,而成本等于或低于等效的线性电源的成本。

电源转换IC,像这里使用的这种,由于将高电压MOSFET和低电压控制电路集成于一块单芯片上,因而减少了元件数量。一种通/断控制电路可以实现快速的启动而无输出过冲,并且不需要控制回路的频率补偿元件。

控制器从(连接到漏极引脚的)内部高电压电流源区给自身加偏置电压,这就在实际上去除了外部启动和偏置供电电路。这种特性进一步在设计时减少了元件数量同时降低了无负载的功率损耗。为调节电源的输出电压,控制器略过开关循环,而实际上略过开关循环进一步减少了无负载功率损耗,增加了效率。

电源ic范文第6篇

关键词:ADP1043A;EEPROM;OrFET控制;同步整流

3.13 恒流工作模式

ADP1043A可调成恒流模式工作,进入恒流模式工作,要在CS2精确OCP设置的10%电流一下,再次电流下部分工作正常,用输出电压作为反馈信号形成闭环工作。

当ADP1043A达到恒流模式阈值时,设置一个标志,CS2电流达到是用替代输出电压作为反馈信号达到闭环工作,输出电压线性下斜到60%的正常值,岁负载电阻减小而减小,以保证电流恒定。

当控制环达到VOUT的60%,部分增益用输出电压到闭环,但减小水平(正常值的60%),如果负载电阻继续减小,电流可能再次上升,知道CS2的OCP水平,但电压保持限制在60%的正常值,如图15所示。UVP或CS2的OCP标志可用于调节关断功能。

3.14 过压保护(OVP)

ADP1043A有两个OVP电路,如果输出电压在VS1,VS2,VS3端超出其预先调节的阈值,则OVP标志及设置,响应此标志可以调节,VS1有一个OVP电路,VS2和VS3可以均恒其他OVP电路,OVP电路可用不同OVP阈值调整,见寄存器0*32和0*33,设置OVP阈值计算下式给出:

VSx OVP=[(89+VS1_OVP_Setting)/128]×1.55V

例子, 在VS1 OVP设置为10,则

VS1 OVP=[(89+10)/128]×1.55V=1.2V

3.15欠压保护(UVP)

如果在VS1端检测的电压低于调定的UVP阈值,则UVP标志即设置出,例外包括在启动期间ACSNS没在限制之内,响应UVP的条件可以调节。

3.16 AC检测(ACSNS)

ACSNS电路执行多个监视功能,它间接由初级测输入电压状态决定,如在同步整流级处,监视开关波形一样,同步整流级接到这一端,也是通过一个外部电阻分压器网络。

ACSNS电路在ADP1043A内部有一个比较器,检测0.45V的信号,或大于每个开关周期,例如,如果开关频率设置在200kHz,开关周期即为5μs,比较器时间输出也设在5μs,一边匹配开关周期,如果比较器没有处罚(在5μs内),则ACSNS标志设置出。

3.17伏・秒平衡

工作在全桥拓扑时,主变压器中,有一个致力于保持伏・秒平衡电路。这意味着一个直流大容积是不必要的。电路监视流过全桥两个对半的直流电流,并储存此信息,它补偿PWM驱动信号,以确保相同的电流流过半桥路,需要通过CS1的输入几个开关周期,才能有效的工作,伏・秒平衡在80ns内调制于OUTB和OUTD端注意PWM驱动信号的补偿,仅在t4(OUTB)和t8(OUTD)处执行,因此,它需要用此端去调制PWM信号,以保证正常工作。

SR1,SR2的上升沿(t9和t11)也由设置的伏・秒电路调制来决定,SR1上升沿(t9)调制根据OUTB的下降沿(t4),SR2上升沿(t11)的调制根据OUTD(t8)的下降沿调制。

还要注意ADP1043A假设CS1电流脉冲信号,在每个周期中第一次见到是相对OUTB,第二个电流脉冲是相对OUTD。如果第一个电流脉冲信号小于二个。OUTB增加而OUTD减小,如果第一个电流脉冲信号大于第二个,则OUTB则减小而OUTD则增加。

3.18 负载线

ADP1043A能够选择介入数字负载到电源中,这个选择可由负载线阻抗寄存器调节(0*36),这个特点可用于先进的电流均衡技术。用这项故障功能,负载线可被禁止,负载线数字式插入,它的斜率可以调节,它用从CS2电流读出取样,并可调节响应的输出电压,可选择51.5mΩ的负载线,如图16所示的负载线的应用结果,评估板用10mΩ的检测电阻。

4 电源的校准和调节

ADP1043A允许完整地进入电源校准和数字式调节,它能校准各项诸如输出电压,用加入检测电阻来调节偏差,如同自己内部电路一样,该部分在工厂中调节,但可以在用户处再次用外部元件调节。

ADO1043A允许用户足够能力去校准,用外部元件调整偏差,最高0.5%的精度,如果ADP1043A设在生产环境中校准,推荐用0.1%精度的元件去调节CS1,CS2,VS1,VS2,VS3+和VS3-,以满足数据表的规范。

4.1 CS1调节

(1)使用一个DC信号

已知电压VX加到CS1端,CS1的ADC将输出一个数字编码到VX/337mV,CS1增益调节寄存器(0*21)调节知道CS1的ADC值达到正确的数字码。

(2)使用一个AC信号

一个已知电流(IX)加到PSU端输入,该电流通过一个电流互感器,一个二极管整流器和一只外部电阻RCS1去改变电流信息,以改变电压VX这个电压送进CS1端,电压VX计算如下

VX=IX×(n2/n1)×RCS1

此处n2/n1为互感器匝比。

CS1的ADC将输出一个数字码,它等于VX/337μV。CS1增益调节寄存器(0*21)是一个可调整的,知道CS1的ADC在寄存器中的值达到正确的数码。

如同在CS1部分描述的,CS1的ADC有一个频率的响应,为实现更精确的调整,下面的乘法因子M将用上

M=(-2×10-18×fsw3)+(2×10-12×fsw2)+(2×10-8×fsw)+0.9998

此处fSW为开关频率。

4.2 CS2调节

CS2调节必须补偿失调及增益误差,失调误差需要模拟调节和数字调节两者,CS2的ADC范围设在0V开始,而是-25mV到性能回复的电流保护OrFET的反转处。因此,在CS2输入处有-25mV。ADC码将读出0。在CS2输入有0mV。ADC码将读到100,根据这个理由,模拟失调的调节要先执行知道CS2读出等于100(没有0),据此,还需要数字调节。

4.3CS2的失调调节

CS2失调调节是很重要的,如下面所描述的。

(1)设置正常的全比例寄存器0*23中的检测电阻电压降。

(2)设置高边或低边的电流检测于寄存器0*24中。

(3)失调误差可以用外部偏置电阻和北部电流源插入,在检测电阻中,无负载电流,调节CS2,失调值知道CS2在寄存器0*18中的值尽可能地接近100。

(4)调节CS2的数字调节寄存器(0*25)直到CS2在寄存器0*18中达到0。失调调节现在执行。ADC码达到0时就没有电流流过检测电阻。

4.4CS2的增益调节

在执行失调调节中,执行增益调节可以移去任何失衡,它由检测电阻的误差代替。

(1)加入已知电流IOUT到检测电阻。

(2)调节CS2增益调节值,知道CS2在寄存器0*18中的值达到由下式计算出的值。

CS2 Value=IOUT×2457×(RSENSE/FS)

此处FS全比例电压降。

例如,IOUT=4.64A,RSENSE=20mΩ,FS=150mV。

CS2 Value=(4.64A×2457)×(20mΩ/150mV)

CS2 Value=1520 decimal

CS2电路现已调节,在电流检测调节执行之后,OCP限流点将设在规范值处。

4.5 电压校准和调节

电压检测输入最佳化为检测信号在1V,且没有大于1.5V时,在12V系统中,需要一个12∶1的电阻分压器去使12V信号降到1.5V一下,推荐电源输出电压减小到1V时有最好的性能,电阻分压器会加入误差,它需要调节,ADP1043A有足够的调节范围去调节由电阻带入的输出误差,可达到0.5%或更好,ADC的输出数字码为2643,(0*A53)此时在它的输入端超出1V。

4.6 输出电压设置(VS3+,VS3-的调节)

VS3输入需要增益调节,零电源空载下使能,电源输出电压由VS3的电阻分压器给出VS3+为1V,VS3-为1V。VS3调节寄存器改变直到寄存器中的VS3,寄存器的值达到2643(0*A53),这个步骤在任何其他调整前就要做好。

4.7 VS1调节

VS1输入需要增益调节,令电源空载下使能,VS1电压由VS1电阻分压器给出到1V,VS1端处,VS1调节寄存器(0*38)改变,知道寄存器中的VS1值达到2643(0*A53)。

4.8 VS2调节

VS2输入需要增益调节,令电源空载下使能,VS2电压由VS2电阻风雅其给出到1V,于VS2端处,VS2调节寄存器(0*39)改变知道寄存器中的VS2值达到2643(0*A53)。

4.9 RTD/OTP TRIM

一个100kΩ的NTC热敏电阻用于ADP1043A。在PSU调节端用下面的过程。

(1)加热热敏电阻或PSU到已知温度,其结果在一个OTP阈值处。

(2)调节温度增益调节寄存器(0*2B)给出校正温度,此时的读数。

(3)调节OTP阈值寄存器,直到OTP标识设置出来。

(4)这个过程实现了最精确的OTP,因为它用了ADP1043A及热敏电阻的一个一个变化的计数。

4.10 PCB布局的考虑

这部分说明最实际的问题,它将跟随ADP1043A确保其最优性能,通常所有元件都紧靠ADP1043A来放置。

几个送入ADP1043A的信号端都是敏感的,因此,要极其小心的掌握并解决这部分布局,随后沿着IC正确清晰的,用最短的引线处理它,AD公司还推荐密封此IC,加上树脂,以保护它,此后确保任何杂质都不能污染此IC。

CS2+,CS2-:从检测电阻到ADP1043A的轨迹的路线要安置或并联模式。轨迹要紧靠在一起,原理开关结点。

VS3+,VS3-:从遥远电压检测点到ADP1043A的轨迹路线也要并行并且紧靠在一起,互相并行紧靠,并原理开关结点。

VDD:放置去耦电容尽可能靠近IC,一个100nF瓷介电容从VDD到AGND。

SDA和SCL:这两个引线也要并行互相紧靠,并远离开关结点。

CS1:从电流互感器到ADP1043A的引线,也要互相并行,要紧靠在一起,并原理开关结点。

暴露的焊接点:

在ADP1043A下面暴露的焊接点,要焊接到PCB低线布局面。

VCORE:放置100nF电容紧靠此端子及相关部分。

RES:放置49.9kΩ电阻紧靠此端子及相关部分。

RTD:从热敏电阻到ADP1043A要用一轨迹接入,放置的热敏电阻要紧靠电源中最热的元件。

电源ic范文第7篇

(1)几何尺寸缩小四倍以上。引脚间距从2.54 mm降到1.27 mm,再降到0.65 mm甚至0.5 mm。底部加入金属散热板,总厚度降到1 mm甚至0.8 mm。

(2)多数芯片用少量引脚就加入了OVP,UVP,OCP的功能,芯片中加入了OTP功能。

(3)加入高压起动源电路,含500 V和100 V两种。NCP1282内部加入耐压500 V的高压起动源,应对AC—DC的PFC之后的输入。而NCP1562(UCC2891,LM5027等)内部加入100 V的高压起动源,应对48 V通讯DC—DC电源系统。

(4)新颖的QR准谐振反激变换器,如NCP1207,NCP1337等采用准谐振技术的反激变换器,效率提高,EMI降低,成为新一代适配器的必选产品。加入软关断技术的有源箝位正激变换器NCP1562,UCC2897是最可靠的有源箝位控制IC。通过8引脚的LLC谐振半桥控制器UCC25600设计的LCD—TV电路非常简单,而性能却一点都不差,一支引脚既设置频率范围,又作反馈光耦的连接点。VCC一个端子既作IC供电,又含UVLO和OVP的功能。芯片内加入OTP功能,OCP给出两个电平的过流保护。而对称的全桥ZVS软开关控制器ISL6752将电源技术领进节能,高效,高功率密度(小体积),低EMI,低空载功耗的金牌效率绿色电源领域。

(5)各种控制同步整流的技术和相应的控制IC是提高转换效率的最大亮点。LTC3900,LTC3901做好对称和不对称两种电路的同步整流控制。IR1167,IR1168将二次侧同步整流控制做到极致。NCP4302专门做好QR反激变换器的同步整流控制。

(6)两相交错式PFC的控制IC,对应同样输出功率降低一半的EMI,输出电流纹波对消,提高转换效率。其中UCC28070,UCC28060是最优秀的代表作品。其他公司也纷纷推出类似产品。如NCP1631,FAN9612等等。

(7)随着手提电池供电电子设备的飞速发展,非隔离的DC—DC控制IC更是如雨后春笋般地推出。新型的加入同步整流的BUCK(LTC3851),BOOST(LTC3813),INVERTING (LTC3704),BUCK—BOOST(LTC3780) 控制IC以全新的面目进入电源世界。

(8)数字控制技术完满地进入高端电源领域。通讯,服务器,电脑系统的电源将是最先进入数字化的部分。Si8250 是隔离AC—DC一款优秀的作品。而ZL2008是非隔离BUCK电路的数字控制IC。

(9)主要开关元件功率MOSFET采用纳米光刻技术已经让NMOS的导通电阻小于1 MΩ,栅电荷小于10 nc,开关速度小于20 ns。让PMOS进入500 kHz的水平。这也是开关电源技术进步的一大关键。

电源ic范文第8篇

用铜导线取代黄金导线的方法势头越来越强,因为铜具备卓越的电气和热特性、相对更少的金属间化合生长和更高的机械稳定性。

在电源管理IC等具备大DC电流的器件中,会使用大量导线来传导这种电流。这些额外的导线有助于改善DC压降性能,并降低由大电流及其产生的有关热量(焦耳生热现象)导致的导线熔断或融化风险。不幸的是,就给定应用而言,还没有一种能用来估计导线数量和尺寸的方法或分析方法。所使用的导线数量或者太多,增加了芯片面积和成本,或者太少,导致可靠性风险和器件失灵。

本文探讨一种方法,用来估计不同尺寸和类型的导线处理DC电流的能力。本文还提供一些指导原则,将有助于产品设计师估计特定的应用所需的最佳导线数量。

估计理论上的载流能力

导线熔断的经典设计方程是由W.H.普里斯推导出来的(1884年,称为普里斯方程),仅适用于在自由空气中的导线。

该方程揭示了熔断电流(以安培为单位)和导线直径(以英寸)为单位之间的关系:

i=kD3/2

其中,i是DC或RMS电流;k是常数,其值取决于导线材料,就黄金和铜导线而言,k=10244;D=导线直径(单位为英寸)。

这个方程的限制是,它仅适用于在自由空气中的导线。此外,它未考虑导体长度。而导线的载流能力是受长度影响的,而且会随着长度增加而降低。

经过修改的普里斯方程

为了解决上述限制,人们对普里斯方程进行了修改,用数值更大的常数k来反映典型应用的情况,在典型应用中,导线是用基于环氧树脂的模塑化合物密封的。这个常数k也反映了导线长度对导线载流能力的影响。导体长度≤0.040英型时,黄金和铜导线的k值均为30000,而在导体长度>0.040英寸时,其k值均为20500。

军用规格(MIL-M-38510J)中提到的方程就是基于修改过的普里斯方程。

表1列出了用两个版本的普里斯方程计算出的两种类型导体的载流能力。

即使是修改过的普里斯方程,仍然存在限制:

为了估计在最坏情况下导线的载流能力,该模型假定,最高芯片节温为125℃时的环境温度为工业环境温度。自然对流边界条件适用于封装表面,这时封装引线温度为100℃。

小量电流流经导线时,不改变整条导线的温度曲线,导线两端仍然保持相同的原始温度。随着电流的稳步增大,最高温度不再是芯片节温,而是导线中间某处的温度。

在模塑化合物的玻璃化转变温度(Tg)上,材料从硬的、相对较脆的状态转变为软的、类似橡胶的状态,这时典型温度大约为150℃。如果流经导线的电流使模塑化合物的温度超过其Tg温度,那么时间和温度将使这条连接线上的环氧树脂材料的化学键劣化。这不仅导致模塑化合物的热阻增大,而且增大了材料的渗透性,使材料容易侵入潮气和其他离子污染物。因此,在计算导线的载流能力时,假定150℃的导线-模塑化合物连接线温度为上限温度。

以此为标准,来分析导线材料的类型、导线长度和导线直径的影响,并将分析数据与理论上的估计值进行比较。

图2显示了采用3种方法计算出的1mm长黄金导线的载流能力。利用FEM方法所得的电流值在开始时,与利用修改过的普里斯方程计算出的电流值相同,不过随着导线直径增大,两条电流曲线出现了偏离。

图3显示了用FEM方法计算出的1mm长黄金导线及铜导线的载流能力。正如所预期的那样,与黄金导线相比,铜导线能传送更大的电流。

图4显示用FEM方法计算出的3种不同长度黄金导线的载流能力。正如所预期的那样,随着长度增加,导线传送电流的能力下降了。

表2总结了不同导线组合的电流值(单位:安培)。

电源ic范文第9篇

【关键词】移动电源;同步Boost;ASIC设计;MCU

1.引言

随着iphone、ipad带动的全球智能手机、平板的风靡一时,人手一部智能手机已经不再是遥远的梦想,手机与平板是人们外出的必备物品,除了兼具通信、拍照、电脑功能之外,这些数码设备同是也是一种时尚体现,对轻巧纤薄的完美外形之极致追求与电池的续航能力成为一对矛盾。为了追求完美,iphone、ipad更是设计出一体化用户不可拆卸机身,电池无法拆卸,于是移动电源成为了数码后备电源的必须品,其市场需求随着智能设备的发展迅速扩大。

2.方案分析

2.1 技术规格与方案比较

当前适用于手机平板的主流移动电源的规格为:

(1)具有锂电池充放电管理功能;

(2)5V/500mA/1A/2A输出。

其中,锂电池充放电管理由“保护IC+ASIC或MCU”实现,5V/500mA/1A/2A输出由锂电池Boost升压加反馈控制实现。在移动电压的方案中,最关键的指标和技术难点是Boost升压输出的效率,因为锂电池充电电源一般来自220V市电充电器,不需要特别强调效率,而Boost升压是将电池的电能输出给手机、平板,充电效率特别重要。以10000mA时的移动电源为例,90%的效率与70%效率的Boost充电电路,输出电能相差2000mAh,从用户体验来看,效率低的移动电源发热严重,安全隐患也较大。Boost电路主要有两种,一种为二极管续流Boost,电路相对简单,一种为同步Boost,电路相对复杂,对控制时序的精度要求高,过去几年由于需求旺盛,为了快速出货,大量方案均采用二极管续流的Boost方案,价格战非常剧烈,因此,高端厂家开始转移到同步Boost方案。

2.2 专用MCU的同步Boost方案

移动电源专用MCU HT45F4M的方案是当前市场广泛采用的同步Boost方案,具有电路简洁,效率高的特点,原厂提供的技术指标为:静态耗电小于10uA,实测放电转换效率最高超过91%(5V/700mA输出时)。锂电池保护机制:过流过压过温保护。其同步Boost的原理图与二极管续流Boost对比如图1所示。

图1 HT45F4M同步Boost与通用MCU二极管续流Boost对比

由图1所致可见,HT45F4M与通用MCU相比,主要特点是内置互补式的PWM输出功能,通过OUTL、OUTH的PWM互补时序,分别控制NMOS、PMOS的通断,从而实现同步Boost。我们实测过该方案的成品,效率与厂家提供的指标基本一致,与二极管Boost方案相比,1A以上大电流工作时,其功率器件发热量低,效果差别明显,性能良好。

3.互补式PWM的IC设计实现

由于HT45F4M与通用MCU的主要差异是互补式的PWM输出,如果设计一颗实现互补式PWM输出的ASIC,适当选择具有PWM输出功能的通用MCU搭配,也可以实现类似HT45F4M的功能。这种IC设计+通用MCU的方案可以广泛利用现有的大量MCU资源,更具灵活性,成本也有竞争力。

3.1 结构框图与时序图

互补式的PWM的结构框图与时序图如图2所示,由通用MCU产生PWM输出,输入ASIC,经延时时间插入电路,产生互补式的PWM输出,此PWM输出为PWMp,PWMn两路,PWMp控制P-MOS,PWMn控制N-MOS。这两个MOS管在充电时,用于控制充电电流;在放电时可用于控制放电电压。充电时,PMOS导通的时间越长,充电功率越大。放电时,NMOS导通的时间越长,放电功率越大。

图2 互补式的PWM的结构框图与时序图

3.2 ASIC的设计与仿真分析

我们使用Candence IDE设计仿真了一颗ASIC,实现图2所示的互补输出,由MCU提供PWM信号,通过延时和组合逻辑实现图2所示的PWM互补输出时序。图3所示为PWM与PWMn时序的仿真结果,图中电压峰值低者为来自MCU的PWM信号,电压峰值高者为PWMn信号,PWMn下降沿与PWM的上升沿几乎重叠,PWMn上升沿滞后于PWM的下升沿。时序上与图2所示一致。

图3 PWM与PWMn信号的仿真时序

图4所示为PWMn与PWMp时序的仿真结果,也是设计互补PWM输出最终需要的结果。PWMp的低电平信号被“包围在”PWMn的低电平信号中,也实现了图2所示的时序关系。这意味着“PMOS仅在NMOS关断期间开通”,因为在同步Boost的电路结构中,PMOS是低电平开通,NMOS是低电平关断。

图4 PWMn与PWMp的仿真时序

图4所示的波形同时表明,ASIC的设计实现了当NMOS关断的时候,PMOS滞后DT1时间开通,当PMOS关断DT2时间后,NMOS开通,这意味着“NMOS仅在PMOS关断期间开通”。可见,PMOS与NMOS都在对方关断后导通,两个管不会同时导通。当NMOS导通时,电能转化为电感线圈的磁场能,当NMOS关断后,磁场能转化为电能,与电池电压叠加,通过PMOS管输出,于是,电路实现了同步Boost升压功能。

3.3 开关损耗

当NMOS关断后,在PMOS管还未导通的DT1时间内,Boost电压通过其PMOS管的体二极管输出,因体二极管的压降较大,这会带来功率损耗,但由于MOS管开关时间在几十纳秒以内,因此在整个导通周期内损耗不大。恰当设计ASIC的延时时间,通过ASIC的Option Pin脚使延时时间长度可变,并选择合适的MOS管,即可使DT时间略大于PMOS管的开关时间,保证两个MOS管不会同时导通,并减少开关损耗。

与肖特基二极管相比,由于PMOS的导通电阻低,管压降小,从而提高了效率,理论上肖特基的压降约为0.3V,在5V/1A输出时,肖特基上浪费的功率约为0.3V*1A=0.3w,约为输出功率的6%,这样,若不计MOS管的导通电阻与开关损耗,理论上同步Boost效率比二极管续流高约6%,常用的低压功率NOS管如8205A或P2804NVG在1A电流时导通电阻只有几十毫欧,开关时间只有几十纳秒,所以实测结果显示同步Boost方案的效率提高明显,功率器件发热较低,与理论分析相符。

3.4 竞争力与成本

除了肖特基外,电感,导线,电路板走线都会发热,因此输出电流500mA以上时,二极管Boost的移动电源很难做到90%以上的效率,而同步Boost较容易达到,对于大容量移动电源而言,两种方案因效率产生的电池成本差别非常大,并且同步Boost移动电源本身因发热而产生的温度上升幅度很小,因此,容量越高、电流越大的移动电源,在技术指标、成本和用户体验三个方面,非同步Boost方案越缺乏竞争力。由于不同MOS管的开关导通时间不同,ASIC的延时时间可以通过增加或减少延时门的数量来调节。经测算,在0.5um工艺下,不计Pad时,Layout的面积小于0.4mm^2,成本很低。

4.MCU选型及软件流程说明

使用通用MCU的PWM驱动Boost升压,实现移动电源方案,在MCU选型时,其PWM的输出频率最好在100KHz以上,否则需要很大的电感和滤波电容,MCU应当有8bit以上的AD能力。我们分析过HOLTEK、海尔、义隆、Sonix、芯睿等消费电子常用的MCU资料,均有可以达到这一要求的通用MCU型号。

移动电源软件流程主要包含三部分:主循环,充电管理,放电管理等。我们分别使用过台湾Holtek的HT46R066、海尔的HR6P71、芯睿的MK7A22P三种MCU,实现了由MCU的PWM驱动的移动电源方案,以下流程经实际验证是可行的。

4.1 主循环

外部电源接入时,进行充电管理;外部负载接入时,进行放电管理。按键按下时进行LED电量显示,按键长按时打开手电筒功能。在整个充放电过程中进行温度检测保护,在整个充电过程中保持LED输出。放电时若超过10秒无按键,则进入到低功耗模式,关闭LED。

4.2 充电管理

充电管理主要功能为:当电池电压小于3V时,进行涓流(1/10C)充电;当电池电压在3V-4.2V时进行恒流充电。当电池电压大于4.2V时,进行恒压充电直至充电电流小于1/10C,此刻认为电池充满,用于电量显示的LED全亮。

4.3 放电管理

放电管理主要流程为,产生PWM信号驱动Boost升压,由MCU的AD Pin检测输出电压,当输出电压低于5V或高于时,改变PWM的占空比,控制Boost升压的幅度,实现恒压。通过串联在输出电路上的电阻,检测电阻压降的AD值,改变PWM占空比,实现恒流输出和限流保护。如果MCU的AD位数小于10位,也可采用软件算法限流,实际测试可用,但控制电流的精度较低。

5.结语

相对二极管续流的非同步Boost方案,同步Boost的移动电源具有效率高的突出优点,理论及实测都充分证明这一优点,因此它将会成为消费电子市场中移动电源的主流方案。本文提出了一种IC设计结合通用MCU实现的同步Boost方案,并进行IC设计仿真,达到预期结果。与专用IC相比,可充分利有现有MCU资源,方案选择灵活、成本也具有竞争力,相信这种形式的方案将在市场占有其一席之地。

参考文献

[1]HT45F4Mv110.PDF.台湾盛群半导体股份有限公司, 2013-5-15.

[2]8205A.PDF.HI-SINCERITY MICROELECTRONICS CORP,2007-3-12

[3]P2804NVG.PDF.NICO-SEM尼克林微电子股份有限公司,2004-8-19

[4]HR6P71v2.1.PDF.上海海尔集成电路有限公司,2011-5-5.

[5]MK7A22P.PDF.台湾芯睿半导体有限公司,2007-12-03.

作者简介:

李文胜,广州松田职业学院讲师,主要研究方向:嵌入式系统、IC设计。

电源ic范文第10篇

近来,这种同时要求高电源效率和高处理性能的需求也已经扩展到了工业和医疗便携式应用。作为最新和功能丰富的高端消费类便携式设备,手持式数据收集设备、坚固耐用的库存控制和跟踪设备、便携式气体检测仪、血液分析仪、便携式EKG设备以及其他便携式医疗设备,都需要类似甚至更高的电源效率和处理能力。此外,这些设备必须坚固耐用、可靠和足够轻,这样才能被看成是“便携”的。

就便携式应用而言,主电源一般是大型单节锂离子/聚合物电池,该电源可能提供高于或低于产品中3.3V系统电源的电压。不管这类“便携式”处理器系统是否是电池供电的,伴随它们而来的其他复杂性包括:需要以特定顺序对所有电源的接通和断开排序;视系统处理需求的不同而不同,要能够动态地调高和调低电源电压。就系统设计师而言,满足所有微处理器和有关应用的电源需求的单个集成式解决方案极其有利。要在多种应用中满足这些需求,就需要一个高度灵活的、可编程和高效率的多输出电源解决方案。

降压-升压功能的设计挑战

今天功能丰富的新式电子系统大多数仍然需要+3V范围内的电压轨,例如,给汽车信息娱乐系统中的I/O或者外部设备轨供电。在电源管理Ic(PMIc)中集成同步降压升压开关功能后,允许跨2.7~5.5V的整个输入电压范围以高效率实现3.3V调节,从而产生更高的工作裕度。不过,以降压升压设计实现高效率比简单的降压型Dc/Dc转换器挑战性高得多,尤其是,如果要求低噪声和良好的负载阶跃瞬态响应时,更是这样。

减少热量,优化系统效率

很多任务业标准PMIc都带有各种内置的线性稳压器。不过,如果没有用足够的铜走线布线、散热器或良好设计的输入/输出电压和输出电流值对线性稳压器进行正确管理,那么线性稳压器可能在PC板上产生局部的热量“热点”。或者,当输入和输出电压之差很大,或如果输出电流很大时,开关稳压器可以提供效率更高的降压方式。在今灭具有内置低压μP和具功能丰富的器件中,开关稳压器的使用很普遍。因此,为大部分电压轨部署基于开关模式的电源越来越重要了。不过,LDO提供低噪声输出和很高的PSRR性能,因此,必须评估这两种权衡之策。在很多情况下,恰当的IC分区包括两种类型的稳压器。

今天,几乎所有应用都对系统中的热量很敏感。随着处理性能和有关工作电流的上升,用开关稳压器取代LDO变得越来越重要了。在高度集成的电源中尤其是这样,因为单个IC散发热量的能力是有限的。此外,视所执行的处理操作的不同而不同,实现最佳功耗需要对很多内核处理轨进行动态调节。要以较高的时钟速率工作,较高的电源电压是必需的。类似地,就处理任务不那么密集的上作模式而言,非常低的电压就足够了。既然相应的电源电流往往跟踪输入电源电压,所以让处理器以最低电源电压工作是人们所希望的。要动态调节处理器电压源需要诸如I2C这样的串行端口来通报所发生的变化。今天的高端便携式处理器几乎全部支持这种功能,不过,利用这种功能需要一个同样灵活和可编程的电源解决方案。

便携式医疗和工业仪器中的电源管理问题

如同其他很多应用的情况一样,低功率精确组件已经使便携式医疗仪器出现了快速增长。不过,与其他很多应用不同,便携式医疗产品除了要求重量轻以便于携带,一般还有高得多的可靠性、运行时间和坚固性标准。这种负担大部分落在了电源系统及其组件上。医疗产品必须正确工作,而且视设计和输入电源要求的不同而不同,常常必须在各种电源之间无缝切换。必须竭尽全力保护设备免受故障影响并能够承受故障,必须在电池供电时最大限度地延长工作时间,并确保无论何时,只要有效电源存在,就能可靠运行。此外,功率值随着功能和有关电压轨数量的增加而增加。除了遥远地区应用所需维护要少、能承受极端的温度变化以及受到机械振动或冲击时不会损坏等要求以外,工业便携式设备与医疗设备有很多相同的要求。

总之,系统设计师面临的主要挑战包括:

・集成降压-升压型稳压器

・在功耗与多个开关稳压器及LDO的高集成度之间权衡

・集成动态I2c控制

・工业和医疗设备系统的可靠性和坚固性要求

・解决方案尺寸和占板面积

一个简单的解决方案

过去的工业PMIC没有足够的功率来应对这些新式系统和微处理器。满足上述电源管理IC设计限制的任何解决方案都必须兼有:高集成度,包括集成大电流开关稳压器和LDO;以诸如降压升压型稳压器等难以使用的功能构件对关键参数进行动态I2C控制。此外,一个具有高开关频率的器件可减小外部组件尺寸,而且陶瓷电容器可降低输出纹波。

面向新式处理器的大功率PMIC

LTC3589是一个完整的电源管理解决方案,面向基于ARM的处理器和先进的便携式微处理器系统。该器件含有:3个同步降压型Dc/DC转换器,分别用于内核、存储器和SoC轨;一个同步降压一升压型稳压器,用于2.5~5V的I/O;3个250mA的LDO稳压器,用于低噪声模拟电源。I2c串行端口用来控制稳压器启动、输出电压值、动态电压调节和转换率、工作模式以及状态报告。以所希望的顺序将稳压器输出连接到使能引脚或通过I2C端口,可对稳压器启动排序。通过一个按钮接口、引脚输入或I2c接口,可控制系统的加电、断电及复位功能。电压监视器和有源放电电路可在下一个使能序列之前确保一个干净的断电,另外,选定的稳压器可以免除用于电源的按钮控制(例如,存储器,当其必须在停机模式中保持运行时)。LTC3589以8个独立轨、恰当的功率值、动态控制和排序支持i.MX、PXA和OMAP处理器。其他特点包括VSTB引脚等提供的接口信号,该引脚同时在多达4个轨上、于设定的运行和备用输出电压之间切换。该器件采用扁平40引脚6mm×6mm焊盘QFN封装。

高集成度-支持多个大功率轨

LT C3589是一个面向便携式微处理器和外部设备的完整电源管理解决方案。它总共提供8个电压轨,以给处 理器内核、SDRAM、系统存储器、PC卡、始终保持接通的实时时钟以及HDD功能组件供电。提供这些电压轨的是一个始终保持接通的低静态电流25mA LDO、一个1.6A和两个1A降压型稳压器、一个1.2A降压一升压型稳压器以及3个250mA的低压差线性稳压器。支持多个稳压器的是高度可配置的电源排序功能、动态电压转换DAC输出电压控制、一个按钮接口控制器、通过I2C接口的稳压器控制以及大量状态报告和中断输出。

LT C3589的内部补偿、恒定频率电流模式降压型开关稳压器提供1A和1.6A的电流。就每一个采用I2C命令寄存器的降压型稳压器而言,降压型稳压器2.25MHz或1.125MHz的开关频率(包括相位)是独立选择的。加电默认频率是2.25MHz,而且含有边缘速率调整以降低EMI。每个降压型转换器都有动态转换的DAC输入基准和外部反馈引脚,以设置输出电压范围。这些降压型稳压器的3种工作模式――脉冲跳跃模式、突发模式(Burst Mode)工作或强制连续模式――用I2C接口设定。在脉冲跳跃模式时,稳压器会支持100%占空比。突发模式工作在低输出负载时有利于实现最高效率。除了电压输出设定点之间的最佳动态转换控制以外,强制连续模式还在轻负载时最大限度地降低了输出电压纹波。

单电感器、4开关降压一升压型DC/DC电压模式转换器从2.5~5V电压产生一个用户可编程的输出电压轨。该降压一升压型转换器利用专有开关算法,以高于、低于或等于所需输出轨的输入电压保持高效率和低噪声工作。降压升压误差放大器采用一个固定的0.8V基准,而且输出电压通过一个外部电阻器分压器设定。突发模式工作通过I2C控制寄存器启动。就降压一升压型转换器而言,无须外部补偿组件。

动态电压轨控制和其他I2C控制的功能

LTC3589具有高端便携式应用处理器所需的I2C控制功能、动态电压调节(Dynamic Voltage Scaling)和可选电压转换设置。为了使该IC的转换DAC基准能够工作,3个LTC3589降压型开关稳压器和线性稳压器LDO2具有可编程DAC基准输入。每个DAC在0.3625~0.75V范围内都是可按照12.5mV步进编程的。

也可以命令DAC基准以4个可选转换率之一、独立地在两个电压之间转换。每个DAC都有两个独立的输出电压寄存器以及电压寄存器选择、转换率和启动控制。不必为改变DAC输出而启动这些稳压器。

图4显示降压型稳压器1、2、3和LDO2以4种可能的转换率在0.8~1.2V之间转换,转换由VSTB引脚(灰色)启动。这些值是8个单独的DAC代码。

上一篇:高频开关电源范文 下一篇:开关电源变压器范文

友情链接