电源检测范文

时间:2023-03-08 21:40:41

电源检测

电源检测范文第1篇

供电电压自动测控系统技术方案和特点

监控模块根据接收到以CAN通讯卡传来的指令来控制电机的停止/启动,同时检测取芯仪供电电源的运行状态,并将电压、电流、温度、运行信息及故障信息等参数通过CAN通讯传给上位机进行处理和显示。电压一次侧由芯片3875发出的移相脉冲控制H桥的IGBT模块,正弦脉宽调制(SPWM)波由SPWM输出模块编程实现,并且实现电机软起动和软停车,驱动负载电机自适应等功能。方案结构(图略)。测控系统特点测控系统采用凌阳公司的16位高速微型计算机SPMC75F2413A为核心,CAN控制器采用MCP2515,CAN驱动器采用TI公司的低功耗串行CAN控制器SN65HVD1040D,通过CAN总线能够实时地检测和传递数据,实现数据通讯和共享,更能够实现多CPU之间的数据共享与互联互通,其它电子元件均选择150℃温度的等级。此外系统还设计有散热器、风扇等。该测控系统具有极高的高温可靠性,能够确保系统在高温环境下可靠工作,控制、检测、显示的实时性好,可靠性高。测控系统采用智能化控制算法软件来实现马达机的高性能运行,其具有效率高、损耗小、噪音小、动态响应快、运行平稳等特点。

硬件电路设计

CAN通信电路检测系统采用SPMC75F2413A凌阳单片机,不集成CAN外设模块,选择外部CAN模块控制器MCP2515,该模块支持CAN协议的CAN1.2、CAN2.0A、CAN2.0BPassive和CAN2.0BActive版本,是一个完整的CAN系统,直接连接到单片机的SPI总线上,构成串行CAN总线,省去了单片机I/O口资源,电路简单,适合高温工作。CAN通信电路原理图(图略)MCP2515输出只要加一个收发器就可以和上位PC机进行CAN通信,收发器采用TI公司生产的SH65HVD140D。电机温度检测电路该系统中供电电源温度的检测由温度传感器PT100来完成。PT100与高频变压器、供电电源散热器、高频电感发热器件的表面充分接触,当器件的温度变化时,PT100的阻值也随之变化,将温度传感器的阻值转换为电压信号,电压信号放大整形送给单片机,再由单片机计算出供电电源各发热点的实际温度。当温度过高,供电电源自动停止运行。同时实时将检测到的各发热点的温度通过CAN通讯发给上位PC机。输入直流电压检测电路检测电路(图略)。供电电源为多电压变化环节,前级变换为AC/DC,仪器要深入井下工作,交流高压从地面通过长达7000m的电缆线供给,直流阻抗(电阻)值约为240Ω,一般由两根电缆导线并联使用[5]。系统不工作时,电缆导线无电流,供电电压相对较高,电机电流约1.5A。系统运行时电缆中有电流,电缆线路就会有压降,电机电流会达到3A。由于采用了高频变压器,变比约18,当负载电流增加1.5A时,原边电流就增加约27A,如果重载,原边电流增加更多,就会拉垮输入电源。所以对输入的一次侧直流电压电流进行监控就非常必要,根据检测值来调整输入的直流高压[6]。检测电路采用的是差分电路采样直流电压,检测时,直流高压加到分压电阻的两端,通过分压电阻运放调理后输入到CPU。

软件设计

CAN通信协议系统CAN总线的节点流程图。上位机向监控模块发送指令帧,帧号为0x11,用来控制电机启停和SPWM输出。监控模块向上位机发送状态帧,帧号为0x21,用来反馈电机的状态信息。软件流程图监控模块根据上位机的指令控制电机的停止/启动,同时检测取芯器供电电源的运行状态,并将参数传给上位机进行显示。软件分为两大模块,主程序模块和定时器T1中断服务模块。主程序模块主要实现上电初始化功能、CAN通讯功能和定时器T1中断设置等功能;定时器T1中断程序模块实现电机参数采样及发送,并能根据CAN总线接收的指令控制输出参数。

实验结果

上述检测系统安装在井壁取芯仪上得以成功实现运行。将安装有检测控制系统的井壁取芯仪整体放在恒温箱里面做加温运行带载实验,恒温箱145℃恒定不变,连续运行24h,每隔0.5h使电机带载运行10min,即电机憋压运行。同时改变电机的给定转速(从500r/m到3000r/m),观测测量的电机实际运行速度稳定,又根据电机的带载运行调整输入直流高温。检测控制系统经高温24h连续运行,电机在空载和带载时能够可靠运行,满足要求。(a)(b)(c)是实验时测得的CAN总线数据帧。(a)为CAN总线数据一帧的数据波形,由10个字节组成。为测控系统CAN总线数据帧发送接收,每隔120ms传送一帧数据。

结语

电源检测范文第2篇

监控模块根据接收到以CAN通讯卡传来的指令来控制电机的停止/启动,同时检测取芯仪供电电源的运行状态,并将电压、电流、温度、运行信息及故障信息等参数通过CAN通讯传给上位机进行处理和显示。电压一次侧由芯片3875发出的移相脉冲控制H桥的IGBT模块,正弦脉宽调制(SPWM)波由SPWM输出模块编程实现,并且实现电机软起动和软停车,驱动负载电机自适应等功能。方案结构(图略)。测控系统特点测控系统采用凌阳公司的16位高速微型计算机SPMC75F2413A为核心,CAN控制器采用MCP2515,CAN驱动器采用TI公司的低功耗串行CAN控制器SN65HVD1040D,通过CAN总线能够实时地检测和传递数据,实现数据通讯和共享,更能够实现多CPU之间的数据共享与互联互通,其它电子元件均选择150℃温度的等级。此外系统还设计有散热器、风扇等。该测控系统具有极高的高温可靠性,能够确保系统在高温环境下可靠工作,控制、检测、显示的实时性好,可靠性高。测控系统采用智能化控制算法软件来实现马达机的高性能运行,其具有效率高、损耗小、噪音小、动态响应快、运行平稳等特点。

硬件电路设计

CAN通信电路检测系统采用SPMC75F2413A凌阳单片机,不集成CAN外设模块,选择外部CAN模块控制器MCP2515,该模块支持CAN协议的CAN1.2、CAN2.0A、CAN2.0BPassive和CAN2.0BActive版本,是一个完整的CAN系统,直接连接到单片机的SPI总线上,构成串行CAN总线,省去了单片机I/O口资源,电路简单,适合高温工作。CAN通信电路原理图(图略)MCP2515输出只要加一个收发器就可以和上位PC机进行CAN通信,收发器采用TI公司生产的SH65HVD140D。电机温度检测电路该系统中供电电源温度的检测由温度传感器PT100来完成。PT100与高频变压器、供电电源散热器、高频电感发热器件的表面充分接触,当器件的温度变化时,PT100的阻值也随之变化,将温度传感器的阻值转换为电压信号,电压信号放大整形送给单片机,再由单片机计算出供电电源各发热点的实际温度。当温度过高,供电电源自动停止运行。同时实时将检测到的各发热点的温度通过CAN通讯发给上位PC机。输入直流电压检测电路检测电路(图略)。供电电源为多电压变化环节,前级变换为AC/DC,仪器要深入井下工作,交流高压从地面通过长达7000m的电缆线供给,直流阻抗(电阻)值约为240Ω,一般由两根电缆导线并联使用[5]。系统不工作时,电缆导线无电流,供电电压相对较高,电机电流约1.5A。系统运行时电缆中有电流,电缆线路就会有压降,电机电流会达到3A。由于采用了高频变压器,变比约18,当负载电流增加1.5A时,原边电流就增加约27A,如果重载,原边电流增加更多,就会拉垮输入电源。所以对输入的一次侧直流电压电流进行监控就非常必要,根据检测值来调整输入的直流高压[6]。检测电路采用的是差分电路采样直流电压,检测时,直流高压加到分压电阻的两端,通过分压电阻运放调理后输入到CPU。

软件设计

CAN通信协议系统CAN总线的节点流程图。上位机向监控模块发送指令帧,帧号为0x11,用来控制电机启停和SPWM输出。监控模块向上位机发送状态帧,帧号为0x21,用来反馈电机的状态信息。软件流程图监控模块根据上位机的指令控制电机的停止/启动,同时检测取芯器供电电源的运行状态,并将参数传给上位机进行显示。软件分为两大模块,主程序模块和定时器T1中断服务模块。主程序模块主要实现上电初始化功能、CAN通讯功能和定时器T1中断设置等功能;定时器T1中断程序模块实现电机参数采样及发送,并能根据CAN总线接收的指令控制输出参数。

实验结果

上述检测系统安装在井壁取芯仪上得以成功实现运行。将安装有检测控制系统的井壁取芯仪整体放在恒温箱里面做加温运行带载实验,恒温箱145℃恒定不变,连续运行24h,每隔0.5h使电机带载运行10min,即电机憋压运行。同时改变电机的给定转速(从500r/m到3000r/m),观测测量的电机实际运行速度稳定,又根据电机的带载运行调整输入直流高温。检测控制系统经高温24h连续运行,电机在空载和带载时能够可靠运行,满足要求。(a)(b)(c)是实验时测得的CAN总线数据帧。(a)为CAN总线数据一帧的数据波形,由10个字节组成。为测控系统CAN总线数据帧发送接收,每隔120ms传送一帧数据。

结语

电源检测范文第3篇

【关键词】航空电源产品 电源线传导发射 原因与方法措施

航空电源是保证航空设备正常运行的不可或缺的机载供电设备,航空电源产品和系统主要的用途就是生产并存贮机载用电设备日常运行所需要的电能,从而保证机组上各项电力设备的正常运行时所需要的电能。机载航空电子设备随着市场需求正不断朝着高安全性能以及大功率方向发展,其潜在的电磁感干扰也逐渐显现。一般情况下电源系统所出现电磁干扰主要是由于电源产品本身与电源线上的干扰进入系统所形成的。

1 传导发射检测原理概述

航空电源产品电源性的干扰问题主要体现在电网上的干扰由电源线传入产品中或电源产品中的干扰由电源性进入电网中。(详情见图1)。

电网中的干扰和电源产品中的干扰能够互相传递。电网干扰进入电源产品主要是传导抗扰度问题,而电源产品进入电网中主要是传导感染发射的问题。传导发射测试主要是测量被试对象(EUT)以电源线或信号线为途径朝外界发出干扰信息。测试频段和测试对象是决定采用何种测试方法的主要依据。测量朝外界发出干扰信息性质存在一定差异,连续波干扰电流或尖峰干扰信号都是属于干扰的类型之一。主要有电流探头法、定向耦合法等。本文检测的方式主要是电流探头法。

在被检测航空设备的电源线上安装电流探头,电流探头上的线圈能够反映出电流的情况。同时,电源线和电磁干扰分析仪是连通的,因此在电磁干扰分析仪上会显示相应的电压。电磁干扰分析仪上所显示的电压与航空设备电源线中的电流值存在显著的正相关联系。根据此原理可以计算得出传输的阻抗。探头的阻抗可以参照其说明书,电源线中的电流为I=V/Z。(详情见图2)。

2 航空电源产品电源线传导发射的检测

2.1 设备与检测准备

在接受检测前应该保证飞机上的设备完整,通电后能够单独工作。设备、仪器等在合格器内并且其精准度高于被测参数。主要使用仪器为电磁干扰测量仪、传感器为电流探头,测试对象为电源产品向电网所发出的干扰,测量频率为15KHz-50MHz。

2.2 检测方式设计

所采用的检测方式为CE03检测方式。CE03主要是检测0.015-50MHz电源线和互连线的传导放射。首先,需要关闭航空设备产品的电源。检查直流发电机能否正常工作,在肯定的情况下将放置电流探头在直流输入的正负两级上,打开自动控制计算机以及电磁感染测量仪器,对环境电平进行扫描。观察宽带与窄带电磁发射扫描图,

2.3 检测结果分析

电磁环境的宽窄带发射的实验样品在断电的情况下环境电平低于标准极限值6bB,并且直流发电机的输出电源与被测试对象工作电源要求相符就说明该电磁环境通过测试。

3 电源线传导干扰产生的原因与防范

3.1 电源线传导干扰产生的原因

一般情况下电源系统所出现电磁干扰主要是由于电源产品本身与电源线上的干扰进入系统所形成的。当系统与其他不稳定的大负载设备共同使用同一电源时将会出现电源噪声;当使用长距离的电源线进行传输时所产生的电压降与感应电动势将会导致电压噪声;而电源线出现电流流动变化的情况下会出现电流噪声。电源产品中出现的传导发射主要包括电源奇次谐波发射和开关频率射频发射。前者主要是由于输入电流非正弦波,后者是由于流经开关和变压器的电流是脉冲波。除此之外,以下条件也会导致电源产品的电源线上出现传导干扰。

(1)公共电源使得各个用电设备相互干扰产生交叉干扰。

(2)变压器不符合电源产品要求。

(3)开关电源所产生的频谱较宽,产生辐射和传导干扰。

3.2 电源线传导干扰的防范措施

3.2.1 电源线EMI滤波器

各种形式的传导干扰都可以通过电源线滤波器来进行改善。(详情见图3)。图3为单相电源EMI滤波器基本网络结构。

EMI滤波器电路结构呈现互异性,当其应用在电源产品中不单可以抑制干扰信号传输至用电设备,更为重要的是能够大幅度的减轻电源设备在工作时所产生的干扰信号传递至电源的问题。避免滤波器的输入输出端口距离过短,否则其两者之间的电容会导致高频干扰出现空间耦合,从而大大降低滤波器的高频滤波效果;滤波器的金属外壳要直接接触电源产品的金属外壳或金属板,而滤波器的外壳要有接地设备。

3.2.2 屏蔽线与其他防范措施

电缆的屏蔽线两端必须接地,进而避免发生安全事故和减少电磁辐射;当电源电压不平衡率大于3%时可以按照电源协调电抗器来保护电源产品,改善功率因数,缓解异常电压的消极影响;如果无法高效的抑制高频传导发射可以在变频器电源进线口安装零序电抗器,从而有效的一直高次谐波,如同时有电源协调电抗器装配,高频滤波器应该位于电源协调电抗器与变频器中间。

4 结束语

在航空电源产品中电磁干扰的主要表现形式就是传导干扰。飞机上的五分之一以上的电磁干扰是由于电磁辐射所引起的,而五分之三以上的干扰是由于导线耦合所导致的。航空电源产品电源线上的传导干扰是无法避免的,其具有复杂性和多变性,并且受到多种因素的共同影响。妥善处理传导发射问题能够显著降低产品中的辐射干扰。

参考文献

[1]赵宏洲,李继民,宁晓峰等.一种适用于航空机内通信设备的电源线传导干扰抑制装置[Z].应用技术网,2014(04).

[2]赵文,李健,梅寒剑.军用电子设备电源线传导发射抑制方法设计及实现[J].仪表技术,2014(04):13-15+19.

[3]纪洪广,侯昭飞,周煜等.岩石类脆性材料多频段声发射检测分析方法和装置[Z].应用技术网,2011(02).

作者简介

汤易(1980-),男,云南省保山市人。大学本科学历。现为成都飞机工业集团电子科技有限公司工程师。研究方向为电气技术。

作者单位

电源检测范文第4篇

监控模块根据接收到以CAN通讯卡传来的指令来控制电机的停止/启动,同时检测取芯仪供电电源的运行状态,并将电压、电流、温度、运行信息及故障信息等参数通过CAN通讯传给上位机进行处理和显示。电压一次侧由芯片3875发出的移相脉冲控制H桥的IGBT模块,正弦脉宽调制(SPWM)波由SPWM输出模块编程实现,并且实现电机软起动和软停车,驱动负载电机自适应等功能。方案结构(图略)。测控系统特点测控系统采用凌阳公司的16位高速微型计算机SPMC75F2413A为核心,CAN控制器采用MCP2515,CAN驱动器采用TI公司的低功耗串行CAN控制器SN65HVD1040D,通过CAN总线能够实时地检测和传递数据,实现数据通讯和共享,更能够实现多CPU之间的数据共享与互联互通,其它电子元件均选择150℃温度的等级。此外系统还设计有散热器、风扇等。该测控系统具有极高的高温可靠性,能够确保系统在高温环境下可靠工作,控制、检测、显示的实时性好,可靠性高。测控系统采用智能化控制算法软件来实现马达机的高性能运行,其具有效率高、损耗小、噪音小、动态响应快、运行平稳等特点。

硬件电路设计

CAN通信电路检测系统采用SPMC75F2413A凌阳单片机,不集成CAN外设模块,选择外部CAN模块控制器MCP2515,该模块支持CAN协议的CAN1.2、CAN2.0A、CAN2.0BPassive和CAN2.0BActive版本,是一个完整的CAN系统,直接连接到单片机的SPI总线上,构成串行CAN总线,省去了单片机I/O口资源,电路简单,适合高温工作。CAN通信电路原理图(图略)MCP2515输出只要加一个收发器就可以和上位PC机进行CAN通信,收发器采用TI公司生产的SH65HVD140D。电机温度检测电路该系统中供电电源温度的检测由温度传感器PT100来完成。PT100与高频变压器、供电电源散热器、高频电感发热器件的表面充分接触,当器件的温度变化时,PT100的阻值也随之变化,将温度传感器的阻值转换为电压信号,电压信号放大整形送给单片机,再由单片机计算出供电电源各发热点的实际温度。当温度过高,供电电源自动停止运行。同时实时将检测到的各发热点的温度通过CAN通讯发给上位PC机。输入直流电压检测电路检测电路(图略)。供电电源为多电压变化环节,前级变换为AC/DC,仪器要深入井下工作,交流高压从地面通过长达7000m的电缆线供给,直流阻抗(电阻)值约为240Ω,一般由两根电缆导线并联使用[5]。系统不工作时,电缆导线无电流,供电电压相对较高,电机电流约1.5A。系统运行时电缆中有电流,电缆线路就会有压降,电机电流会达到3A。由于采用了高频变压器,变比约18,当负载电流增加1.5A时,原边电流就增加约27A,如果重载,原边电流增加更多,就会拉垮输入电源。所以对输入的一次侧直流电压电流进行监控就非常必要,根据检测值来调整输入的直流高压[6]。检测电路采用的是差分电路采样直流电压,检测时,直流高压加到分压电阻的两端,通过分压电阻运放调理后输入到CPU。

软件设计

CAN通信协议系统CAN总线的节点流程图。上位机向监控模块发送指令帧,帧号为0x11,用来控制电机启停和SPWM输出。监控模块向上位机发送状态帧,帧号为0x21,用来反馈电机的状态信息。软件流程图监控模块根据上位机的指令控制电机的停止/启动,同时检测取芯器供电电源的运行状态,并将参数传给上位机进行显示。软件分为两大模块,主程序模块和定时器T1中断服务模块。主程序模块主要实现上电初始化功能、CAN通讯功能和定时器T1中断设置等功能;定时器T1中断程序模块实现电机参数采样及发送,并能根据CAN总线接收的指令控制输出参数。

实验结果

上述检测系统安装在井壁取芯仪上得以成功实现运行。将安装有检测控制系统的井壁取芯仪整体放在恒温箱里面做加温运行带载实验,恒温箱145℃恒定不变,连续运行24h,每隔0.5h使电机带载运行10min,即电机憋压运行。同时改变电机的给定转速(从500r/m到3000r/m),观测测量的电机实际 运行速度稳定,又根据电机的带载运行调整输入直流高温。检测控制系统经高温24h连续运行,电机在空载和带载时能够可靠运行,满足要求。(a)(b)(c)是实验时测得的CAN总线数据帧。(a)为CAN总线数据一帧的数据波形,由10个字节组成。为测控系统CAN总线数据帧发送接收,每隔120ms传送一帧数据。

结语

电源检测范文第5篇

干扰产生的原因与分类

在星点高压电源控制系统中,既有模拟信号又有数字信号,数字信号的高电平为5V,低电平为0V,实际的高电平为3.2V以上,低电平为1.4V以下;因此,控制系统所受干扰极易引起数字电路的逻辑状态发生改变,引起系统的逻辑和时序混乱。另外,由于现场电磁干扰严重,影响采集数据的真实性,不利于反馈控制系统工作。针对控制系统的具体情况,其可能的干扰源包括射频干扰、电源干扰以及信号通道产生的干扰。(1)射频干扰[3]。射频干扰指复杂的电磁环境对计算机控制系统及接口电路造成的干扰。实验证明,现场接地开关的动作产生的干扰及负载设备打火都容易引起控制系统的误动作。(2)电源干扰[4]。工频电源电压的大幅度波动或电流冲击有可能通过变压器、整流和稳压电路进入数字电路,经过滤波,各种高频辐射干扰有较大衰减,而一些低频干扰叠加在50Hz电源波形上,难以滤除,形成差模干扰。此外,还存在着由电力电子和各种继电器切换时向电网倒灌的瞬态干扰,如浪涌、快速脉冲群等现象。(3)信号通道干扰[5]。相关信号一般需要经过信号调理转换才能接入控制系统,在信号传输过程中存在干扰因素,包括信号间的串扰、阻抗不匹配引起的反射及从信号输出线间接引入的干扰。若接地不当,地线与接地回路之间也会形成干扰。(a)为现场内的某设备在实验期间的干扰情况,比较可以发现,实验期间的电磁干扰相当严重。(b)为实验期间此套高压电源的一些控制信号和输出电压的测量信号,可以发现,在现场的高压脉冲调制器开通和关断瞬间,对设备的干扰比较严重,圈A和圈B已经表示出来;圈C则是显示当现场的接地开关动作时,对控制信号和电压输出信号造成的干扰,正常的控制信号是在5V范围以内,而当接地开关动作时,控制信号可以达到10V,这也表明接地开关的动作确实对现场设备造成非常大的电磁干扰;圈D则是显示在高压输出波形上叠加的测量干扰信号,这直接影响控制系统的精准度。由此可见,整个高压电源控制测量系统工作在一个非常恶劣的环境下,有必要研究并且解决这些问题。

抗干扰设计

提高高压电源控制测量系统的抗干扰能力可以从硬件和软件两个方面考虑。其中,硬件系统的抗干扰设计是提高系统抗干扰能力的根本,软件抗干扰设计则是主要抑制外来干扰的作用。在这套高压电源控制测量系统中,进行了大量的抗干扰方面的设计。硬件抗干扰措施(1)电源[6]。整套控制系统是由工频电源供电,电网中本身含有浪涌电压噪声,同时由于现场的大功率制冷设备运行时也产生较大的高频尖峰脉冲,为此,需要对电源进行一些处理。首先,整套控制系统采用1∶1的隔离变压器为整套控制系统提供电源,其初级绕组和次级绕组都是分开绕制,各自加以屏蔽,可以减小初次级之间的分布电容;另外,由于控制接口部分抗干能力弱些,抛开开关电源,制作了高性能直流+5V、+12V、-12V的线性电源,为控制系统的电路提供工作电压。(2)滤波和去耦[7]。在接口机箱的电源进线处增加电源滤波器,在电路板的设计上,在冲击电流较大的器件电源端加旁路电容,对信号处理电路入口处、每一个集成块电路增加滤波电容。这些措施都可以降低瞬态电流的影响,并且对高频干扰进行滤波处理。另外,对于抗干扰能力弱、开关电流比较大的器件,在芯片的电源线和地线间直接增加去耦电容。(3)屏蔽和接地。屏蔽隔离是提高控制系统抗干扰能力的有效措施,将控制系统的接口部分用机箱屏蔽、整套控制系统用机柜屏蔽都能有效减少射频干扰的影响。对于高压电缆,采用了屏蔽电缆,抑制它作为噪声源向外部信号产生干扰。而对于信号电缆,为使其在噪声环境中不受噪声的电磁耦合,也采用屏蔽电缆,并且屏蔽体两端接地,减小回路所包围的面积,尽量选择双绞线作为屏蔽信号导线,减小噪声电流。考虑系统接地时,将机箱与机柜的外壳与电缆的屏蔽层直接与大地相连,能起到防漏电及屏蔽的效果。为了减小外部环境通过电源线对控制系统形成干扰,控制电路部分采用浮地方式,即将控制电路的地线与外部地线完全隔离,彻底切断外部干扰通过电源、地线串入数字电路。另外,在接口电路中广泛采用了光电耦合器件,使控制系统与外界通道做到完全的电气隔离。(4)信号通道间的抗干扰。在A/D采集11路信号采用独立的屏蔽电缆,进入A/D采集卡时采用单端输入,可以有效地避免信号通道之间的干扰。另外,由于控制系统与外部联系较多,大多数采用光信号传输,远程的数字信号利用数字光纤,在控制机柜内,专门制作光电/电光信号转换板,将从其他系统送来的光信号转换为电信号,同时,送到其他系统的信号也都转换为光信号后进行传输。对于其他系统送来的模拟量,也都进行V/F和F/V转换后进行传输。这些措施,都可以减小信号间的相互干扰以及避免接收其他系统的干扰信号。软件抗干扰设计软件抗干扰主要是通过程序设计手段,使系统能识别错误操作、错误状态和错误信息,避免由此产生系统程序运行方面的错误。在这套控制系统中,程序主要处理数字量和模拟量,采用C++[8]编写软件,因此,软件设计时重点在这两方面进行处理。(1)数字量的处理。数字量输入接口的噪声处理主要是程序延时和对输入数字量的多次识别,在规定的时间范围内,进行数字量的多次采样,然后按位进行逻辑乘,通过比较结果的判断来鉴别数字量输入信号的真伪,软件流程如图2。(2)模拟量的处理。在整套控制系统中,采集信号的准确度直接关系到控制系统的控制精度,由于高压输出要控制在1%的范围以内,需要根据电压采集信号进行反馈;另外由于高压电源的过压、过流保护相当重要,采集数据的准确度也直接关系到过压保护和过流保护是否准确到位,当系统出现过压、过流等情况时,需要立即做出反应,切断某些控制信号,使相关的控制信号由正值变为负值。基于以上两点,需要对采集到的数据进行处理,既保证数据采集的准确性,又需要保证程序合理有效地对故障进行反应处理。软件滤波的方法比较多,有限幅滤波法、中位值滤波法、算术平均滤波法、去最高最低值滤波法、递推平均滤波法、一阶滞后滤波法、加权递推平均滤波法等。在这套高压电源控制程序中,针对采样数据种类的不同,综合采用了递推平均滤波法、限幅滤波法、去最高最低值滤波法以及一阶滞后滤波法等几种数据处理方法。在采集输出高压时,在采样时间允许范围以内,尽量多采集数据,对这些数据进行去最高最低值滤波,。在测量电机电压信号时,由于这个信号是用于在程序中前馈使用,变化不是太大,则采用递推平均滤波法;进行PID控制算法时,采用了一阶滞后滤波法。采用这些数字滤波方法以后,可以尽可能避免采集到干扰点,最大限度地使采集值接近真实值。其他抗干扰设计由于整个高压电源系统复杂,软件抗干扰和硬件抗干扰不可能解决所有问题,此时,可以尝试改变数据采集测量点等方法,在满足数据采集要求的情况下,尽量远离干扰源。例如,在这套电源控制系统中,由于负载远离电源,电源与负载之间是通过高压电缆进行连接,为了采集更为准确的高压输出信号,可以在负载侧直接进行测量,通过模拟光纤将采集值送到电源控制系统,这样也能减少电磁干扰。另外,对于接地开关干扰较大的情况,由于高压电源是脉冲工作方式,则可以采取在保证系统安全的情况下,延迟接地开关的动作时间,避免控制系统在电源工作期间受到干扰。

结束语

电源检测范文第6篇

【关键词】中频电源;信号检测;电磁兼容;功能扩展;软件设计

1.研制现状

1.1 研究目的与意义

NF系列方位水平仪广泛应用于舰艇武器指挥系统,为舰船提供方位、水平、航速等姿态信息。三相中频稳压电源为其提供所需各路电压。由于工厂承担了该电源板的研仿及批量订货任务,传统的调试及检测手段已经远远不能满足该板件的生产任务,同时在该型方位水平仪的保障修理过程中,对于板件的调试检测也存在一定的困难。

目前,批量生产中对各工作点参数的调试采用示波器来观察输入与发送端的波形来判断是否符合技战术指标,通过万用表一路路检测来确定各路工作电压,既不准确又不直观,并且无法同时观察各发送端的输出。由于检测手段的落后,生产及维修工作费时费力。一名熟练技师采用此种办法进行一次调整也要耗费几天的时间,因而远远不能适应批量生产及战时对装备维修工作的要求。

综上所述,研制专用的能多通道测量输出波形信号及同步检测多路电压的检测仪对生产及提高装备维修工作的效率具有重要意义。

1.2 总体设计方案

为使维修技术人员能尽量少的携带检测仪器,方便阵地修理,该检测仪在设计时配有三路扩展口,可随时随地检测调试任何装备、任何板件,并最多可为其同时提供四路工作电压显示、8路逻辑信号、2路示波信号的显示分析。

图1 系统结构框图

检测仪由4个电压表模块、逻辑分析模块、主控CPU板、通道选择开关、工作方式选择、人机接口和显示模块等组成。该检测仪的工作流程为主控CPU板根据面板输入设定进行功能选择、采集来自板件的波形信号及电压信号,通过解码换算,最后将得到的各路信息在本机显示出来,用于实时调试各工作点参数。

考虑到系统开发时间短、可靠性要求高、操作要求简单方便的特点,系统中的CPU模块、数字I/O接口卡选用的工控模块。系统中的人机接口界面采用图形化显示方式。显示屏采用工业级高亮度液晶屏。取消了传统的键盘接口方式,采用触摸屏获取输入信息。电源模块选用工业级专用模块提供+5V、+24V、+12V电源。220V转24V四路变压器及220V转18V变压器为专门根据技术指标定做。以下分别对各部分的原理、参数和设计方案进行说明。

2.技术设计方案

2.1 逻辑分析功能设计

由于待测板件输出为COMS信号而逻辑分析模块接收为TTL信号,故必须先设计出COMS、TTL信号转换电路,才能实现COMS信号通过逻辑分析模块实时显示波形信号的功能,并对六路信号分别控制,可进行多路显示或单路分析。波形信号接收幅值范围为+20V~-20V,带测板信号最大幅值为8V左右,无需另外进行信号转换,直接通过后面板采集处理。

2.2 多路电压复视功能设计

采用三位高亮电压显示模块,通过+24V给功能按钮进行供电,由12V电控制继电器来达到开关指示的目的。另外,为确保检测仪使用的可靠性,采用四路继电器隔离开关与电压显示模块来控制四路检测电压,确保数值测量准确。

2.3 外部功能扩展设计

为确保检测仪使用的可靠性,本仪器上下机柜采用航空插头进行连接,同时扩展口也从后面板外接。由于此三相中频稳压电源工作原理广泛应用于舰船装备供电系统中,只是每型装备具体参数不同,故本仪器在设计之初就考虑到了其功能扩展接口,通过后面板航空插头可外接各种板件信号检测点,对其他板件进行修理,方便进行阵地修理,提高保障效率。

2.4 结构设计

为方便制作,待测板件区采用有机玻璃组装完成,根据板件尺寸设计出插槽大小、深度并加工制作。由于壳体与前面板尺寸要完全吻合,故在设计定型时,考虑多方面因素,确保美观的同时,达到快速插拔的目的,以提高板件调试效率。

2.5 抗干扰设计

计算机的抗干扰性能根本在硬件结构,软件抗干扰只是一个补充。除了软件的抗干扰外,物理的EMI设计也直接关系到检测仪能否正常工作以及采集的数据是否失真的问题。本仪器采集的信号均为弱电信号,而板件供电变压器、开关电源、散热风扇等部件工作时均会产生大量的电磁辐射,给软件运行带来一定的干扰,从而导致数据采集不准确,甚至出现检测仪系统功能失效的后果。

该检测仪在设计时采用分体式设计充分考虑了这一因素。把变压器及开关电源放置在下体,而逻辑分析模块及液晶屏等安装在上部。这样可以进行有效的隔离,防止信号干扰。同时,在每根信号传输线上套有磁环,可以有效的抑制干扰辐射。

检测仪上部同样将工控处理单元与存贮器及专用电源分开。采用铝板物理隔离的方式将逻辑分析模块及信号采集端子安装在铝板上部。

除这些措施之外,所有信号传输线全部采用屏蔽电缆,以确保传输信号不失真。

2.6 前面板设计

设备的实用性是对设计的另一个考验。本检测仪面板设计直观,操作界面及按钮功能人性化,仅需简单培训即可掌握检测、调试全过程,能让操作者很快上手。这对特装装备保障队伍的建设,人员技能的提高有很大的推动作用。该仪器前面板上部为检测信号输出及控制区,前面板下部为检测信号输入及显示区。操作者只需使用手写笔及控制按钮就能达到对板件检测的目的,同时配合提升板可直观、方便的进行修理,人机互动性强。

由于阵地修理检测仪工作环境较为恶劣,本着提高检测仪可靠性的原则,在前面板上部加入了复位开关按钮。信号输入错误、程序解算出错导致系统死机等情况出现时,可紧急按下复位按钮,重新启动程序。

2.7 后面板设计

供电采用下部分单独供电的方式,以便减少仪器供电模块的数量及仪器可靠性。仪器上下体所需其他电压如220V、24V、12V、5V通过后面板共享方式传输,另外上部分信号也通过后面板航空插头进行一一对应采集分析。同时,为了实现检测仪的功能扩展,设计时,配备了两条外部信号采集线,分别测量其他板件电压信号及波形信号,方便修理。

2.8 供电方式设计

信息处理单元电路采取单独电源供电方式,其余所需电压共用一路完成。所有按钮开关采用24V单独供电,在按下的同时,点亮发光二极管,表明程序正进行信息采集处理,可以较为直观的显示各路信号运行状态。待测板件供电电压为四路交流24V及两路18V交流电压。原装备电源采用独立的四个220V转24V变压器及两个220V转18V变压器来完成板件供电,若照搬原厂家设计方案,检测仪将比较笨重,不能达到快速保障的目的。传统的变压器生产工艺,采用抽头式来实现多路电压的输出,这种方式在技术要求不很严格的情况下可行。但对于稳压电源供电,由于四路电压相通,存在相互干扰,不符合三相稳压电源设计指标要求。通过对原有供电变压器参数的分析测量,设计出符合该指标的220V转24V单独四路变压器及220V转18V单独两路变压器,变压器次级各路电压相互隔离,尽可能少的减少了相互间的干扰,同时将变压器的数量从原有的六个减少到两个,此设计方案能够完全满足检测仪板件供电需求。

2.9 散热设计

由于检测仪需要多种电压的供电,检测仪内部存在五个独立的供电电源,仪器工作时将产生大量热量。同时,中央处理器在信号采集分析时,也会散发热量。若热量无法及时排出,将导致仪器运行缓慢甚至烧坏芯片情况。方案设计时,充分考虑了这一因素。对于中央处理模块供电的单独电源配有单独散热风扇,并向上排热。CPU产生的热量由导热硅脂加散热片完成。同时检测仪上下体均配有两个24V大功率散热风扇,与仪器侧面进风口形成回路,及时排出热量。

2.10 多任务系统设计

模块化是检测仪功能实现的前导,它确定系统由哪些模块组成和模块之间的相互关系以及模块独立的功能和输入输出数据的规格,使信号采集不会产生混乱。本仪器由中央处理模块、波形信息采集模块、电压信号采集模块、数据格式转换、人机界面模块等五大部分组成。五大模块相互之间为并行关系,正常运行时构成一个多任务系统。

图2 检测仪运行图

3.军事经济效益分析

如图2所示,该型中频稳压电源检测仪不仅能够单独对NF系列方位水平仪电源板进行多通道测量,及各工作点参数的分析、调试,同时其扩展功能可完成几乎所有板件波形信号检测调试等功能,同时复视四路工作电压,能够基本满足维修技术人员的需求,从而提高装备维修效率、降低保障难度、适应战时需要,具有显著的军事效益和推广应用前景。

参考文献

[1]史本安,徐巍.KB-1型三相中频稳压电源的修理和改进[J].船舶工业技术经济信息,2001(11).

[2]韦成杰,李丽兰.开关电源综合应用实训系统开发[J].数字技术与应用,2011(08).

[3]李峻.三相中频方波变频电源[J].微特电机,1990(04).

电源检测范文第7篇

关键词:航空电源;相序检测;PIC

中图分类号:TM933.3 文献标识码:A 文章编号:1000-8136(2012)06-0004-01

三相交流电气设备在使用过程中,存在着相序不明的问题[1]。若相序接错,会对电路产生不利影响。比如三相异步电机会在相序接反时旋转方向发生改变,而在逆变电路中相序错误会烧毁元件[2]。三相交流电源的相序检测在航空电源系统中也具有重要意义,在许多场合下,是不允许出现逆向相序的。因此判断分辨出正确的相序是实际需要。本文介绍了一种115 V/400 Hz航空用三相电源相序检测电路,具有体积小、成本低、简单可靠、易于实现等特点。

1 硬件电路设计

硬件电路的原理图,见图1。电路的输入信号是航空中频电源的A相和B相。电容C1对B相实现移相60°,两相电压叠加后经过半波整流、低通滤波、削波后输入到比较器LM393的同相输入端。比较器的反相输入端的参考电压由一个5 V电压通过电阻R6、R7分压得到的。比较器通过比较同相输入端和参考电压的大小来判断相序是否正确。如果相序是正确的,同相输入端大于参考电压,比较器输出高电平;当相序是错误的,B相移相后与A相正好反相,叠加后为零,比较器同相端输入也为零,比较器输出低电平。此输出最后经过施密特触发器转换一个电平信号到微处理器进行判断。

PIC12F675是MICROCHIP公司生产的高性能精简指令集的8位单片机,该单片机引脚少、功耗低。S1为上电复位按键。单片机第5脚接收施密特触发器发送过来的检测信号,根据其电平的高低,做出相序是否错误的判断。第6脚控制保护电路,在发生相序错误时切断负载的三相交流电源,第7脚控制LED故障指示灯。

2 软件设计

单片机控制软件采用C语言进行编程,程序在初始化之后循环扫描GP2口的电平高低,当检测到GP2口的输入为高时,证明发生相序错误,触发中断。进入中断服务程序,GP1口发送GLC信号控制保护电路中的继电器关断,使负载的三相交流

电源不被接通,并且GP0口发出一个低电平信号,使LED故障指示灯被点亮。

3 结束语

应用单片机PIC12F675实现了对航空三相交流电源相序的检测。完成了系统硬件的设计制作及配套软件的开发。该相序检测电路结构灵活简单,响应速度快,判断准确,并具备故障保护以及指示功能,已在相关实验中成功应用。

图1 相序检测电路

参考文献:

[1]张显著.利用单片机实现电源的相序检测[J].高压电器,1995(4):40~42.

[2]董毅.简易相序检测器[J].中国钼业,1996(1):52~54.

[3]冷惠文,侯霞,王东兴.一种三相电源相序与断相自动检测电路[J].电测与仪表,2003(5):35~38.

Research on the Phase Sequence Detector of 400Hz

Medium Frequency Power Supply

Jin Zhengji

Abstract: According to the air medium frequency power supply’s phase sequence detection problems for in using process, the article, using PIC microcontroller as the controlling core, designs a set of phase sequence detector with 115V/400Hz air three-phase AC power supply with protection and fault indication function.

电源检测范文第8篇

【关键词】计算机;电源;故障;检测

在当今世界,在计算机设备中大多采用的数据是他激式脉宽调制式开关直流稳压电源(简称开关电源),开关电源没有巨大的工频变压器,而是使用了直接整流高频变换和脉冲调制技术,功率的晶体管在高频率的开关状态工作,因此开关电源具有小体积、重量小、高效率、抗干扰强和性能输出稳定等优势。

1 计算机电源的构成及其功能

1.1 计算机电源的构成

在当今世界,在计算机设备中大多数采用的数据是他激式脉宽调制式开关直流稳压电源(简称开关电源)。开关电源没有巨大的贡品变压器,而是使用了直接整流高频变换和脉冲调试技术,功率的晶体管在高频率的开关状态下工作,因此开关电源具有小体积、重量小、高频率、抗干扰强和性能输出稳定等优势。

他激式脉宽调制式开关直流稳压电源电路基本有四个部分构成:(1)开关震荡部分;(2)低压直流电输出部分;(3)直流电的输入和电源整流部分;(4)低压直流电的输出部分。虽然开关电源分为许多不同的种类但是基本的工作原理大致上一致。

1.2 计算机电源的功能

交流电源经过低通滤波器后,进入桥式的整流电源,经过整流电和电容滤波后得到高压的直流电压。此电压经过逆变器可以变成随意的脉宽可调矩形波,在变压器的作用下,形成宽度可调的输出的脉冲方波,在经过整流电路、滤波器可以取得自身需要的输出电压进行保护,一旦出现漏电等意外情况,瞬间断电,保护人身财务的安全。

整个电源是在一个电源箱子里,在盖子的下面有一个轴流风扇散热用。电源是固定的,在主机里面,有多个插头用来输出,跟系统插座与主机相连接,跟驱动器插座与驱动器相连接。

2 计算机电源的使用特性

开关电源在使用的过程中因为他激式电路具有很好的保持的点天的原因,所以在各个档位负载都是空载的时候,会自动的进行节流状态的保持,每个输出端的电流必然会处于一个不太正常的状况,用个三用表在每个输出端测量出每个不太正常的电压值,此时不要产生其他错误的判断。此时的开关电源电源的过压和过流博湖都是节流方式,一旦进行保护的动作即显示没有输出,在等电源的故障排除后,重新启动电源,这样电源才能正常稳定的恢复输出。

开关电源都是以+5伏作为主要的输出电源,所以采取样品检测及其过压保护措施都是用这个档的电压作为基础。在使用的+5伏档作为正常输出的输出端是最好不要小于额定负载数,否则会引起电压身高,使其不能稳定的输出,并且如果严重的话会造成电源的损坏。

另外,值得一提的是,风扇大体来看分为俩种:一是直接端口接在交流电网上,对风扇能否自由旋转作为电源是否正常运行的标准;另一种是接在+12伏的输出端上,它是有极的,如果不慎接反了,计算机电源会瞬间进入到没有电压的输出的自我保护阶段,也就是瞬间断电。

3 关于计算机电源的故障具体维修措施

电源在计算机的组成部分中是十分重要的,一旦电源发生问题就会影响整个计算机系统的正常运作。下面将介绍一些常见的排除计算机电源故障的常用方法。

3.1 没有电压输出

当电源每个档位都处在负载的状况下,测量不出来每个输出端的电压值时,即认为是没有电压输出,这个在计算机的电源故障中是十分常见的,主要有以下几种状况。第一,保险丝熔断。闭合这个电路,打开计算机的电源外壳,如归计算机的保险丝已经被熔断了,那么故障一般情况是在高频变压器初级绕阻之前。先检查整个电路的电源交流的输出电压,输出的开关档位位置是否选择正确。然后在高压整流器和高压滤波电容处检查一下,档进入的电压升高时,瞬间产生的工作电压将要比额定的最大电压要高,甚至会击穿电容器,熔断保险丝,发生电源爆炸的危险。因为高压滤波电容器一般来说都是容量比较大的电容器,电流瞬间的工作电流值可以到达20安,所以瞬间电流过大,导致保险丝被熔断。当进入的电压偏高的时候,功率开关管会被击穿,使保险丝被熔断,在检测过程中比如功率开关管被击碎,还应该检测他的前一级的激励管。关于以上的电源故障,只要换上性能相近的元件就可以了。

3.2 虽然保险丝完整,直流没有输出

开始闭合回路的瞬间产生较大的电流,烧毁限流电阻,毁坏开路。直流电源输出的电压中随意的一处发生故障,都会导致电源进入保护状态,是电源不能继续输出,检查这种故障要用到测量工具不停地测量观察每个档位的电压的输出端,不停地启动电源,观察在启动电源的瞬间哪个档位的电压值不正常,就可以确定故障在哪一路,发现不对的地方,顺着电路往前不停地检查,查出原因。因为电源是处于高压滞洪,所以有些计算机电源警察那个因为焊点有空隙引起长时间的放点,导致没有电脑元的稳定输出。另外,只要重新焊好就没问题了。

3.3 电源输出电压不稳

计算机电源的负载能力极差,导致了计算机主机新加元件不能正常运行,这种原件只能在负载比较轻的时候使用,负载重了就没办法工作了,遇到此种状况,电源本身没问题,主要是工作点没有选择好,当震荡被放大增益变低,放大的电路正处在非线性工作状态时,都会有这种故障,适量的挑换各个晶体管,使其增益增强,调整晶体管工作点,使其处于线性区内,从而提高计算机电源本身负载能力。

电源稳定输出的电压都正常,但计算机主机不能启动,这样的情况主要是信号产生的回路没有输出,信号的延迟的时间不太够,解决此类计算机电源故障,先测量电压,如果没有,在检查延时电路元器件。原因多是晶体三极管被破坏,造成始终处于低电平,无法产生信号,更换晶体管可以解除这个计算机电源故障。如果有电压,但是主机仍旧无法运行就需要更换电容器了。

开机后,显示器显示不正常,检测计算机电源,他的四档输出都正常,用示波器来检查各个不同的电压档位,如果介入电压变大,引起了显示器画面变动,此时一般是电容器电容变小或者是电容器本身发生故障导致的,更换更大的电容器,故障就可以解除。

电源发出异样的声音,造成的原因一般是电压过大或者还是电流过大,使电源始终处于高度输出状态,从而使整个电路发生短路,关闭了这个计算机主机电源。在计算机电源关闭的同时,可控硅也会被随之截止,不在短路后,电源又会重新启动,反反复复,造成计算机电源发出异样的声音。

电源输出电压不太稳定会造成计算机运行出现困难,无法工作等现象。造成这种故障一般是原件老化、发热,可以采用降温法和更换元件的方法来保证整个电路的正常运行。

4 结束语

在计算机平时的应用中,如果出现故障是非常令人烦恼的,但是其中的计算机电源故障又占了很大的比例。电源是计算机很重要的组成部分,可以说是计算机运行的基础,是重中之重。所以,本文根据本人平时对于计算机管理和学习中的新的,对计算机电源故障的问题做出以上的浅析和探究。

参考文献:

[1]马英洁,张爱玲,吴冠楠.提高自动气象站数据可用率的方法探讨[J].气象水文海洋仪器.2013(02).

[2]宋树礼,罗淇. CAWS600型自动气象站常见故障处理及日常维护[J]. 气象水文海洋仪器. 2009(04).

电源检测范文第9篇

(1)输出电压是通过粗调(波段开关)及细调(电位器)来调节。当输出电压需要精确输出,或需要在一个小范围内改变时(如1.05~1.07V)困难较大。

(2)随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。

(3)电路采用串联型稳压方式,对过载进行限流或截流型保护,电路构成复杂,稳压精度也不高。

针对上述存在的问题,我们在企业实习期间设计制作了应用于手机生产检测的数控直流稳压电源。

一、系统硬件设计

手机检测数控直流稳压电源由单片机控制系统、D/A转换电路、A/D转换电路、4位LED、按键和指示灯组成,电路如图1所示。为了减小数字电路的高频峰值电流对模拟电路的干扰,各自采用独立的稳压电路供电,以降低D/A输出的纹波电压。单片机采用ATMEL公司的AT89C51芯片,实现对A/D、D/A、显示与按键的控制。

图1:单片机控制系统电路

D/A电路采用DAC0832芯片,使用其内部自带的2.048V基准源。加在1欧姆的取样电阻上,输出分辨率为0.5mA。电路如图2所示。

图2:DAC电路图

A/D电路采用ADC0804芯片,与DAC0832芯片使用同一个基准源,A/D的分辨率为0.5mV,电路如图3所示。

图3:ADC电路图

二、系统软件设计

硬件电路采用AT89C51芯片,且程序中不需要涉及精确实时操作,所以使用C语言进行软件编写,提高程序编写时的效率。程序设计上使用一个定时器作为系统实时时钟,周期性的进行LED显示、按键扫描、AD转换、和显示内容的切换,主循环负责对按键进行处理。

(一)主程序流程图

主程序流程图如图4所示。

图4:主程序流程图

(二)定时中断程序流程图

定时中断程序流程图如图5所示。

图5:定时中断程序流程图

(三)按键检测程序流程图

按键检测程序流程图如图6所示。

图6:按键检测程序流程图

三、结束语

手机检测数控直流稳压电源应用于手机检测生产线,克服了之前存在的长时间使用波段开关及电位器接触不良造成的输出电压不稳定、精确输出难以实现等问题,并且电源的成本大幅降低,得到生产企业的认可。

电源检测范文第10篇

关键词:本质安全电路 ia等级 隔爆兼本安电源 瞬态能量测试

中图分类号:TD52 文献标识码:A 文章编号:1672-3791(2015)06(b)-0055-02

随着GB3836.1-2010、GB3836.2-2010、GB3836.4-2010等系列标准的实施,以及近年来根据安标中心的管理要求,煤矿井下安全避险“六大系统”[1]的推广普及,ia等级的本安产品得到了推广应用,越来越多的厂家开始关注并设计ia等级的本安产品。电源是电子产品的重要组成部分,也是功率较大的部分,因而电子产品主要从电源方面入手实现防爆。因此ia等级的本安输出型电源成为了近年来本安防爆电子产品研究的技术热点,但到目前为止,针对ia等级的电源设计方法和检测方法的研究在文献中鲜为报道。

该文旨在提出一种新型ia电源的设计方法,并根据此设计给出设计要点、分析评价和检测方法,给设计者提供一个参考方向。

1 本安电气设备防爆原理和ia等级设备定义

本质安全电气设备防爆基本原理是:通过限制电气设备电路的各种参数或采取保护措施来限制电路的火花放电能量和热能,使其在正常工作和规定的故障状态下产生的电火花和热效应均不能点燃周围环境的爆炸性混合物,从而实现电气防爆[2]。

ia等级本质安全型电气设备是指电路在正常工作、1个或2个计数故障时,都不能点燃爆炸性混合物的电气设备。

计数故障的定义是:符合本标准结构要求的电气设备的部件上出现的故障。非计数故障的定义是:不符合本标准结构要求的电气设备的部件上出现的故障[3]。另外,在设计ia电源时可以使用电子限流来进行功率限制,但是需使用限流电阻来限制瞬态电流。下面介绍一种使用限流电阻限流的ia电源。

2 ia电源设计

2.1 需求分析

由于煤矿井下电气设备功耗较大,矿用电源输出供电参数一般较大,该文以输入额定电压AC127V,最高输出电压Uo=16.0V,最高输出电流Io=1.0A为例,能基本满足矿用本安电气产品的供电需求。本文保护电路采用三重电子快速截流型保护方式,并采用可靠限流电阻进行瞬态能量限制,达到ia型电源的设计要求。

2.2 电路设计

2.2.1 主要电路介绍

如图1所示电路由电源变压器、整流滤波电路、直流稳压电路、三重限压限流电子保护电路和限流电阻组成。由于各个厂家的设计思路和实现方法不同,变压器需要符合GB3836.4-2010的规定,并通过变压器的最大负载电流型式试验和例行耐压试验;稳压电路可采用LM317等三端稳压器来实现,也可采用隔离DC/DC来实现;SF1、SF2、SF3为三重稳压限流电路;R为限流电阻,有效抑制瞬态电流的产生。整流滤波以及限压电路较为容易实现,但是限流电路则是设计的重点和难点,该文重在介绍过流保护电路的设计。

2.3 过流保护电路

鉴于ia电源等级的划分和本安电路的设计要求,ia电源应有三重的限压限流保护措施,下面的过流保护电路为一重,将其三重化串联入电路中即可。

该限流电路采用比较器芯片TLE2142构成一个电流可调节的精密保护电路,调节可调电阻W1设定输出电流保护值,当电路出现过流现象,场效应管Q1截止,切断输出;反之就解除保护。该电路保护电流可调节,保护特性理想,提高了可靠性,限制了瞬态能量的输出。

3 限流电阻的使用和分析评价

在本安电路的设计中,有一个很重要的概念,即额定值概念:与本安性能有关的元器件,在正常工作及故障状态下,其工作电压工作电流及功率不得大于其额定值的三分之二。下面以实例来介绍一下电阻额定值要求的方法。

由前所述,假设不存在非技术故障,则ia等级的产品检验需设置两重技术故障,针对图2所示的电路,将SF1、SF2、SF3三重保护中的任意两重去掉都依然还有一重保护在起作用。保护电路的输出参数为:Uo=16.0V,Io=1.0A,R=5Ω/10W。由于电子限流存在暂态过程,该暂态主要为电流暂态,实际输出暂态值一般都大于Io数倍,但电压一般不会超过Uo。所以此处限流电阻的大小可按Uo输出时的可靠限流电阻选择。查表A.1得,16.0V时考虑1.5倍安全系数,最大电流可允许值为3.3A,所以限流大足最小为16.0/3.3=4.85Ω,5Ω大于4.85Ω,符合阻值额定值要求。当输出Io=1.0A时,5Ω的限流电阻所允许的功率不小于1.5×1.02×5=7.5W,10W大于7.5W,符合功率额定值要求。

4 检测方法研究

4.1 测试方法

电子保护限流电路具有急剧短路的特点,该类电路不宜使用火花点燃试验来检验电路的本安符合性,而应进行GB3836.4-2010第10.1.5.3条规定的瞬态能量测试。试验测试电路如图3所示。

4.2 输出电流波形示例

通过图4、图5、图6可以看出,电流峰值明显降低,使用限流电阻保护的瞬态效应明显优于无限流电阻保护电路的瞬态效,该ia电源既保证了输出功率,又有效限制了瞬态效应。

5 结语

该文通过一种ia电源的设计,给出了有效的分析步骤和可行的检测方法,为设计者进行电路设计提供了清晰的思路,为检测检验通常进行火花点燃试验的现状提出了更为简单有效的检测方法和依据。

参考文献

[1] 安监总煤装[2010]146号.建设完善煤矿井下安全避险“六大系统”的通知.

[2] 孙纪平.矿井安全监控系统[C].中国煤炭工业劳动保护科学技术安全监控专业委员会,中国矿业大学(北京)信息工程研究所,2004.

上一篇:成人高等教育范文 下一篇:国民经济范文

友情链接