论混凝土裂缝的原因\预防与处理

时间:2022-09-24 01:25:19

论混凝土裂缝的原因\预防与处理

摘要:钢筋混凝土裂缝的控制问题是建筑工程中很重要的问题之一,特别是随着泵送商品混凝土获得广泛应用之后,混凝土均质性有了很大改善的同时,裂缝控制技术难度大大增加了,本文是在大量建设实践和现场实验研究基础上,概述了变形作用引起裂缝的原因,约束变形特征,抗与放的设计准则以及最大裂缝宽度限值及预防进行了阐述。

关键词: 裂缝;分析;控制;水泥混凝土;钢筋混凝土

Abstract: reinforced concrete crack control problem is one of the important problems in the construction engineering, especially with the wide application of pumping concrete products obtained after concrete homogeneity has improved a lot at the same time, crack control technology has greatly increased the difficulty, this article is based on a large number of construction practices and field experimental research, summarizes the deformation effect, the causes of cracks constraint deformation characteristics, and put the design criterion of resistance and the maximum value of crack width and prevention are expounded.

Key words: cracks; Analysis; Control; Cement concrete; The reinforced concrete

中图分类号:TU71文献标识码:A文章编号:2095-2104(2013)

钢筋混凝土常见裂缝原因分析

(一)混凝土裂缝的分类

混凝土裂缝是混凝土的一种常见病和多发病。病情绝大多数发生于施工阶段,其原因复杂多变,一般可分为微观裂缝和宏观裂缝两大类:

微观裂缝是指肉眼看不到的、砼内部固有的一种裂缝,它是不连贯的。宽度一般在0.05mm以下,这种砼本身固有的微观裂缝,荷载不超过设计规定的条件下,一般视为无害。

宏观裂缝宽度在0.05mm以上,并且认为宽度小于0.2~0.3mm的裂缝是无害的,但是这里必须有个前提,即裂缝不再扩展,为最终宽度。

(二)混凝土裂缝的成因

1、使用原因(外界因素)

构筑物基础不均匀沉降,产生沉降裂缝;使用荷载超负;野蛮装修,随意拆除承重墙或凿洞等,引起裂缝;周围环境影响,酸、碱、盐等对构筑物的侵蚀,引起裂缝;意外事件,火灾、轻度地震等引起构筑物的裂缝。

2、施工工艺原因

施工工艺涉及的面很广,一般常涉及到的有,一是水分蒸发、水泥结块的混凝土干缩通常是导致混凝土裂缝的重要原因之一。二是混凝土-种人造混合材料,其质量好坏的一个重要标志是成型后混凝土的均匀性和密实程度。因此混凝土的搅拌、运输、浇捣、振实各道工序中的任何缺陷和疏漏,都可能是裂缝产生的直接或间接原因。

3、荷载与外荷载的原因

由各类变形荷载,包括温度变形(水泥的水化热、气温变化、环境生产热),收缩变形(塑性收缩、干燥收缩、碳化收缩)及地基不均匀沉降(膨胀)变形,由于这些变形受到约束引起的应力超过混凝土的抗拉强度导致裂缝。下面逐一进行分析:

(1)温度裂缝:温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接行,裂缝沿着长边分段出现,中间较密。

(2)干燥收缩裂缝:混凝土在空气中结硬时,体积会逐渐减小,即干缩;干缩裂缝的产生主要是由于混凝土内外水分蒸发程度不同及胶质体的胶凝等作用而导致变形不同所产生的结果。

(3)塑性收缩裂缝:指混凝土在凝结之前,表面因失水较快而产生的收缩。一般在干热或大风天气出现,主要原因是混凝土在终凝前几乎没有强度或强度很小,或者混凝土刚刚终凝而强度很小时,受高温或较大风力的影响,混凝土表面失水过快,造成毛细管中产生较大的负压而使混凝土体积急剧收缩,而此时混凝土的强度又无法抵抗其本身收缩,因此产生龟裂。

(4)化学反应裂缝:主要是指碱—集料反应产生的裂缝,混凝土内水泥中的碱性氧化物(Na2O和K2O)含量较高时,与集料中所含的活性SiO产生化学反应,并在集料表面生成一层复杂的碱—硅酸凝胶,这种凝胶吸收周围环境中的水后体积膨胀3倍以上,造成混凝土酥松、膨胀开裂。这种裂缝一般出现在混凝土结构使用期间,一旦出现很难补救。

4、材料原因

粗细集料含泥量过大,造成混凝土收缩增大;集料颗粒级配不良或采取不恰当的间断级配,容易造成混凝土收缩的增大,诱导裂缝的产生;骨料粒径越细、针片含量越大,混凝土单方用灰量、用水量增多,收缩量增大;水泥等级越高、细度越细、早强越高对混凝土开裂影响很大;混凝土设计强度等级越高,脆性越大,越易开裂。

混凝土配合比设计原因

混凝土强度等级日趋提高 。建筑结构混凝土强度等级日趋提高,但有许多结构不适当的 选择了过高的强度等级。习惯上认为:“强度等级越高安全度越大,就高不就低,提高强度等级没坏处”。有时迁就施工方便,采用高强混凝土,这是一种误导,导致水泥标号增加,水泥用量增加,水用量增加,细骨料及粗骨料径偏小,砂率偏大等都使水化热及收缩增加。

当前广泛采用泵送混凝土,对混凝土坍落度、和易性要求高,水灰比和水泥用量增大,水化热相应增大,混凝土收缩加剧;设计中水泥等级或品种选用不当;配合比中水灰比(水胶比)过大;单方水泥用量越大、用水量越高,表现为水泥浆体积越大、坍落度越大,收缩越大;配合比设计中砂率、水灰比选择不当造成混凝土和易性偏差,导致混凝土离淅、泌水、保水性不良,增加收缩值;配合比设计中混凝土膨胀剂掺量选择不当。

二、混凝土的某些基本物理力学性质

(一)混凝土的收缩及水化热

众所周知,水灰比大,收缩将显著增加,同时抗拉强度降低。如水灰比为0.6的收缩比水灰比为0.4的收缩增加约40%。有时尽管水灰比不变,增加用水量,同时增加水泥量即水泥浆量,如水泥浆量为0.2(水泥浆占混凝土总重量比例)比0.4时的收缩量增加约45%。减水剂可有效的降低水灰比及用水量,而粉煤灰具有圆珠效应和火山灰效应,所以“双掺技术”对泵送混凝土既可提高和易性又可减少收缩。

养护条件对混凝土的收缩影响很大,养护14天的收缩比养护3天的收缩降低约20%。环境的相对湿度越高,收缩越小,许多结构所处的环境湿度波动很大,如最低30%~40%,最高达80%~90%。环境温度越高,风速越大,收缩越大,高空浇灌容易引起开裂,如高架桥梁及桥墩。

混凝土的配筋对于收缩值起一定的约束作用,但是与配筋率的高低有关,按目前构造配筋率的情况看来,降低收缩的影响是比较小的。根据泵送商品混凝土的收缩试验,其收缩值约在6~8×10-4,有的试验还远远超过了这个数量,有些大桥的桥墩和高层建筑的厚壁立柱由于施工质量及过大的坍落度,形成了中部骨料多,外部或上表面砂浆厚,从而形成极不均匀的收缩,砂浆和水泥浆的收缩比混凝土的收缩大约增加2~5倍,并由于表面水份蒸发快从而形成大面积的表面裂缝。混凝土粗细骨料的含泥量和粉料含量都增加收缩。

目前建筑市场出现了很多新型的外加剂和掺合料,质量保证主要靠强度试验的结果,几乎没有进行体积变形稳定性方面的试验,而许多材料都有增加收缩的特点,必须进行长时期准确的收缩试验,才能得到有利于控制裂缝的材料。

(二)混凝土的徐变因素的考虑

混凝土的徐变机理也有许多种,如弹性徐变理论、老化徐变理论、继效徐变理论等等。作为工程裂缝控制的应用,我们只能应用其中主要的成果,以常系数的形式,考虑在弹性计算的结果中,从而简化了非线形分析。由于混凝土的徐变作用,给钢筋混凝土和预应力钢筋混凝土带来有利和不利两方面的影响。从不利方面看来,它可以造成预应力损失,增加挠度,可以降低钢筋和混凝土的粘着力等。从有利方面看来,它可以使弹性的温度收缩应力大大的松弛,根据变形速率及混凝土龄期,它对应力降低的程度约0.3~0.8倍,保温保湿养护越好,降温越慢,松弛系数越小。

(三)混凝土的抗拉强度及极限拉伸

泵送混凝土浇注后,其抗压强度和抗拉强度都随着时间而增长,但增长的速率,抗拉滞后于抗压,水泥标号的提高及水泥用量的增加, 对抗压强度增长较为显著,而对抗拉强度增长较小。

相对变形约束应力,混凝土的极限拉伸尤为重要,国内外曾进行过一些试验研究。例如苏联布拉茨克和克拉斯诺雅尔斯克水电站的试 验表明混凝土轴向拉伸应变值变化范围为0.5×10-4~1.0×10-4。法国鲍斯进行的轴向拉伸试验。在抗拉强度为2.05MPa时,局限拉伸值为0.9×10-4。美国卡普兰在轴向拉伸试验中极限拉伸值为0.81×10-4。前苏联齐斯克列里提出当轴向抗拉强度为1.2MPa时,极限拉伸为0.7×10-4。我国水工系统(研究单位和工程单位)对混凝土的极限抗拉强度也作过不少研究,并在工程中采用。如丹江工程混凝土极限拉伸值为(0.58~0.8)×10-4,乌江渡工程为(0.6~1.02)×10-4等等,极限拉伸很小,抗裂能力很弱(收缩变形超过极限拉伸5~10倍)。冶金系统,不少设备基础,特别是高炉基础、炼钢基础,混凝土的浇注量大多在5000m3以上,轧钢基础的混凝土量100000m3~200000m3,厚度2.5m~9.5m,长度由35m~600m,均属超长超厚的大体积钢筋混凝土,开裂后可引起钢筋的锈蚀、降低持久强度、刚度和防水性能、严重者影响自动化生产工艺。防止和控制这类基础的温度裂缝也是很重要的。

为此我们在民用建筑工程中开展了混凝土轴向拉伸强度及变形性能的试验研究。通过对双掺(减水剂及粉煤灰)混凝土的抗拉试验,发现混凝土随着荷载速率及养护条件,其极限拉伸和抗拉强度波动很大,在极慢速(接近实际温度和湿度缓慢变化速度)条件下,其极限拉伸可达(2~3)×10-4,显然这里包含了徐变变形,这对温度收缩应力是很有利的(在强度计算中用松弛系数乘以弹性应力与按变形计算增加极限拉伸是等同的)。

三、裂缝控制与预防措施

确定最大裂缝宽度限值,主要考虑两个方面的原因:-是外观要求;二是耐久性要求,并以后者为主。从外观要求考虑,裂缝过宽将给人以不安全感,同时也影响对结构质量的评价。满足外观要求的裂缝宽度限值,与人们的心理反应、裂缝开展长度、裂缝所处位置、乃至光线条件等因素有关,难以取得完全统-的意见。目前有些研究者提出可取0. 25-0.3mm。

根据国内外的调查及试验结果,耐久性所要求的裂缝宽度限值,应着重考虑环境条件及结构构件的工作条件。处于室内正常环境,亦既无水源或很少水塬的环境下,裂缝宽度限值可放宽些。不过,这时还应按构件的工作条件加以区分。例如屋架、托梁等主要屋面承重结构构件,以及重级工作制吊车架等构件,均应从严控制制裂缝宽度。

直接受雨淋的构件,无围护结构的房屋中径常受雨淋的构件,径常受蒸汽或凝结水作用的室内构件,以及直接触的构件,都具备钢筋锈蚀的必要和充分条件,因而都应严格限制裂缝宽度。

根据文献7 规定,钢筋混凝土和预应力混凝土构件,按所处环境类别和结构类别确定相应的裂缝控制等级及最大裂缝宽度限值。一级严格要求不出现裂缝的构件:在荷载效应的标准组合下应符合下列规定;σck- σPc<0;二级-般要求不出现裂缝的构件,在荷载效应的标准组合下应符合下列规定:σck- σPc≤f t k,在荷载效应的准永久组合下宜符合下列规定:σc q- σPc≤0;三级允许出裂缝的构件,根据规范钢筋混凝土结构最大裂缝宽度限值(mm)-类环境,裂缝控制等级三级0.3;二、三类环境,裂缝控制等级三级0.2。预应力混凝土结构最大裂缝宽度限值(mm)-类环境,裂缝控制等级三级三类环境0.2;二、三类环境,裂缝控制等级-、二级为0。但应按荷载效应的标准组合并考虑长期作用影响计算的最大裂缝宽度,应按下列规定;ωm a x≤ω1im进行验算。

第五章 结束语

钢筋混凝土结构的裂缝是不可避免的,但其有害程度是可以控制的,有害与无害的界限由结构使用功能决定的。裂缝控制的主要方法是通过设计、施工、材料等方面综合技术措施将裂缝控制在无害范围内。

参考资料

1.作者:杨秋鸣 《钢筋混凝土结构常见裂缝分析》 Analysis on common cracks of ferroconcrete structure [山西建筑 Shanxi Architecture] 。

2.作者:蔡华 《钢筋混凝土薄壁结构裂缝分析与处理》 Analysis on Cracks in Reinforced Concrete Thin Wall Structures and Treatment [电力建设 Electric Power Construction] 。

3.著 译 者:崔京浩 《简明土木工程系列专辑--品味钢筋混凝土-设计常遇的混凝土结构机制机理分析》 出 版 社:中国水利水电出版社。

4.吴培明主编,《混凝土结构》 . 武汉工业大学出版社 ,2001。

5.著 译 者:朱炳寅 《建筑结构设计规范应用图解手册》 出版社:中国建筑工业出版社。

6.王铁梦,《工程结构裂缝控制》,中国建筑工业出版社, 1997。

7.《混凝土结构设计规范,G B50010-2002》 . 北京:中国建筑工业出版社,2002参。

8.]《混凝土结构设计规范( GB50010—2002) 》,中国建筑工业出版社, 2002。

9.郭仕万,肖欣,赵和平.混凝土施工中的裂缝控制.山西水利科技,2000.11。

10.鞠丽艳,张雄.混凝土裂缝防治的两种新方法.施工技术,2002. 7。

11.鞠丽艳.混凝土裂缝抑制措施的研究进展.混凝土,2002. 5。

12.中国建筑科学研究院,普通混凝土配合比设计规程(JGJ55—2000),北京:中国建筑工业出版社,2001—02。

13.周家伟,砖混住宅现浇楼板标准层角部切角裂缝的分析和探讨,杭州:浙江大学建筑设计研究院,2002—03

上一篇:电梯安装工程项目管理 下一篇:建筑工程材料试验检测的重要性