对温拌沥青混合料的应用现状及发展的探讨

时间:2022-09-18 01:47:24

对温拌沥青混合料的应用现状及发展的探讨

摘 要:随着温拌沥青技术的应用日趋成熟,温拌沥青技术的应用范围更为多元化,在城市道路工程(节能减排)、北方地区公路工程(低温施工)、特殊公路工程(隧道路面)、特殊材料路面工程(橡胶沥青)、特殊级配路面工程(密实型超薄罩面)等方面均得到了广泛的应用。本文对温拌沥青混合料的应用现状及发展进行了探讨

关键词:现状;温拌沥青混合料;问题

引言

目前,随着资源节约型及环境友好型社会的要求,热拌沥青混合料的应用局限性越来越大,而冷拌沥青混合料尽管能在常温下拌合,能耗低并且环保,但其路用性能差,一般只用于路面养护。温拌沥青混合料能在较低的温度下拌合,克服了热拌沥青技术的缺点,并且路用性能良好,因而得到了道路建设者的青睐。

1 国内外主要温拌技术

1.1 沥青-矿物法(Aspha-MinR)

该方法采用一种合成沸石在沥青混合料拌合过程中将这种粉末状材料加入进去,从而在结合料中产生泡沫作用。沸石是网状硅酸盐组合,在其结构中有巨大的空间可以容纳较大的阳离子,甚至是相对较大的分子和阳离子群,从化学角度讲,沸石其实就是一种含有较大量结合水的硅酸铝矿物(含水量一般在18%以上)。

1.2 温拌泡沫沥青混合料(WAM-FoamR)

温拌泡沫沥青混合料(WAM-FoamR)主要方法在于将软质结合料和硬质泡沫结合料在拌和的不同阶段加入到混合料中。在第一阶段中,将温度为100~120℃的软质结合料加入到集料中进行拌和以达到良好的预裹覆效果;在第二阶段中,将硬质结合料泡沫化后加入到预裹覆的集料中,使软质结合料和泡沫化的硬质结合料都起到降低结合料粘度的作用从而实现良好的工作性。要使温拌沥青混合料具有良好的路用性能和使用寿命,则需要对软质和硬质结合料成分进行仔细选择,这是因为集料的最初裹覆对于阻止水分接触胶结料与集料的界面从而进入集料是至关重要的。当硬质结合料加入到混合料中时,通过向加热的硬质结合料注入冷水而产生的快速蒸发会产生大量的水雾,使硬质胶结料与软质胶结料结合,从而达到所需要的沥青产品的最终组成和特向。

1.3 有机添加剂法

目前成功应有的化学添加剂有两类:合成蜡和低分子量酯类化合物,其中Saso-bit合成蜡的应用比较广泛。Sasobit是一种细结晶体,常温下以薄片或粉末形态存在,其熔点大约为99℃,在超过116℃时,可以完全溶解于沥青胶结料中,从而产生的大量液体达到使沥青胶结料粘度降低的效果。当环境温度低于熔点时,Sasobit在沥青胶结料中形成的晶格结构有利于提高沥青胶结料的稳定性,因此在沥青路面的使用温度下,掺入Sasobit后沥青混凝土路面的抗永久变形能力得到增强,同时,在相同的轮载作用下,沥青混合料的压实性与使用普通沥青相比会有一定程度的增加。

2 温拌沥青混合料研究与应用现状

2.1 国外研究应用现状

20世纪80年代~90年代,工业化发展迅猛,温室气体排放量急剧增加,世界各国越来越意识到节能环保的重要性,温拌沥青混合料技术(WMA)就是在这种大背景下产生的。1995年,欧洲的Shell和Kolo-Veidekke公司首先研制出了WMA,并于1996年进行了现场试验。早期的WMA路用性能良好,但生产成本较高。1998年,Shell和Kolo-Veidekke公司改进了生产工艺,开始用泡沫沥青和软沥青来生产温拌沥青混合料,不仅保证了WMA的路用性能,而且降低了生产成本。随后,欧洲和日本等国开始学习和引进WMA技术,并将其应用于工程实践,生产出了大量的WMA。与此同时,温拌技术迅速发展,许多新的温拌技术被开发出来,温拌技术日益成熟。2002年,美国道路工程方面的专家赴欧洲考察了WMA技术的应用与发展,次年在美国沥青路面协会(NAPA)的年会上重点提出WMA,2004年美国第一条温拌沥青混合料路面建设成功。此后,温拌技术的发展如雨后春笋,极其迅猛,欧洲和美国开发出了多种温拌沥青混合料。迄今为止,WMA技术有三大体系,数十种温拌沥青混合料技术。

2.2 国内WMA研究应用

我国的温拌技术起步较晚,主要是学习和引进国外的先进技术进行应用和创新。2005年,我国的第一条温拌沥青混合料试验路在北京铺设成功。该试验路段是中美合资,采用的是乳化沥青温拌技术。此后,WMA技术在我国得到了迅速发展,各个省市开始研究和应用WMA。此外,我国还开发出了改性沥青温拌技术,并于2006年成功铺设了世界上第一条改性沥青SMA温拌试验路。随着温拌技术的日益发展,各省市也制定了一些温拌技术的设计规范和施工规范,如河北省的《温拌沥青混合料施工技术指南》、青海省的《寒区温拌沥青混合料路面技术规范》等,这些规范都有利于WMA技术的推广和实施。

3 温拌沥青混合料的性能特点

3.1 温拌沥青混合料技术的原理和制备方法

在高温下,沥青变得松软,能够发挥其胶结作用,将集料良好地裹附在一起,形成一个整体,在荷载作用下不致松散,而沥青良好的流动性和作用又使混合料具有较强的变形能力,在荷载作用下集料不会被挤压破碎。温拌沥青混合料就是采取若干技术措施(使用改性沥青或者加入温拌剂),使得混合料能够在较低温度下拌合和摊铺,沥青能够很好地裹覆在集料上,较好地发挥其粘结和作用,同时保持混合料路用性能不低于HMA。归纳起来,目前国内外WMA生产技术主要有三大类:有机添加剂法、泡沫法、化学添加剂法。

3.2 温拌沥青混合料优点

(1)节能减排,低碳环保。由于采用了较低的温度,在混合料生产和施工工程中将会节省大量的电能,煤料和燃油,CO2等温室气体排放量也大大减少,这既是减轻温室效应的有效措施,也符合生态社会和可持续发展的需求。另外,温拌沥青混合料在摊铺过程中,基本可以实现无烟作业,有毒有害气体排放明显减少,很大程度上保护了施工技术人员的身体健康。(2)减轻沥青的老化程度,延长混合料使用寿命。较低的温度降低了沥青的初期老化程度,提高了混合料的路用性能。(3)延长施工季节,提高施工效率。施工时温度降低,混合料与室外环境温差减小,可以延长施工季节及日施工时间。(4)较低的温度能够较好地保护施工设备,延长其寿命,并较快开放交通。

3.3 温拌沥青混合料的路用性能

(1)高温性能。抗车辙性能是评价沥青混合料高温性能的重要指标。室内试验表明,在孔隙率基本相同的情况下,WMA的动稳定度比HMA的动稳定度提高10%左右,其高温稳定性优于热拌沥青混合料,具有良好的抗车辙性能。(2)低温性能。混合料的低温弯曲试验表明,WMA与HMA试件破坏时的应变相差不大,二者低温抗裂性无异。分析可知,加入温拌剂后,温拌剂掺量大小对沥青混合料的低温性能影响不大,混合料的低温性能主要由沥青本身决定。(3)水稳定性。研究表明,加入温拌剂后,沥青裹附到集料表面,在水的作用下,混合料抗剥落能力增强。进一步实验表明,无论是浸水马歇尔实验,还是冻融劈裂实验,WMA的实验结果都高于HMA,这说明温拌沥青混合料的水稳定性要优于热拌沥青混合料。实验表明,在一定的范围内,温拌剂掺量越多,温拌沥青混合料的水稳定性越好。(4)疲劳性能。通过中点加载弯曲实验,得出不同应力比下混合料试件破坏时的疲劳寿命次数,绘出混合料疲劳方程曲线。结果表明,温拌沥青混合料的疲劳曲线略高于同级配的热拌沥青混合料,说明WMA的疲劳性能优于同级配的HMA。

结束语

温拌沥青混合料技术以其节能环保的优势和良好的路用性能得到人们的青睐,其应用前景十分广阔。今后,温拌沥青混合料技术在排水降噪,长大隧道工程,低温季节和寒冷地区等一些特殊功能沥青路面中的应用将会更加广泛。

参考文献

[1]冉维廷,毕玉峰.基于表面活性技术的温拌沥青混合料应有技术的研究[J].石油沥青,2011.25(5):28-30.

[2]秦永春,黄颂昌,徐剑,李峰,腾飞.温拌沥青混合料在草帽山隧道道面的应用[J].公路,2010(7):83-83.

[3]郭平,祁峰,弥海晨.温拌沥青混合料的路用性能[J].长安大学学报,2010,30(3):10-13.

上一篇:加强我国水库管理工作的一己之见 下一篇:安全工程原理理论及其应用研究