基于转铁蛋白受体(TfR1)的肿瘤与脑部疾病靶向治疗研究进展

时间:2022-03-23 03:33:23

基于转铁蛋白受体(TfR1)的肿瘤与脑部疾病靶向治疗研究进展

摘要:人转铁蛋白受体(TfR1)在不同组织器官中普遍表达,其主要功能是协助转铁蛋白在细胞和血脑屏障内外转运,维持细胞铁平衡。在肿瘤细胞中以及血脑屏障中,TfR1的表达水平明显高于正常细胞组织,因此,TfR1被认为是肿瘤靶向治疗和脑部疾病靶向治疗的重要靶点。基于TfR1靶向治疗的药物载体主要有转铁蛋白(Tf)、抗TfR1抗体、TfR1结合肽,这些生物大分子能与TfR1特异性结合,结合之后可以通过受体介导的跨胞转运机制进入细胞或穿过血脑屏障。将小分子药与这些载体偶联可以促进许多亲水性的化疗药物或神经治疗药物进入肿瘤细胞或血脑屏障,而许多中枢神经治疗性大分子则主要通过融合蛋白的方式与抗TfR1抗体连接转运进入中枢神经系统。

关键词:转铁蛋白受体;肿瘤靶向治疗;脑靶向给药

Based on the Transferrin Receptor (TfR1) of the Tumor and Brain Disease Progress in Targeted Therapy

SHAO Ming,LIU Yu

(College of Life Science and Technology,China Pharmaceutical University,Nanjing 210009,Jiangsu,China)

Abstract:Human TfR1 was universally expressed in different tissues. The major function of TfR1 was to facilitate delivery of transferrin across cells and blood-brain barrier(BBB). As a result, iron homo-stasis was maintained. TfR1 was recognised as a critical target for tumor and brain disease therapy due to its over expression in tumor cells and BBB. In recent years, drug carriers based on TfR1 recognition were developed such as Transferrin (Tf), anti-TfR1 antibody and TfR1 binding peptide. These carriers bind to TfR1 specifically and enter into cell or BBB through receptor mediated endocytosis. Chemicals conjugated with these carriers can be facilitated to enter into tumor cells and brain tissue. Therapeutic proteins can be engineered to fused with anti-TfR1 antibody and transported across BBB.

Key words: TfR1; Tumor target therapy;Brain directed delivery

1转铁蛋白受体(TfR1)简介

转铁蛋白受体(TfR1)是一种在不同组织和细胞系中普遍表达的糖蛋白。但在恶性增殖细胞中,TfR1的表达水平明显高于其再正常组织细胞中的表达水平[1-3]。由于TfR1的表达与癌细胞的增殖和肿瘤的发生进程相关,TfR1被认为是肿瘤治疗的重要靶点。除了在肿瘤细胞组织高表达,在血脑屏障中TfR1的表达量也较正常组织高[4]。近些年,TfR1被认为是药物跨血脑屏障转运的重要靶受体,通过靶向血脑屏障表面的TfR1,将特定的药物运送至脑实质,可以改善阿兹海默病、帕金森病和急性中风等疾病的治疗[5]。血脑屏障由内皮细胞、毛细管基底膜、星形胶质细胞终足和嵌入在毛细管基底膜的周细胞组成[6],许多血液中的化合物包括几乎所有分子量大于1kD的大分子药物和超过98%的小分子药物都很难穿过血脑屏障进入脑实质[7,8],然而许多大脑所必须的营养物质如转铁蛋白、叶酸、瘦素、胰岛素都能够通过相应的受体或转运体穿过血脑屏障进入脑实质[9-11]。TfR1是由两个分子量约为90kD的亚单元单体组成的同源二聚体。每个单体包括一个大的胞外C-末端结构域,一个单次跨膜结构域和一个短的胞内N-末端结构域[12],配体结合域位于C-末端(640~760位氨基酸)。在生理环境下,载铁转铁蛋白通过受体介导的跨胞转运机制穿过血脑屏障,在内化之后,载铁转铁蛋白从TfR1中释放并被再循环至细胞膜上[13-15]。目前,已有很多学者采取了基于受体介导的跨胞转运机制运送药物穿过血脑屏障或进入癌细胞,这其中TfR1抗体是药物靶向转运的主要载体。TfR1抗体融合蛋白、TfR1抗体偶联脂质体、TfR1抗体偶联小分子抗肿瘤药等免疫复合物已广泛用于脑靶向给药和靶向抗肿瘤研究。

2 TfR1与靶向抗肿瘤

2.1抗肿瘤TfR1单抗不仅不同类型的TfR1单抗对不同的细胞系的作用有差异,相同类型的TfR1单抗对于不同的细胞系的作用效果也是有差异的。大鼠抗小鼠TfR IgM抗体R17208能够封闭S194/5.XXO.BU.1小鼠骨髓瘤细胞中Fe2+的摄取,从而抑制其增殖,除此之外,对S194/5.XXO.BU.1小鼠骨髓瘤细胞增殖的抑制还涉及到对细胞周期的抑制,研究发现R17208能够将S194/5.XXO.BU.1小鼠骨髓瘤细胞阻断在G2/M期,但是R17208对于小鼠L细胞却没有明显地抑制作用,这可能是由于S194/5.XXO.BU.1小鼠骨髓瘤细胞是造血性肿瘤细胞,对Fe2+的需求比小鼠L细胞更为强烈[16]。与之相似的是REM17 IgM抗体能够阻断Tf的功能,在体内和体外实验中均能够抑制造血性肿瘤细胞的增殖[17,18]。除了IgM抗体,研究者们还开发出了诸多IgG抗体,包括R17217[17],RL34-14[17],RR24[17],C2[19],然而这些大鼠抗小鼠TfR抗体对造血性肿瘤细胞的增殖并没有起到抑制作用。这些实验结果提示抗体的类型可能对其抗肿瘤效果有着明显地影响,其中IgM抗体较IgG抗体对于造血性肿瘤的抑制作用更为明显,这可能是由于IgM是多价抗体,对TfR的封闭作用更为强烈,干扰了Tf-TfR复合物的内化,故而对Fe2+需求更旺盛的造血性肿瘤细胞对其更为敏感。与此不同的是,一系列小鼠抗人TfR1 IgG单克隆抗体对于诸多造血性肿瘤细胞增殖表现出了较为明显地抑制作用。如E2.3[20]和A27.15[21]对于IL-6依赖性的造血性肿瘤细胞表现出了较为明显地细胞毒作用。值得注意的是,在小鼠抗人TfR1 单克隆抗体中IgM(RBC4)[22]依然对造血性肿瘤的生长表现出了明显地抑制作用,另外,IgA抗体(42/6)[23]对造血性肿瘤细胞具有普遍的细胞毒性,并且这种细胞毒作用较IgG抗体而言更为强烈(但其对实体瘤的抑制作用却最弱),研究表明42/6 IgA单克隆抗体对于肿瘤细胞生长的抑制机制是多样的,包括抑制Tf 与TfR1的结合降低Fe2+的摄取,下调细胞膜表面的TfR1以及将细胞滞留于S-期阻碍其增殖。相对而言,人-鼠嵌合抗TfR1抗体对于肿瘤细胞的抑制机制则相对单一,Anti-hTfR IgG3-Av 和Anti-rTfR IgG3-Av均为IgG3抗体,二者均不阻断Tf与TfR1的结合,但却能够诱导K562细胞和 Y3-Ag1.2.3 and C58细胞的凋亡,从而抑制其增殖[23-31]。随着抗体基因工程技术的发展,越来越多的学者考虑用更小的抗体片段如scFv来替代全抗体,因为scFv既保留了抗体对抗原的亲和力,也大大降低了抗体的分子量,从而能够促进抗体对实体瘤发挥疗效。Ronan Crépin等[32]从噬菌体展示库中分离出了3TF12 和 3GH7两个候选抗TfR1单链抗体,研究结果表明这两个scFv能够拮抗Tf与TfR1的结合,并且能够阻断一系列造血性细胞系的体外增殖,在此基础之上,研究者们又通过抗体工程的方法将这两个scFv制备成了其二价抗体(55kD),分别命名为F12CH 和 H7CH,二者能够阻断癌细胞的增殖,IC50值达到0.1μg/mL,而在红白血病裸鼠模型中,F12CH给药之后能够减弱肿瘤的生长,表明其对实体瘤具有一定的治疗作用。

2.2 TfR1单抗与Tf作为药物载体抗TfR1抗体除了直接作为肿瘤治疗剂,还可以作为药物载体,将难以进入肿瘤细胞的小分子药物或者大分子药物通过多种多样的方式与抗TfR抗体偶联,促进化疗药物进入肿瘤细胞内其作用靶点,增强化疗药物的肿瘤杀伤作用。这一类免疫复合物类药物受到了研究者们的广泛关注。药物与抗TfR1抗体连接的方式通常分为通过化学键将药物分子与抗体连接以及通过将药物分子包裹在纳米粒(如纳米脂质体)中制备免疫脂质体实现连接。小鼠抗大鼠TfR1单克隆抗体OX26是被广泛用于研究的一种抗体,R. Chignola等[33]通过化学键将RTA与OX26连接制备免疫毒素,在高剂量给药时对大鼠成胶质细胞瘤显示出了完全的抑制作用。但迄今为止,小分子药物靶向给药大多数情况是采取了与配体Tf通过化学键连接的策略。最为经典的例子是Tf-多柔比星偶联物,将多柔比星与Tf偶联大大降低了多柔比星的毒副作用,体外实验证实Tf-多柔比星偶联物对许多肿瘤细胞系显示出了明显地细胞毒作用[34]。顺铂是一种临床上广泛应用的烷基化剂,但其对正常细胞的毒副作用较大,R.L. Elliott等[35]将顺铂与Tf通过化学键偶联制备出了复合物MPTC-63,体外实验证实其对Hela细胞有着明显地毒性,体内实验证实其能够阻止哺乳动物癌细胞在肺部的迁移生长, J.F. Head等[36]证实在MPTC-63Ⅰ期临床试验中,有36%的晚期乳腺癌患者出现了阳性反应。肿瘤化疗烷化剂与Tf偶联的例子还包括丝裂霉素C-Tf偶联物[37]、柔红霉素-Tf偶联物[38]。除此之外的偶联物还包括青蒿素-Tf偶联物[39]、RNase-Tf[40]等。但通过化学键将药物分子与其载体直接连接可能会因为空间位阻影响药物分子的活性,并且并不是所有的药物分子都可以通过化学键连接大分子药物载体的,而通过将药物分子包裹在纳米微粒中,将药物载体与纳米粒偶联则能避免对药物分子活性的损伤,同时还能起到缓释的作用,降低药物的毒副作用。Soni V等[41]通过偶联Tf的脂质体促进5-氟尿嘧啶运送进入脑部,改善了脑部肿瘤治疗。Li X等[42]发现包被多柔比星的Tf-脂质体偶联物有效抑制了实体瘤的生长。另外,基于PLGA的纳米微球也广泛用于肿瘤靶向治疗研究。Shah N等[43]研究发现静脉给药24h之后负载紫杉醇的Tf-PLGA偶联物能增加进入大鼠胶质瘤中的紫杉醇的量。

3 TfR1与脑靶向给药

3.1 TfR1单抗协助小分子药脑靶向给药对于小分子药物,脑靶向治疗目前采用较多的策略是Tf或TfR1抗体偶联脂质体/纳米粒等生物药剂的方法。 Pardridge 等[44]采用一种TfR1特异性的单克隆抗体制备出了特洛伊木马脂质体,将针对EGFR的干扰RNA的质粒运送进入了脑组织,使脑部荷瘤小鼠EGFR表达下调,小鼠存活率增加。洛哌丁胺是一种小分子镇痛药,但是由于其具有一定的亲水性,因而其穿透血脑屏障的作用受到了一定的限制,临床使用时需加大其给药剂量,增加了药物的毒副作用。Ulbrich等[45]将洛哌丁胺包裹在人血清白蛋白纳米粒中,在纳米粒表面偶联上TfR1抗体,促进了洛哌丁胺的镇痛效果。但目前有报道指出,许多脂质体的密闭性能、膜稳定性以及降解性都不能得到很好的控制,降低了其靶向药物转运的可能性,虽然将PEG偶联到脂质体上可以在一定程度上提高脂质体的稳定性,但是这种促稳定作用也是有局限的,甚至PEG层在血清中能损失1/3[46,47]。而多聚物囊泡作为一种新型的合成新型单层胶囊相比脂质体而言具有更为厚实的膜,采用多聚物囊泡作为药物载体更为稳定有效,目前已有很多研究者将多聚物囊泡作为药物载体运用于肿瘤治疗中,Zhiqing Pang等[48]则将TfR1抗体OX26偶联到多聚物囊泡表面,多聚物囊泡内包裹上血管加压素类似物NC-1900,通过OX26的脑靶向作用将NC-1900运送到脑组织,改善了东莨菪碱所致的学习记忆障碍。

3.2 TfR1单抗协助大分子药脑靶向给药生物活性大分子在脑部疾病的治疗中占有重要地位,但与小分子药物脑靶向运送不同的是,由于其分子量大,活性受结构影响明显,因而难以采用脂质体/纳米粒包裹或化学偶联的方式进行运送。但由于治疗性药物与药物载体都是蛋白质,因而通过基因工程的方法开发出靶向融合蛋白是生物大分子脑靶向给药的一个极具优势的策略。

胶质细胞来源的神经营养因子(GDNF)在中脑多巴胺能神经元的分化和保护过程中扮演着重要的角色,其在帕金森病的动物模型中已显示出了一定的神经元保护和恢复功能[49,50]。GDNF传统的给药方式是颅内注射,而A.Fu[51]等通过基因工程的方法将GDNF融合到了TfR1抗体重链的C-端,在小鼠帕金森病模型中,连续静脉给药3w后,多项测试指标反应出该融合蛋白具有显著的神经保护作用。

Β-淀粉样肽是阿兹海默病的主要病因,抑制β-淀粉样斑块生成是治疗阿兹海默病的有效策略。目前已有研究者开发出抗β-淀粉样肽单抗,但问题在于其难以穿透血脑屏障。R.J.Boado[52]等通过将抗β-淀粉样肽单抗的单链抗体(scFv)融合到TfR1单抗8D3的C-端,开发出了治疗阿兹海默病的双功能抗体。Q. Zhou[53]在小鼠阿兹海默病模型中研究了该融合蛋白的活性,研究发现治疗组小鼠脑中的β-样淀粉斑块较非治疗组减少了40%,说明该融合蛋白能在一定程度上抑制阿兹海默病的发病进程。我们知道在血脑屏障的两侧都分布有TfR1,TfR1介导的跨胞转运能够实现"血液-脑"和"脑-血液"的双重转运循环。当双功能抗体经TfR1介导转运进入脑实质之后,其β-样淀粉肽结合域结合靶分子(β-淀粉样肽),随后再经过血脑屏障内侧的TfR1介导转运从脑组织进入血液循环,实现了脑组织内β-淀粉样肽的清除。

BACE1是治疗阿兹海默病的另一个主要靶点,BACE1抗体是治疗阿兹海默病的有效药物,它可以通过抑制β淀粉体的形成而缓解病情,但是BACE1抗体难以穿透血脑屏障。Jessica A. Couch等[54]通过基因工程的方法制备了TfR1抗体与BACE1抗体的双特异性抗体,促进BACE1抗体进入脑组织发挥疗效。研究者们发现,TfR1抗体与TfR1的亲和力对抗体的跨血脑屏障转运具有显著影响,亲和力过高会导致抗体吸附在血脑屏障表面而无法释放进入脑实质,适当降低抗体亲和力能够促进抗体释放进入脑实质[55,56]。

TNF-α是一种促炎症细胞因子,急性缺血性中风发生内1h在脑内合成。TNF-1是TNF-α的拮抗剂,在外周器官炎症中抑制TNF-α的激活,是一种广泛应用的抗类风湿关节炎药。但是,由于TNF-1单独无法穿透血脑屏障,故其难以用于脑中风的治疗。为了促进生物源性的TNF-1转运进入血脑屏障,Rachita K Sumbria[57]等同样采用依赖TfR1抗体的分子特洛伊木马的策略促进TNF-1进入脑实质。

4结论

TfR1在肿瘤细胞组织和血脑屏障表面的表达水平高于其在正常组织细胞中的表达水平,这为肿瘤靶向治疗和脑靶向治疗提供了靶点。由于许多肿瘤细胞是多药耐性的,p-gp蛋白可以将许多进入肿瘤细胞的药物泵出,因而增加了化疗药物的剂量,同时增强了化疗药物的毒副作用。而对于一些脑部疾病,由于血脑屏障的存在,许多亲水性较强的小分子药物难以进入,只有极少数脂溶性小分子化合物可以渗透穿过血脑屏障,但几乎所有的治疗性蛋白药物都无法进入血脑屏障。Tf、抗TfR1抗体、TfR1结合肽在结合TfR1之后可以通过受体介导的跨胞转运机制进入肿瘤细胞或穿透血脑屏障,这为肿瘤靶向给药及脑靶向给药提供了一种良好的载具。将小分子药物包裹进纳米粒或脂质体,在纳米粒或脂质体表面偶联上Tf、抗TfR1抗体、TfR1结合肽。可将小分子药物靶向递送至肿瘤细胞组织或脑组织,同时这类靶向缓释制剂能大大降低小分子药物对正常组织细胞的毒副作用。对于许多脑部疾病的治疗性蛋白,可以通过基因工程的方法将抗TfR1抗体与治疗性蛋白融合,将其递送进入脑组织。综上,基于TfR1靶点的药物开发策略在肿瘤及脑部疾病靶向治疗中具有广泛的应用前景。

参考文献:

[1]Daniels T R, Delgado T, Rodriguez J A, et al. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer[J]. Clinical Immunology, 2006, 121(2): 144-158.

[2]Sutherland R, Delia D, Schneider C, et al. Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin[J]. Proceedings of the National Academy of Sciences, 1981, 78(7): 4515-4519.

[3]Gatter K C, Brown G, Trowbridge I S, et al. Transferrin receptors in human tissues: their distribution and possible clinical relevance[J]. Journal of clinical pathology, 1983, 36(5): 539-545.

[4]Jefferies W A, Brandon M R, Hunt S V, et al. Transferrin receptor on endothelium of brain capillaries[J]. 1984.

[5]Pardridge W M. Drug targeting to the brain[J]. Pharmaceutical research, 2007, 24(9): 1733-1744.

[6]Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiology of disease, 2004, 16(1): 1-13.

[7]Pardridge W M. CNS drug design based on principles of bloodbrain barrier transport[J]. Journal of neurochemistry, 1998, 70(5): 1781-1792.

[8]Pardridge W M. Blood-brain barrier delivery[J]. Drug discovery today, 2007, 12(1): 54-61.

[9]Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases[J]. Neurobiology of disease, 2010, 37(1): 48-57.

[10]Pardridge W M, Eisenberg J, Yang J. Human blood-brain barrier insulin receptor[J]. Journal of neurochemistry, 1985, 44(6): 1771-1778.

[11]Zhang Y, Pardridge W M. Rapid transferrin efflux from brain to blood across the blood-brain barrier[J]. Journal of neurochemistry, 2001, 76(5): 1597-1600.

[12]Lawrence C M, Ray S, Babyonyshev M, et al. Crystal structure of the ectodomain of human transferrin receptor[J]. Science, 1999, 286(5440): 779-782.

[13]Hémadi M, Kahn P H, Miquel G, et al. Transferrin's mechanism of interaction with receptor 1[J]. Biochemistry, 2004, 43(6): 1736-1745.

[14]Ciechanover A, Schwartz A L, Lodish H F. Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors[J]. Journal of cellular biochemistry, 1983, 23(14): 107-130.

[15]Daniels T R, Bernabeu E, Rodríguez J A, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(3): 291-317.

[16]Trowbridge I S, Lesley J, Schulte R. Murine cell surface transferrin receptor: Studies with an antireceptor monoclonal antibody[J]. Journal of cellular physiology, 1982, 112(3): 403-410.

[17]Lesley J F, Schulte R J. Inhibition of cell growth by monoclonal anti-transferrin receptor antibodies[J]. Molecular and cellular biology, 1985, 5(8): 1814-1821.

[18]Sauvage C A, Mendelsohn J C, Lesley J F, et al. Effects of monoclonal antibodies that block transferrin receptor function on the in vivo growth of a syngeneic murine leukemia[J]. Cancer research, 1987, 47(3): 747-753.

[19]Kemp J D, Cardillo T, Stewart B C, et al. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate and IgG monoclonal antibodies against the transferrin receptor[J]. Cancer research, 1995, 55(17): 3817-3824.

[20]Taetle R, Dos Santos B, Ohsugi Y, et al. Effects of combined antigrowth factor receptor treatment on in vitro growth of multiple myeloma[J]. Journal of the National Cancer Institute, 1994, 86(6): 450-455.

[21]Jones D T, Trowbridge I S, Harris A L. Effects of transferrin receptor blockade on cancer cell proliferation and hypoxia-inducible factor function and their differential regulation by ascorbate[J]. Cancer research, 2006, 66(5): 2749-2756.

[22]Vaickus L, Levy R. Antiproliferative monoclonal antibodies: detection and initial characterization[J]. The Journal of Immunology, 1985, 135(3): 1987-1997.

[23]Haynes B F, Hemler M, Cotner T, et al. Characterization of a monoclonal antibody (5E9) that defines a human cell surface antigen of cell activation[J]. The Journal of Immunology, 1981, 127(1): 347-351.

[24]Taetle R, Honeysett J M. Effects of monoclonal anti-transferrin receptor antibodies on in vitro growth of human solid tumor cells[J]. Cancer research, 1987, 47(8): 2040-2044.

[25]Taetle R, Honeysett J M. Effects of monoclonal anti-transferrin receptor antibodies on in vitro growth of human solid tumor cells[J]. Cancer research, 1987, 47(8): 2040-2044.

[26]White S, Taetle R, Seligman P A, et al. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects[J]. Cancer research, 1990, 50(19): 6295-6301.

[27]R. Taetle, J. Castagnola, J. Mendelsohn, Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies[J].Cancer Res,1986,46 :1759-1763.

[28]L.M. Neckers, J. Cossman, Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2,

Proc[J].Natl. Acad. Sci. U. S. A,1983,80: 3494-3498.

[29]I.S. Trowbridge, F. Lopez, Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro, Proc[J].Natl. Acad. Sci. U. S. A,1982,79:1175-1179.

[30]Taetle R, Rhyner K, Castagnola J, et al. Role of transferrin, Fe, and transferrin receptors in myeloid leukemia cell growth. Studies with an antitransferrin receptor monoclonal antibody[J]. Journal of Clinical Investigation, 1985, 75(3): 1061.

[31]Brooks D, Taylor C, Dos Santos B, et al. Phase Ia trial of murine immunoglobulin A antitransferrin receptor antibody 42/6[J]. Clinical cancer research, 1995, 1(11): 1259-1265.

[32] Crépin R, Goenaga A L, Jullienne B, et al. Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas[J]. Cancer research, 2010, 70(13): 5497-5506.

[33] Chignola R, Foroni R, Franceschi A, et al. Heterogeneous response of individual multicellular tumour spheroids to immunotoxins and ricin toxin[J]. British journal of cancer, 1995, 72(3): 607.

[34]Daniels T R, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells[J]. Clinical Immunology, 2006, 121(2): 159-176.

[35]Elliott R L, Stjernholm R, Elliott M C. Preliminary evaluation of platinum transferrin (MPTC-63) as a potential nontoxic treatment for breast cancer[J]. Cancer detection and prevention, 1987, 12(1-6): 469-480.

[36]Head J F, Wang F, Elliott R L. Antineoplastic drugs that interfere with iron metabolism in cancer cells[J]. Advances in enzyme regulation, 1997, 37: 147-169.

[37]Tanaka T, Shiramoto S, Miyashita M, et al. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME)[J]. International journal of pharmaceutics, 2004, 277(1): 39-61.

[38]Bejaoui N, Page M, N?el C. Cytotoxicity of transferrin-daunorubicin conjugates on small cell carcinoma of the lung (SCCL) cell line NCI-H69[J]. Anticancer research, 1990, 11(6): 2211-2213.

[39]Lai H, Sasaki T, Singh N P. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds[J]. 2005.

[40]Rybak S M, Newton D L, Mikulski S M, et al. Cytotoxic onconase and ribonuclease A chimeras: comparison and in vitro characterization[J]. Drug Delivery, 1993, 1(1): 3-10.

[41]Soni V, Kohli D V, Jain S K. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain[J]. Journal of drug targeting, 2008, 16(1): 73-78.

[42]Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin[J].Int. J. Pharm,2009,373:116-123 .

[43]Shah N, Chaudhari K, Dantuluri P, et al. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic? P85, an in vitro cell line and in vivo biodistribution studies on rat model[J]. Journal of drug targeting, 2009, 17(7): 533-542.

[44]Pardridge W M. shRNA and siRNA delivery to the brain[J]. Advanced drug delivery reviews, 2007, 59(2): 141-152.

[45]Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB)[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(2): 251-256.

[46]Sharma A, Sharma U S. Liposomes in drug delivery: progress and limitations[J]. International Journal of Pharmaceutics, 1997, 154(2): 123-140.

[47]Discher D E, Ortiz V, Srinivas G, et al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors[J]. Progress in polymer science, 2007, 32(8): 838-857.

[48]Pang Z, Lu W, Gao H, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26[J]. Journal of Controlled Release, 2008, 128(2): 120-127.

[49] Gash D M, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF[J]. 1996.

[50]Kirik D, Georgievska B, Bj?rklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease[J]. Nature neuroscience, 2004, 7(2): 105-110.

[51]Fu A, Zhou Q H, Hui E K W, et al. Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier[J]. Brain research, 2010, 1352: 208-213.

[52]Boado R J, Zhou Q H, Lu J Z, et al. Pharmacokinetics and brain uptake of a genetically engineered bifunctional fusion antibody targeting the mouse transferrin receptor[J]. Molecular pharmaceutics, 2009, 7(1): 237-244.

[53]Zhou Q H, Fu A, Boado R J, et al. Receptor-mediated abeta amyloid antibody targeting to Alzheimer's disease mouse brain[J]. Molecular pharmaceutics, 2010, 8(1): 280-285.

[54]Couch J A, Yu Y J, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier[J]. Science translational medicine, 2013, 5(183): 183ra57-183ra57.

[55]Atwal J K, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo[J]. Science translational medicine, 2011, 3(84): 84ra43-84ra43.

[56]Yu Y J, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target[J]. Science Translational Medicine, 2011, 3(84): 84ra44-84ra44.

[57]Sumbria R K, Boado R J, Pardridge W M. Brain protection from stroke with intravenous TNFα decoy receptor-Trojan horse fusion protein[J]. Journal of Cerebral Blood Flow & Metabolism, 2012, 32(10): 1933-1938.编辑/申磊

上一篇:种植体发展与表面处理对骨结合的效果研究 下一篇:有创治疗椎间盘突出症的研究