二氧化碳排放方式范文

时间:2023-12-25 16:57:46

二氧化碳排放方式篇1

作为世界上最大的发展中国家,我国政府在2009年12月的哥本哈根国际气候会议上对全世界作出郑重承诺:到2020年我国单位国内生产总值的二氧化碳排放量比2005年下降40%~50%.而作为世界上最大的碳排放国家,我国的碳减排目标任重而道远.当前,全球都在积极推行“低碳经济”,各国都在努力实现“绿色生产”,力求减少碳排放量.我国政府在“十二五”规划中提出节能减排的约束性目标,即单位国内生产总值能耗要降低16%,而二氧化碳排放要降低17%,主要污染物的排放总量要求减少8%到10%,同时把该目标进一步分解到全国各地区,要求各地区务必坚持绿色、低碳的新型发展理念,把节能减排作为贯彻落实科学发展观、加快经济发展方式转变的一个重要出发点,发展资源节约型、环境友好型的生产消费模式,进而增强自身的可持续发展能力.一直以来,二氧化碳排放问题作为全球变暖背景下的一个新标识,是国内外众多学者密切关注的重点.由于我国存在严重的区域经济发展不平衡和地区资源禀赋差异,中国各省市地区的碳排放也存在显著差异.要想制定出科学合理且有针对性的节能减排政策,就必须很好地把握中国各省市的碳排放情况,因此有必要对各省市碳排放量进行全面系统的测算.然而,截止目前,我国无论是国家层面的还是省级层面都没有直接公布二氧化碳排放量的官方统计数据,国内外学者的测算研究都是基于对能源消费量的测算.那么,我国各省份二氧化碳排放量到底有多少,哪些因素对二氧化碳的排放产生影响?这些相关影响因素对二氧化碳排放的影响程度又是如何呢?这些问题的解决与否关系到我国节能减排政策制定的科学与否,也关系到低碳战略实施成效的显著与否.节能减排工作的顺利开展,是我国经济社会保持可持续发展的关键.本文参照IPCC(2006)以及国家气候变化对策协调小组办公室[3]和国家发改委能源研究所(2007)[4]的方法,运用相关方法对各省市地区的碳排放量数据进行估算,比较详细估算了我国30个省市(直辖市、自治区)1997—2011年的二氧化碳排放量.

2各地区碳排放量的测算

考虑到二氧化碳排放的来源比较广泛,除了化石能源燃烧外,在水泥、石灰、电石、钢铁等工业生产过程中,由于物理和化学反应的发生,也会有二氧化碳的排放,而在所有工业生产过程排放的二氧化碳中,水泥大约占56.8%,石灰大约占33.7%,而电石、钢铁生产所占不足10%.为了进一步增强估算的全面性和准确性,本文不仅估算了化石能源燃烧所产生的二氧化碳排放量,同时也估算了水泥生产过程产生的二氧化碳排放量.另外,为精确起见,本文进一步将化石能源消费细分为煤炭消费、焦炭消费、石油消费、天然气消费,其中石油消费则更进一步细分为汽油、煤油、柴油、燃料油四类.所有化石能源消费数据都来自于历年《中国能源统计年鉴》.水泥生产数据来自于国泰安金融数据库.水泥生产过程产生的二氧化碳排放量具体计算公式如下:CC=Q×EFcement.(2)其中CC表示水泥生产过程中二氧化碳排放总量,Q表示水泥生产总量,而EFcement则是水泥生产的二氧化碳排放系数.本文估算水泥生产的二氧化碳排放量时,仅仅计算了化学反应产生的二氧化碳排放量,而没有包含水泥生产过程中燃烧化石燃料而造成的二氧化碳排放量.表1列出了各类排放源的CO2排放系数.经过一系列准确计算,可以得到我国30个省市地区1997—2011年二氧化碳排放量的估计值.由表2的二氧化碳排放量估算值可以看出我国各省市地区碳排放量基本都呈现上升趋势,地区差异比较明显.为了更好的体现我国二氧化碳排放的地区差异性,将我国30个省(市、区)按照经济发展水平和其地理位置划分为三大区域,包括东部地区、中部地区以及西部地区.具体来讲,东部地区包括北京、河北、天津、辽宁、山东、江苏、上海、浙江、福建、广东和海南这11个省(市);中部地区主要包括黑龙江、吉林、山西、湖北、河南、湖南、安徽和江西这8个省份;西部地区则包括内蒙古、广西、云南、贵州、四川、陕西、重庆、青海、宁夏、新疆、甘肃、(由于缺乏数据较多,未估算其二氧化碳排放量)这12个省(市、区).表3显示我国三大区域的碳排放量.表3的数据反映了我国及东中西部三大区域碳排放量情况.从总体上来看,1997—2011年我国的二氧化碳排放量呈现持续增长的趋势,从1997年的336565.69万吨增长至2011年的1066359.01万吨,增长幅度达到729793.32万吨,短短15年间排放量大约增长了2.17倍.由图1可以明显看出,在1997—2002年我国二氧化碳排放量处于缓慢增长的阶段,这个阶段我国的二氧化碳排放量年均增长为3.48%.这个阶段产生的原因主要是受亚洲金融危机影响,我国出口贸易缩减,这在一定程度上减少了二氧化碳的排放.从2003年起,亚洲各国陆续走出金融危机的泥潭,我国经济发展加速,但由于我国高投入、高消耗、高污染的粗放型经济增长方式,使得我国这一阶段的二氧化碳排放量处于快速增长期,2003—2007年我国二氧化碳排放量增速达到13.70%.之后我国二氧化碳排放量增速有所下降,2008—2011年增速为9.37%.虽然增长率依旧不低,但是相比于2003—2007年还是呈现下降趋势.这说明我国意识到能源环境的重要性,开始探寻低碳经济路径,为实现绿色生产付出努力.特别是在2008年10月29日我国公布的《中国应对气候变化的政策行动》白皮书,郑重声明了我国应对气候变化问题的积极态度和相关行动,更是明晰了我国未来低碳发展路径.从表3东中西部三大区域碳排放量情况可以明显看出,我国的碳排放区域差异性是比较显著的.总体来讲,我国二氧化碳排放量呈现由东到西依次递减的规律,东部地区碳排放量最多,中部地区次之,西部地区碳排放量最少.东部地区的二氧化碳排放在绝对量上大大超过中西两大区域.从图2可以看到,这三大区域二氧化碳排放均呈现逐年增长的趋势,且其增长规律均与全国二氧化碳排放量一样,可以分为三个阶段:从1997—2002年三大区域的二氧化碳排放量有升有降,总体来说处于缓慢增长阶段;从2003—2007年,三大区域的二氧化碳排放量均呈现不同程度的增长,整体处于快速增长阶段;从2008—2011年,三大区域的二氧化碳排放量处于增速下降阶段.图2是我国1997—2011年30个省市地区二氧化碳排放量均值的降序排列图.其中,二氧化碳排放量均值位于全国二氧化碳排放均值的省市地区有:山东、河北、江西、江苏、河南、广东、辽宁、内蒙古、浙江、四川和湖北.排名靠前的前五个省份是山东、河北、江西、江苏和河南,分别占我国二氧化碳排放总量均值的8.71%、8.00%、7.68%、6.21%和5.95%.我国的主要二氧化碳排放大省均为传统工业,能源消费以煤炭为主.二氧化碳排放量排名靠后的五个省份分别是天津、甘肃、宁夏、青海和海南,分别占我国二氧化碳排放总量均值的1.46%、1.44%、0.98%、0.40%和0.30%.图3是我国1997—2011年各省碳排放年均增长率的降序排列图.可以看到,二氧化碳排放年均增长率排名前五的省份是宁夏、内蒙古、海南、福建和山东,其中宁夏二氧化碳排放的年均增长率达到15.36%.宁夏出现较高二氧化碳排放速度的原因与其快速的经济增长密切相关,1997年宁夏的国内生产总值为210.92亿元,2011年为2102.21亿元,增幅达到1891.29,增长了8.97倍.第二产业的产值占国内生产总值的比重由1997年的41.6%增长到了2011年的50.2%,增长了8.6个百分点.快速的经济发展及不合理的产业结构刺激了二氧化碳的高速排放.除了以上二氧化碳排放年均增长率排名靠前的省份外,青海、陕西、广西和新疆的年均增长率也均超过了10%,高于全国8.59%的平均增长水平.排名靠后的五个省份为辽宁、山西、黑龙江、上海和北京,其二氧化碳排放的年均增长率分别为6.47%、6.16%、5.41%、4.32%和1.95%,其中北京二氧化碳排放年均增长率以1.95%位居全国最低.

3我国各省区二氧化碳排放影响因素的实证研究

影响二氧化碳排放的相关因素很多,比如地理因素、经济发展水平、产业结构、产权结构、能源消费结构、对外开放程度、投资水平、制度环境、城市化水平、能源价格等[5-8].考虑到客观条件的限制,在考虑数据可得性基础上,本文构建面板数据模型研究产业结构、出口贸易、能源消费结构、城市化水平、国内生产总值对二氧化碳排放的影响.本文选择的面板数据模型如下:yit=α+Zitβ+ηi+εit.(3)其中,yit是第i个省份第t年人均二氧化碳排放量;α是常数项,β是回归系数;ηi是个体效应,主要用来控制各省份自有的特殊性质,εit是外生解释变量,主要包含国内生产总值(用gdp表示)、能源消费结构、城市化水平、产业结构及出口贸易等因素.其中,能源消费结构以煤炭消费量占能源消费量的比重度量(用energe表示),城市化水平以非农人口占总人口比重度量(用city表示),出口贸易以出口额占GDP的比重度量(用export表示),产业结构以第二产业占GDP的比重度量(用industry表示),同时对所有变量进行了取对数处理.结果显示,该面板回归模型拟合地较好,回归系数具有较高的显著性,其符号方向与现实情况较为符合.产业结构及国内生产总值对二氧化碳排放量的弹性系数较高,说明二氧化碳对产业结构及国内生产总值的变动比较敏感.第二产业占GDP的比重每增加1%,会使二氧化碳排放量增加0.9744%,这说明第二产业与碳排放呈现明显的正相关关系,第二产业是二氧化碳排放的主要驱动因素.经济每增长1%,二氧化碳排放量则会增加0.5812%,这说明经济增长也是碳排放量增多的一个重要因素,二者呈现正相关关系.能源消费结构与出口贸易与碳排放量的弹性系数在1%水平上不显著.

4结论与政策建议

本文参照IPCC(2006)以及国家气候变化对策协调小组办公室和国家发改委能源研究所(2007)的方法,相对客观的详细估算了我国30个省(直辖市、自治区)的1997—2011年期间的二氧化碳排放量.从数据中可以明显看出,我国各省(直辖市、自治区)的二氧化碳排放量从整体上基本都呈现出上升趋势,地区差异比较显著.总体上来讲,我国的二氧化碳排放量呈现出由东到西依次递减的规律特征,东部地区的二氧化碳排放量最多,中部地区次之,西部地区二氧化碳排放量最少,而且东部地区的二氧化碳排放在绝对量上大大超过中西两大区域.本文对影响二氧化碳排放的相关因素进行了较为深入的理论分析,主要从经济发展、能源消费结构、城市化水平、产业结构、出口贸易及其他因素等方面.这些因素对二氧化碳的排放及碳排放效率的高低具有十分重要的影响.同时对这些因素的分析对本文实证部分中环境变量的合理选取具有一定的指导性作用,对碳排放效率区域差异化的现状也具有一定的解释作用.要实现碳减排的目标,就要加快提高碳排放效率.缩小地区间碳排放效率的差距是实现我国整体碳减排目标的一种有效方式.要缩小碳排放效率的差距,我国的碳减排策略应当有所侧重,实施差异化碳减排策略,而不能采取“一刀切”的做法.缩小省际碳排放效率差距,要重点关注碳排放效率较低的地区的节能减排工程[9].实证分析结果可以发现,经济较为发达地区的二氧化碳排放效率普遍高于经济欠发达地区.所以,有必要努力加强各省之间相关节能减排工作的经验交流与技术合作,积极借鉴一些切实有效的节能政策,促进科学高效的管理经验的推广和扩散.西部地区具有自身资源优势,政府要加大对西部地区的开发力度,增加财政资金投入和技术、政策支持,全面统筹区域经济的良好发展,缩小区域差距.对与欠发达的地区要及时提供减排政策指导和资金支持,鼓励、支持和引导其利用自身优势,积极发展先进技术,提高能源利用率,推动碳排放效率的提升,保证其节能工作的顺利有序的开展.对于经济相对发达的省份来说,在节能减碳方面应承担更多的责任,发挥带头作用,引导其他地区碳减排技术的进步,这也是我国区域经济不平衡发展战略的内在要求.碳减排的关键是加强低碳技术的创新和运用,通过激励自主研发和积极同国际技术合作推动可再生能源的开发和化石能源的高效清洁利用.同时,我国要向低碳经济转型,必须建立碳减排的长效机制,积极稳妥地促进经济增长由“高投入、高消耗、高污染”的粗放型方式向“低投入、低消耗、低污染”方式转型.

二氧化碳排放方式篇2

二氧化碳是引起全球气候变化的最主要的温室气体之一,控制二氧化碳排放问题受到世界各国的广泛关注。控制温室气体排放、减缓气候变化已成为我国实施可持续发展战略的重要组成部分。在日前召开的以“温室气体(二氧化碳)控制技术及关键问题”为主题的第279次香山科学会议上,来自能源、化工、环境等不同领域的专家,就寻找适合我国国情的控制二氧化碳排放技术路线与战略进行了研讨。 n 二氧化碳减排难点 研究表明,二氧化碳来源于人类对煤、天然气和石油等化石能源的过渡开发与利用,特别是工业革命以后人类越来越依赖于化石能源。人类向大气排放的温室气体主要有:二氧化碳、甲烷、氮氧化物和其他气体,其中大约60%的温室效应是由二氧化碳产生的。 会议执行主席、中国科学院工程热物理研究所徐建中院士在题为《控制二氧化碳排放的若干科学问题》的报告中说,随着人类对化石能源的依赖越来越大,二氧化碳减排成为人类必须解决的、不可回避的重大问题。 二氧化碳排放源分布广泛,涉及到工业、交通、建筑、农业和管理等各个领域,由于各二氧化碳排放源不同,很难用单一的方法分离回收。传统分离和回收二氧化碳的技术主要有吸收法、吸附法、膜分离法和深冷法等。但不论采用哪种二氧化碳分离方法,分离过程的能耗都很高,这不仅意味着额外增加了单位发电量或产品的二氧化碳排放量,而且大幅降低了能源系统效率。如吸附法中包含了一个解吸过程,需要依靠压力或温度的改变将二氧化碳与吸附剂分离,压力变化或温度变化不可避免地带来大量的能量损失。而膜分离技术的难点在于受到膜材料的限制,导致膜成本较高,致使该方法目前不能大规模推广使用。 二氧化碳被分离后,需要存储起来,才能达到与大气隔离的目的。由于二氧化碳量巨大,每年达百亿吨,如此大量的二氧化碳安全存储,也是二氧化碳减排的难点之一。2003年,全球二氧化碳的排放总量约为237亿吨,对如此大量的二氧化碳进行捕获和封存是一件非常困难的事。 会议执行主席、清华大学化学工程系费维杨院士说,二氧化碳的储存技术主要有深海储存等多种形式,但目前许多研究工作才刚刚开始,二氧化碳的储存技术有可能产生的一些新问题尚有待深入研究。 n 减排中的关键科学问题 徐建中说,由于二氧化碳排放的范围广、涉及的领域多,问题复杂,并不是靠一两个方法就可以得到解决,在对二氧化碳减排途径进行研究时需要关注的几个关键科学问题有:一是化石能源高效利用新方法和新机理研究,要打破传统化石能源利用模式,开拓化石能源利用的新方法和新机理,以进一步提高能源转化与利用效率、减少化石燃料消耗和二氧化碳的排放;二是可再生能源与化石能源互补利用的方法和机理研究,将可再生能源与化石能源利用结合起来,通过化石能源和可再生能源的互补,不但可以克服可再生能源不连续的缺点,还可以促进可再生能源的利用,减少化石能源的消耗;三是生物固碳方面的研究,我国林地覆盖面积和生物量相对较低,研究造林、林地恢复、丰产林管理、采伐管理、森林防火和病虫害控制等方面的科学问题,将有助于森林固碳量,减少碳排放。 将二氧化碳从固定排放源排放的尾气或其他气体中分离并存储,是减少二氧化碳排放的重要方法。 但现有的二氧化碳分离技术在把二氧化碳分离出来后将消耗大量的能量,研究新型二氧化碳分离方法,降低二氧化碳分离能耗是减少固定排放源二氧化碳排放量所需解决的关键问题之一。二氧化碳资源化利用方法创新、系统整合控制二氧化碳排放的方法及机理等都有待进行深入的研究。 国家发展和改革委员会能源研究所研究员徐华清介绍说,到2020年,中国应对气候变化的总体目标设想为:减缓温室气体排放取得显著成效,适应气候变化的能力不断增强,气候变化相关的科技与研究水平取得新的进展,公众的气候变化意识明显提高,气候变化领域的机构和体制建设得到进一步发展。国家将大力推进技术开发和推广利用力度,加强煤的清洁高效开发和利用的技术研究,加强油气资源勘探开发利用技术和可再生能源技术等方面的研究,增强自主创新能力,促进能源工业可持续发展,增强应对气候变化的能力。 中国二氧化碳减排之路 徐建中认为,针对我国能源利用现状,目前我国减少二氧化碳排放可以有多种途径,如提高能源转化与利

二氧化碳排放方式篇3

全国“两会”的召开,让“低碳生活”、“低碳经济”再次成为热门议题。全国政协十一届三次会议的“一号提案”,是来自九三学社的《关于推动我国经济社会低碳发展的建议》,当日,股市低碳概念个股因此大涨。 所谓低碳,英文为low carbon,意指较低或更低的温室气体(二氧化碳为主)排放。所谓低碳生活,就是指在生活作息时尽量减少所耗用的能量,降低二氧化碳的排放量;低碳经济,就是以低能耗、低污染、低排放为基础的经济模式。

二氧化碳作为造成温室效应的气体之一,被列为首要污染物进行控制,是减排的重点对象之一。殊不知,二氧化碳也是一种资源,有着巨大的投资价值。

“两会”劲吹“代碳风”

在本次全国“两会”上,多位代表、委员强调了二氧化碳的利用价值。

全国人大代表、青岛啤酒股份有限公司董事长金志国表示:二氧化碳是啤酒生产过程中产生的副产物,同时也是啤酒生产中不可或缺的主要原料。碳管理,管好了是资产,管不好就是负债。

据金志国介绍,在之前的啤酒生产中,产生的大量二氧化碳都被白白排放掉7。如今,很多啤酒企业通过加装二氧化碳回收装置,对二氧化碳进行收集、加工,然后再用于生产所需。实施碳的闭环管理,既减少环境污染,又降低成本增加效益。

全国政协委员、华中科技大学煤燃烧国家重点实验室主任郑楚光表示:减排的概念并非完全不排放二氧化碳,而是使二氧化碳不进入空气,实现二氧化碳的捕集与封存。他说,二氧化碳也是可利用资源,可利用其提高石油采收率,置换原油而长期储存于油岩中,实现真正意义上的规模减排。

作为“973计划”项目“温室气体提高石油采收率的资源化利用及地下埋存”的首席科学家,郑楚光说,该课题已进入工程示范阶段。吉林油田已埋存8万吨二氧化碳,同时提高了石油的收率。

全国政协委员、中国石油大学校长张来斌也积极提倡发展二氧化碳地质封存技术。在他看来,发展二氧化碳地质封存技术,并将其与石油开结合起来,既能减少二氧化碳排放,又实现了石油的绿色开发,能取得经济效益和环境效益的双赢。

二氧化碳吞吐不仅能增油,还能提高原油收率,且随注入量而增大。目前,国内已有部分地区利用二氧化碳吞吐油,一些利用常规方法开的老区油田开采成本很大,已面临经济极限,在有条件的地区试用二氧化碳吞吐,可以得到可观的收益。

加大利用变废为宝

将二氧化碳看做是取之不尽、用之不竭的廉价资源,并通过现代技术将之转化为现代工业生产的原料,从而实现变废为宝,是实现碳减排的一条重要途径。

二氧化碳的价值正在被发掘,鉴于二氧化碳无味、无毒、分子结构稳定、密度大于空气密度的固有特性,它已经被广泛应用在了机械加工、化工、消防、食品加工、石油开采、生物养殖等行业,比如,气体保护焊就是利用二氧化碳气体的稳定性来保护被焊接的金属在焊接的过程中不被氧化。这种焊接方式自上世纪50年代被发明以来,在汽车、船舶、集装箱、金属结构物的加王过程中得到了广泛运用。由于二氧化碳保护焊是一种高效、高质量的焊接技术,采用这项工艺与手工电弧焊相比,可提高工效1~2倍,节省电耗一半。

二氧化碳在食品加工行业同样得到了广泛应用,最典型的就是饮料业。随着国人生活水平的提高,饮料行业对二氧化碳的消费量将迅速增长。以2008年为例,我国高档碳酸饮料的消费量约为1300多万吨,其中,可口可乐公司在我国高档碳酸饮料占有率为52.5%,约680多万吨,百事可乐占有率为6%,约为78多万吨,两家公司占到国内碳酸饮料市场的59%。根据碳酸饮料的行业标准计算,每吨碳酸饮料对食品级二氧化碳的需求量为0.02吨,由此推算,仅2008年高档碳酸饮料所需食品级二氧化碳量超过26万吨。

此外,国际上广泛采用液体二氧化碳、干冰速冻及二氧化碳气调法保鲜食品。二氧化碳气调法是不加任何防腐剂的保鲜法,只要控制气体组成,保持适当低温,便可使水果、蔬菜获得良好的贮存效果。据悉,华南农学院用二氧化碳气调贮藏荔枝,在1~3℃条件下,荔枝可贮存30-40天。基本保持原有的鲜红色和风味。这一方法对鱼肉、蛋的保鲜同样有效,把成批鸡蛋放在浓度为30%-60%的二氧化碳气体中,二氧化碳通过蛋壳渗入鸡蛋,可延迟形成水样蛋的速度,达到保鲜目的。但在食品速冻保鲜方面,国内由于二氧化碳价格高于氨和氟里昂制冷剂,而影响了推广。

提高意识 寻找新机遇

尽管人们已经认识到了二氧化碳的重要性,但是,二氧化碳资源化回收利用程度还较低,在我国,二氧化碳回收率尚不足排放量的1%。问题主要有以下几个方面。

首先,二氧化碳提取成本高,目前,社会上使用的二氧化碳都是从空气中提取的,但由于空气中二氧化碳的含量只有约0.03%,因此,从空气中提取成本较大。如果从冶金、火力发电等行业集中排放的烟气中提取二氧化碳,提取成本将大大降低。据了解,在节能减排政策指导下,中国华能集团已经在两个火力发电厂开展“生产”二氧化碳的项目,为周边二氧化碳气体的使用者提供了便利,也给自己创造了一定的经济效益。

其次,普及度较低。人们对二氧化碳气体的认识不足,也影响了二氧化碳气体的使用。举例来说,在机械加工行业,尽管二氧化碳气体保护焊已经存在几十年,但仍没有得到有效推广甚至一些大型企业还在使用普通的焊接方法。在石油开采方面。二氧化碳方式也只是处在试用阶段。生物养殖在减少二氧化碳排放的作用也还没有被重视,更谈不上推广了。利用二氧化碳制造可降解塑料的技术也是成熟的,但也没有获得普及应用。如果相关二氧化碳应用技术能够在冶金、电力行业得到应用,将给这两个行业提供新的经济增长点。另外,一些科研机构掌握的有关二氧化碳的应用技术。没能有效转移到实际生产领域。

人们还没有意识到二氧化碳使用价值,没有意识到二氧化碳也是一种宝贵资源。国家应结合相关节能减排政策,在技术指导和广泛宣传两个方面多做一些工作。

二氧化碳排放方式篇4

近年来城市化进程的加快,导致建设用地出现快速扩张的趋势,人类社会面临的土地利用问题较历史上任何时候都显得更为突出。近年国内外多个权威研究机构研究已表明合理的城市土地利用对城市的碳排放具有一定的约束作用,本文通过对葫芦岛城市碳排放评估的基础上提出基于低碳理念的城市土地利用规划策略。

关键词:低碳;土地利用;城市规划;低碳城市

Abstract:

Speed ​​up the urbanization process in recent years, leading to the construction land to the trend of rapid expansion, land use issues facing human society than any time in history becomes more prominent. Number of domestic and international authoritative research institutes in recent years research has shown that reasonable urban land use with certain constraints on the city's carbon emissions, this article on the basis of the assessment on the carbon emissions of Huludao city, urban land use planning strategy based on low-carbon concept .

Key words:low carbon;Land Use;City planning;Low Carbon City

中图分类号:TU984 文献标识码:A 文章编号:

研究区域概况

葫芦岛市位于辽宁省西南部, 1989 年建市, 是环渤海经济圈最年轻的沿海城市。它地处辽东湾西南部沿海地区, 东北和华北的交汇处, 葫芦岛市总土地面积 1041494 公顷。葫芦岛市地理位置优越, 矿产资源和旅游资源十分丰富, 同时它也是振兴东北老工业基地的重要组成部分, 是环渤海经济圈中最具发展潜力的海滨城市。

低碳城市评价标准:

随着世界各国对低碳城市的重视,关于低碳城市的理论研究也在如火如荼的进行当中,低碳城市规划同传统城市规划最大的区别据在于低碳城市规划的主要目的是减少城市的碳排放量,虽然世界各国已经有很多基于低碳生态理念的城市建设完成,但是如今在世界范围内还没有一个公认的低碳城市评价标准体系。目前一系列的研究还都是处在研究探索阶段。

葫芦岛城市碳排放量评估计算

在低碳城市的建设过程当中,需要对城市的碳排放或者二氧化碳的排放有个准确的掌握,以便以此为根据指定相对应的策略。其中最基本的指标是二氧化碳的排放量,即城市在生产和消费过程当中向大气排放的二氧化碳的量。

其基本公式为:城市二氧化碳排放量=二氧化碳排放总量-二氧化碳吸收总量。

其中,二氧化碳排放总量=能源消费带来的二氧化碳排放总量+工业产品生产的二氧化碳排放量+垃圾排放二氧化碳总量+农地二氧化碳排放总量+其他。而二氧化碳吸收总量指的是“绿地吸收的二氧化碳量”。由于本次计算的是葫芦岛城市区域的碳排放量,因此对于农业用地的碳排放量不列入到计算范围之内。

城市能源消费带来的二氧化碳排放量

2010年葫芦岛重点耗能工业企业能源生产消费总量为16 406 398吨标准煤。

系数法计算能源二氧化碳排放的基本公式:CO₂=KE

E为不同类型能源使用量,可按标准统一折算为标准煤,系数K为碳排放强度或者碳排放系数。因国家、地区、技术的不同有所差别。目前我国采用的碳排放系数主要是国家发改委能源研究所的0.67(吨/标准煤)。经此公式计算结果为10 992 286.66吨

工业产品生产带来的二氧化碳排放量

工业产品二氧化碳的排放量一般计算水泥和刚才的成产过程中的二氧化碳排放。但是由于钢材的生产过程中的二氧化碳排放主要体现在能源的消费上因此一般只计算水泥生产过程中的碳排放量。水泥生产的二氧化碳绝对排放量=本地生产的水泥总量×0.6。葫芦岛2010年水泥产量为263.4万吨。计算结果为1 580 400吨。

垃圾排放二氧化碳总量

由于我国垃圾焚烧所占比例较少,为简化计算,垃圾排放二氧化碳的计算一律按填埋处理,排放系数取0.3。根据葫芦岛市统计年鉴2010年葫芦岛生活垃圾清运量为20.8万吨。计算结果为62 400吨。

林业碳吸收量

根据葫芦岛市2010年的统计结果显示葫芦岛市的园林绿化面积为2802公顷。而从全球来看,温带森林每年每公顷吸收的二氧化碳量为2.5~27吨。本次计算取最大值27.其计算结果为75 634吨。最后计算结果得出葫芦岛市城市年二氧化碳排放量为12 559 452.66吨。

计算结果尽管同我国其他大中型城市相比无论是人均还是总量葫芦岛市的碳排放量都不算高,但是也有下降的空间及要求。

通过土地利用变化减少碳排放的主要策略

土地利用方式是社会经济发展方式的土地资源上的具体表现,也是城市发展的客观体现,根据政府间气候变化委员会(IPCC)的评估报告,自1850年以来全球有三分之一的温室气体排放由土地利用变化世界导致,随着工业化、城市化进程的加快,土地利用变化所导致的二氧化碳排放量也呈现增长趋势。因此城市用地的低碳化、合理化利用是低碳城市规划的重中之重。通过土地利用的方式减少碳排放主要分为直接和间接两种途径。

直接减少碳排放途径

减少地面硬化

减少地面硬化是为了保持土壤的碳汇功能,土壤中的微生物在一定环境下可吸收和固定空气中的二氧化碳将其转化,大量的硬质地面隔离了土壤与空气的接触使之无法发挥固碳的作用,因此应重视土壤的生态价值,重视地面的硬化处理,以保持地面的生态系统和透气透水的自然功能。

提倡和鼓励绿色节能建筑

绿色建筑的发展相对城市,在国内也已经初具规模,由于绿色建筑在他的生命周期内,最大限度的节约了能源,保护环境和减少污染是有效的低碳策略。

城市基础建设低碳化

城市的基础设施在城市的碳排量中也占据的很大的比重,社会的发展和人们生活水平的提高导致一小汽车为主导的交通方式已经形成。给城市的环境建设带来巨大压力。低碳城市的假设中应改变这种现状,应建设以大运量、高效率、低能耗、轻污染、少用地、低噪音同时又能优化城市布局,带动产业发展的交通工具为主导的交通模式。应发展以公共交通有主,步行系统为辅助的交通模式。从而有效的减少交通上产生的二氧化碳排放。

控制城市用地的密度与尺度

高密度的城市用地必然产生更多的碳排放,因此也容易产生热岛效应。城市用地的尺度是通过控制城市规模的无限扩张来降低城市碳排放持续增加的趋势。

重视城市绿化,发挥绿地碳汇功能

在城市的绿化活动中应因地制宜的选着适合本地区、高碳汇量的植物,根据合理化、多样化的植物配置原则进行规划建设。

间接减少碳排放途径

混合用地模式

混合用地模式可以分为宏观的混合和微观的混合,宏观的混合表现为多个不同功能的建筑体存在于同一个地块内,使这一地块呈现出多样性和混合性。微观的混合则表现为同一座建筑内的不同功能空间的加入混合。使一座建筑内部具有多种不同使用功能。具体表现就是各种形式的建筑综合体,例如商业综合体等等。

提倡低碳生活方式

以创建低碳家庭、低碳社区、低碳乡村、低碳企业、等多种活动以及建筑类型为载体,小至一个人大至一个集体,从每一天每一件事情做起养成低碳生活方式,也是全民低碳意识和国民素质提高的过程。

结语

我国目前正处于大规模的城市建设和新一轮的空间结构调整期,城市规划应从低碳化的土地利用规划入手,探讨绿色城市空间规划方法。通过调整城市空间布局,构建绿色交通体系、综合紧凑型城市和生态单元,实现在碳来源、碳排放、碳捕捉三个方面的减碳化,真正实现低碳城市发展目标。

参考文献

[1]张德英. 我国工业部门碳源排碳量估算办法研究 . 北京:北京林业大学. 2005

[2]王雪娜, 顾凯平. 中国碳源排碳量估算办法研究现状.环境科学与管理. 2006

[3]马忠海. 中国几种主要能源温室气体排放系数的比较评价研究. 北京:中国原子能科学研究院, 2003

[4]徐国泉, 刘则渊, 姜照华. 中国碳排放的因素分解模型及实证分析:1995 2004 . 中国人口 资源与环境, 2006

二氧化碳排放方式篇5

2009年9月10日中国科学院院士、气象学家李崇银在重庆参加第11届科协年会作报告时提出,“女士的爱美之心,也导致全球变暖。”因为,化妆品中含有氟利昂,这种物质释放出来后上升进入平流层,如果没有强烈的光化学作用,就无法分解,从而破坏臭氧层,导致了紫外线辐射加强。所以,从一定程度上说,爱美之心也推动了全球变暖。

李先生的“女性爱美让全球变暖”其实就是鼓励人们过低碳生活,如果女性减少使用化妆品,就可以减少温室气体,为保护环境做出贡献。那么,什么是低碳生活呢?

从碳足迹谈起

低碳生活首先源自碳足迹,它表示一个人或者一个团体的碳耗费量,是测量某个国家和地区的人口因每日消耗能源而产生的二氧化碳排放对环境影响的一种指标。

无论是个人还是群体的碳足迹都可以分为第一碳足迹和第:碳足迹。第一碳足迹是因使用化石能源而直接排放的二氧化碳,比如一个经常坐飞机出行的人会有较多的第一碳足迹,因为飞机飞行会消耗大量燃油,排出大量:氧化碳。第:碳足迹是因使用各种产品而间接排放的二氧化碳,比如消费一瓶普通的瓶装水,会因它的生产和运输过程中产生的碳排放而带来第:碳足迹。女性消费化妆品除了会有氟利昂排放增加温室气体外,还会因化妆品的包装、运输等增多第二碳足迹增多,因而会增加环境负担,甚至间接破坏环境。

所以,低碳生活就是人们在日常生活和工作中减低碳足迹的行为方式,即在生活和生产中少排放二氧化碳。例如,通过一个专门设计的“碳足迹计算器”来测算,你用了100度电,就等于排放了大约78.5千克二氧化碳;你自驾车消耗了100公升汽油,也就等于排放了270千克:氧化碳。碳足迹越大,说明你是高碳生活,对全球变暖所要负的责任越大。碳足迹越小,说明你进入了低碳生活。对环境的保护做出的贡献也大。

当然,人类的低碳生活并不只是体现在个人生活上,而是处处体现,尤其是人类的生产活动。人类的活动是造成全球变暖的主要原因,这一点在国际政府间气候变化专家委员会(IPCC)第四次评估报告中已得到确认。可以说,人类的一切活动都在直接和间接加速全球变暖,只是我们对此并不在意而已。所以,所谓的低碳生活还包括降低人类活动所造成的所有温室气体,而不仅仅是二氧化碳。

温室气体是指大气层中易吸收红外线的气体,主要包括水汽、二氧化碳、甲烷、氧化亚氮、臭氧、氟利昂或氯氟烃类化合物。人类的衣食住行无一不在产生和制造温室气体,如工业生产、使用石化燃料。甚至连我们吃的粮食也是温室气体的重大来源之一。

例如,农业生产过程中的气体排放是全球温室气体排放的第=大重要来源,排放量介于电热生产和尾气之间。中国是一个水稻生产大国,而水稻生产排出的温室气体可能并不被人们所知。水稻生长期间,植株及稻田会释放出大量氧化亚氮,每千克相当于296千克二氧化碳的温室效应量。全球农业生产中氧化亚氮的排放占全球氧化亚氮总排放量的84%。

尽管农作物生产和使用化石燃料排放大量温室气体从而危及环境,但却不能因噎废食去禁止使用化石燃料,更不能禁止农业生产,相反,只能从其他方面来加以改善。例如,在我国种植氮素高效利用水稻不但可以减少氧化亚氮排放对环境的破坏,还可以节约资源和资金。同理,研发和使用生物燃料也可以节约资源和减少温室气体排放。

个人生活的低碳选择

就个人而言,每个人可以从自我做起,从生活中的细节做起,也就可以为减少全球变暖做出贡献。例如,少开一天车,少吃一顿肉食大餐,少用一次性筷子,少用白炽灯,少开一盏灯等等,都是在为减缓全球变暖做贡献。具体到化妆品而言,也有两种方法。其一,像冰箱生产禁止加氟利昂一样寻找化妆品原料的替代品,减少或替代化妆品中的氟利昂。其次,无论是女性还是男性,减少化妆品的使用,就像每个月少开一次车一样,在不太重要或非正式的场合,就没有必要浓妆艳抹,素面朝天或许更好。

个人在尽力减低自己碳足迹方面还有许多可以采纳的方式。例如,减少不必要的家电消耗;出行多乘公共汽车;购买商品时要首选当地产品;甚至用餐做菜时选择烹饪方式来减少“碳足迹”。以土豆为例,用烤箱烘烤土豆产生的=氧化碳比用锅煮的要多,而用锅煮产生的二氧化碳又比微波炉做产生的多。所以,用微波做土豆就是一种更好的低碳生活。甚至吃牛肉也要比吃猪肉排放的碳多,因此应减少吃牛肉。

另外,棉布衣服与化纤衣服,爬楼梯与坐电梯,走路与开车等等,都是前者是低碳生活,后者是高碳生活。例如,生产化纤衣服要消费更多的石油和能源,排放更多的=氧化碳,所以应当选择棉布衣服。个人的低碳生活还有下面一些简易的计算和选择。

在家居用电上,根据发电过程中碳排放的平均值计算,=氧化碳排放量(千克)一耗电度数X0.785。据此可以计算个人的碳排放量并节约用电。当然,使用风电或水电等清洁能源产生的碳排放会比使用热电低。

在交通出行方面,需要根据车辆耗油情况将距离转化为耗油量才能计算碳排放量,小排放量汽车在相同距离碳排放量较少。二氧化碳排放量(千克)=油耗公升数×2.7。从这个公式来看,无论是政府管理还是生产厂商,抑或是个人消费,都应大力推广小排量节能环保型汽车。

乘坐飞机的碳排放量是基于飞机上乘客的平均排放。由于公务舱和头等舱占有更大空间,因此排放应高于经济舱。200千米以内短途旅行:氧化碳排放量(千克)=飞行千米数X0.275;200~1000千米中途旅行:氧化碳排放量(千克)=55+0.105×(飞行千米数-200);1000千米以上长途旅行:氧化碳排放量(千克)=飞行千米数X0.139。据此可以看出,外出公务和旅行最好乘坐地面公共交通工具。

从家用燃气来看,天然气的:氧化碳排放量(千克)=天然气使用度数ד碳强度系数”0.19。使用液化石油气的二氧化碳排放量(千克)=液化石油气使用度数ד碳强度系数”0.21。所以,使用天然气和节约燃气是低碳生活。

至于家用自来水,生产1吨自来水要消耗电能0.67~1.15度。根据耗电的平均值,:氧化碳排放量(千克)=自来水使用吨数X0.91。所以,节约用水也是低碳生活。

高碳生活应补偿

尽管低碳生活是我们提倡的,但是,由于工作需要或其他原因,人们在生活中有时会进入高碳生活。这时就应当对自己的高碳生活进行补偿。这种补偿就是所谓的碳中和。

碳中和指的是,人们可以计算自己日常活动(生产)直接或间接制造的二氧化碳排放量,如果过高,则可以通过植树等方式把这些排放量吸收掉,或者计算抵消这些二氧化碳所需的经济成本,然后个人付款给专门企业或机构,由他们通过植树或其他环保项目抵消大气中相应的二氧化碳量,以达到降低温室效应的目的。

因此,碳中和就是人们对自己高碳生活的补偿,是人们对地球变暖的现实进行反思后的自省、自律和自觉的补救行动。例如,一家三口如果一年用电3000千瓦时,就排放了2。36吨:氧化碳,那么需要种22棵树才能抵消。种植树木补偿是以一棵树一年能吸收111千克二氧化碳来计算,因此需种植的树木数(棵)=二氧化碳排放量(千克)/111。当然,种树的补偿既可以是全家自己动手种树,也可以村款给园林机构,请他们种植22棵树来补偿。当然,现在这只是一种自觉行为,不具强制性。

而且,你如果在生活中不得不乘飞机旅行,则可以通过计算出行一次会有多少碳排放量,然后考虑在以后的生活中补偿。例如,在线旅行服务网站携程网推出的碳中和服务就是在顾客预订机票时,网站根据飞行里程告知乘客产生的二氧化碳排放量,以及相应的补偿选项,例如植树等。

当然,高碳生活的补偿除了个人外,最大的补偿效应来自企业,这就要求企业除了有碳排放量的限制外,还要求其改进产品生产中的碳排放,而不必等高碳排放后再补偿。现在,世界上很多企业已经在行动。正如上面所说的化妆品的高二氧化碳排放量不仅体现为氟利昂,而且体现在化妆品的包装上。有鉴于此,日本资生堂公司开发出由聚乳酸和聚乙烯形成的多层结构塑料材料,获得耐热性、耐冲击和防潮性能良好的环保包装。据计算,采用这种环保包装比以前可减少20%的碳排放。

二氧化碳排放方式篇6

关键词:化工行业;二氧化碳;两阶段核算模型;减排潜力;

作者简介:顾佰和(1987-),男(满族),辽宁丹东市人,中国科学院科技政策与管理科学研究所,博士研究生,研究方向:绿色低碳发展战略与政策分析.

1引言

化工行业是经济社会发展的支柱产业,同时也是耗能和温室气体排放大户。国际石油和化工联合会的统计数据显示,2005年世界二氧化碳排放量约为460亿吨,其中化学工业的二氧化碳排放为33亿吨,约占7.1%[1]。中国是世界上最大的化工制品国之一。其中合成氨、电石、硫酸、氮肥和磷肥的产量均排名世界第一[2]。2000年到2010年,中国的化工行业工业产值增长迅速,其中几种主要化工制品例如:乙烯、电石、烧碱、硫酸、甲醇、硝酸等产品的产量在此期间增长了50%以上。2000-2010年化学原料及化学制品制造业能源消费量逐年上升,年均增长8.86%[3],占全社会能源消费总量的比重基本保持在10%左右。

我国化工行业产品结构不合理,高消耗、粗加工、低附加值产品的比重偏高,精细化率偏低。美国、西欧和日本等发达国家和地区的化工行业精细化率已经达到60%~70%,而目前我国化工行业的精细化率不到40%。且我国化工行业工艺技术落后,高耗能基础原材料产品的平均能耗比国际先进水平要高20%左右,因此我国化工行业存在较大的节能减排空间[4]。那么我国化工行业到底有多大的减排潜力,如何预测化工行业的温室气体减排潜力成为决策者和研究人员关注的焦点之一。

国内外学者围绕行业温室气体减排潜力评估展开了一系列研究,但研究集中于钢铁行业[5-6]、电力行业[7-8]、交通行业[9-10]、水泥行业[11-12]等产品结构较为单一的行业。而由于化工行业的产品种类繁多,且工艺流程各不相同,目前对于化工行业的温室气体减排潜力研究,从研究对象上主要集中于少数几种产品和部分工艺流程。Zhou[13]等全面细致的核算了中国合成氨生产带来的二氧化碳排放和未来的减排潜力,并据此提出了促进减排的政策措施。Neelis[14]等学者从能量守恒的角度研究了西欧和新西兰化工行业的68种主要工艺流程理论上的节能潜力。IEA[15-16]在八国集团的工作框架下,评估了化学和石油工业中49个工艺流程应用最佳实践技术(BestPracticeTechnology)短期内所带来的能效改善潜力。Patel[17]针对化学中间体和塑料等有机化学品给出了累积能源需求和累积二氧化碳排放量的核算流程和核算结果。

就关注的减排影响要素而言,主要涉及技术和成本两方面。技术层面上,Park[18]等通过调查五种节能减排的新技术,使用混合的SD-LEAP模型评估了韩国石油炼制行业的二氧化碳减排潜力;Zhu[19]从技术进步的视角采用情景分析方法从整个行业的层面研究了中国化工行业的二氧化碳减排潜力,并提出一系列促进化工行业碳减排的措施;卢春喜[20]重点概述了气-固环流技术在石油炼制领域中的研究与应用进展;王文堂[21]分析了目前化工企业节能技术进步所遇到的障碍,并对促进企业采取节能减排技术提出建议。成本方面,Ren[22]等对蒸汽裂解制烯烃和甲烷制烯烃两种方式的节能和碳减排成本进行了对比;戴文智等[23]将环境成本作为石油化工企业蒸汽动力系统运行总成本的一部分,构建了混合整数非线性规划(MINLP)模型,优化了多周期运行的石油化工企业蒸汽动力系统;高重密等[24]从综合效益角度出发提出了化工行业实施碳减排的相关建议以及化工园区实施碳减排的管理模式;何伟等[25]设计了节能绩效-减排绩效关系图及节能绩效、减排绩效与经济效益协调关系三角图。

在研究方法上,通过对以上文献的归纳,不难发现情景分析已成为行业温室气体减排潜力的主流分析框架。已有的国内外大部分相关研究都采用情景分析方法[5-12,13,18,19]。情景分析方法是在对经济、产业或技术的重大演变提出各种关键假设的基础上,通过对未来详细地、严密地推理和描述来构想未来各种可能的方案[26]。相比弹性系数法、趋势外推法、灰色预测法等传统的定量预测方法,情景分析法以多种假定情景为基础,强调定性与定量分析相结合。情景分析法在进行预测时,不仅可根据预测对象的内在产生机理从定量方法上进行推理与归纳,还可对各不确定因素(自变量)的几种典型的可能情况采取人为决策,从而更为合理地模拟现实。因此,情景分析法更加适用于影响因素众多、未来具有高度不确定性的问题的分析。此外,情景分析法与传统预测法还有一点显著不同。传统预测法试图勾绘被预测对象未来的最可能发生状况,以及这种可能程度的大小。而情景分析法采取的是一种多路径式的预测方式,研究各种假设条件下的被预测对象未来可能出现何种情况。在情景分析中,各种假设条件不一定会自然出现,但通过这样的分析,可帮助人们了解若要被研究对象出现某种结果需要采取哪些措施以及需要何种外部环境。

综观国内外学者的研究,有以下特点:从研究对象上来说,更多侧重于化工行业产品层面二氧化碳减排潜力的研究,而鲜有从行业整体层面的研究;从研究要素上来说,一般只考虑单一要素对二氧化碳减排的贡献,鲜有综合考虑化工行业内部结构调整、技术进步、政策变动等多因素的研究。鉴于此,本文结合化工行业的产品结构特点构建了一套化工行业二氧化碳减排潜力综合分析模型:首先结合化工行业产品种类繁多的特点,分别从行业和产品视角构建了一种两阶段二氧化碳排放核算模型;在此基础上,综合考虑化工行业的发展规模、结构调整、技术进步等因素,建立了化工行业二氧化碳减排潜力的情景分析方法,探索不同情景下化工行业的减排潜力和路径。最后运用该方法以中国西部唯一的直辖市、国家首批低碳试点城市———重庆市的化工行业为例进行应用分析。最后提出了我国化工行业低碳转型的对策建议。

2模型与分析方法

2.1核算边界

化工行业的二氧化碳排放包括两部分:一部分是由燃料燃烧产生的排放,另外一部分是工业过程和产品使用产生的排放。其中燃料燃烧产生的排放又分为化石燃料产生的直接排放以及电力、热力消耗产生的间接排放,为了体现化工行业对区域二氧化碳减排的贡献,本文将电力和热力消耗产生的间接排放也计算在内。此外,一些化工产品在生产活动中是吸碳的,例如尿素的生产,这部分被吸收的二氧化碳需要在计算中扣除。

2.2化工行业二氧化碳排放两阶段核算模型

为了能够得到化工行业全行业的二氧化碳排放量,同时能够综合考虑多种因素探索其二氧化碳减排潜力,本文针对化工行业特点构建了一种两阶段二氧化碳排放核算模型。模型中的主要参数名称及其含义见表1。

2.2.1基于全行业视角的核算方法

行业视角核算方法主要针对化工行业二氧化碳排放的历史和现状。本文所研究的化工行业包括国民经济行业分类中的化学原料及化学制品制造业、化学纤维制造业和橡胶制品业。化工行业是终端能源消费部门,通过能源平衡表,可以得到化工行业分能源品种的能源消耗量,根据2006年IPCC国家温室气体清单指南推荐的方法二,化工行业由燃料燃烧引起的二氧化碳排放量为:

部分产品在工业过程和产品使用中会产生二氧化碳排放,这部分排放量为:

此外,一些产品在生产过程中会吸收二氧化碳,被吸收的二氧化碳量为:

因此,基于行业视角核算的化工行业温室气体排放量为:

表1主要参数名称及其含义下载原表

表1主要参数名称及其含义

2.2.2基于产品视角的核算方法

化工行业产品种类虽多,但能耗相对集中在少数几种高耗能产品上,2007年,合成氨、乙烯、烧碱、纯碱、电石、甲醇这6种高耗能产品的能源消耗量占中国化工行业的54%[19]。现有的化工行业节能减排政策大部分集中在几种主要的高耗能产品上,因此从产品层面探讨化工行业的二氧化碳排放核算更具有现实意义。本文建立一种基于产品视角的核算方法来预测化工行业未来的二氧化碳排放。首先将化工行业由燃料燃烧引起的二氧化碳排放分为高耗能产品和其他产品两部分。某种高耗能产品的二氧化碳排放量为:

其中EMi为第i种高耗能产品单位产品的二氧化碳排放量,计算方法见式(6):

由于除主要耗能产品外的其他产品种类多,单个产品的能源消耗量不大,能源利用效率数据难以获得,所以难以从单位产品能耗的角度对这部分产品的二氧化碳排放进行核算,本文将这部分产品作为一个整体来考虑,引入单位产值的二氧化碳排放来解决这一问题。其他产品合计的二氧化碳排放量为:

工业过程和产品使用排放以及产品对二氧化碳的吸收同基于行业视角的核算方法。

因此,基于产品视角核算的化工行业温室气体排放量为:

2.3减排潜力情景分析模型

2.3.1减排潜力的定义

潜力就是存在于事物内部尚未显露出来的能力和力量。而减排潜力即存在于某一温室气体排放主体内尚未发掘的减排能力。为了能够量化表达,本文将减排潜力进一步定义为某一温室气体排放主体通过努力可以实现的减排量。

本文所关注的是化工行业未来的二氧化碳减排潜力,这里为化工行业设置多种不同的发展情景。不同情景下的行业内部结构、技术水平、所面临的宏观和微观政策各不相同,相应的会得到不同的二氧化碳排放路径。其中一种情景称之为BAU(BusinessAsUsual)情景,也叫照常发展情景,该情景下化工行业现有的能源消费和经济发展趋势与当前的发展趋势基本保持一致,沿用既有的节能减排政策和措施,不特别采取针对气候变化的对策。其他情景中化工行业分别针对气候变化做不同程度的努力。所谓化工行业的二氧化碳减排潜力,针对关注的指标不同,有两类不同的含义。一是绝对二氧化碳减排潜力,即目标年份中其他各情景的二氧化碳排放量相比BAU情景的减少量;二是相对二氧化碳减排潜力,即目标年份的二氧化碳排放强度相比基准年份降低的百分比。

通过同一年份各情景与BAU情景二氧化碳排放总量的横向比较,以及同一情景不同年份间二氧化碳排放强度的纵向比较,便可分别得到化工行业的绝对和相对二氧化碳减排潜力。

2.3.2情景分析模型

根据减排潜力的定义,y年份化工行业的绝对二氧化碳减排潜力为:

其中CEyBAU为y年份化工行业BAU情景的二氧化碳排放总量,CEly为y年份化工行业情景l下的二氧化碳排放总量。

相对二氧化碳减排潜力是针对二氧化碳排放强度设置的指标,化工行业的二氧化碳排放强度为:

,其中V为化工行业的工业增加值。由此可以得到,y年份化工行业的相对二氧化碳减排潜力为:

其中,为基准年化工行业的二氧化碳排放强度,CEIly为y年份化工行业在情景l下的二氧化碳排放强度。

3案例分析

3.1对象描述

本文应用上述模型方法以重庆市化工行业为例展开分析。化工行业是重庆市重要的支柱产业之一。2011年重庆市化工行业实现工业总产值902亿元,占重庆市工业总产值的比重达到7.6%。重庆市缺煤少油,但天然气资源丰富,重庆市是国内门类最齐全、产品最多,综合技术水平最高的天然气化工生产基地。但重庆市化工行业部分产品的工艺技术路线落后,产品结构有待调整优化。2009年重庆市化工行业的精细化率仅约20%,低于全国的30%-40%的平均水平,更低于发达国家的60%-70%的水平。

根据重庆市化工行业发展现状和趋势,本文选取了合成氨、烧碱、纯碱、甲醇、石油加工、乙烯和钛白粉这七种产品作为重庆市化工行业的主要耗能产品。其中,2005年合成氨、烧碱、纯碱、甲醇和钛白粉这五种产品合计的二氧化碳排放占化工行业总体排放的46.5%,而石油加工、乙烯将是重庆市化工行业“十二五”期间重点发展的石油化工产业链中的上游产品。本文利用前文所述的化工行业二氧化碳减排潜力分析模型,分析了重庆市化工行业分别到2015年和2020年的二氧化碳排放变化情况,并通过不同情景间的比较得到其减排潜力。

3.2情景设置

化工行业的能源消耗和二氧化碳排放主要由以下几方面因素决定:产业发展规模,产业内部结构,高耗能产品的产量,技术结构的调整,产品的技术进步率等。本文根据以上这些因素为重庆市化工行业设计了三个发展情景。

在这三种情景中,重庆化工行业未来经济发展变化的基本趋势保持一致。2005—2011年重庆市化学工业总产值年均增长29.5%,未来重庆化工行业将继续保持比较高的经济增长速度。根据《重庆市化工行业三年振兴规划》,到2015年重庆市化工行业总产值将达到2000亿元。由此本文设定2011-2015年重庆市化学工业总产值的年均增长率为23.0%,2015-2020年年均增长率降低到20.0%。与此不同的是,为了支持这种经济的发展需求,三种情景分别设定了不同的能源消费增长和利用模式,具体描述如下。

表2情景定性描述表下载原表

表2情景定性描述表

3.3数据来源及处理过程

重庆市化工行业总产值和增加值现状数据来自《重庆市统计年鉴》(2005-2012),化工行业未来总产值数据来自《重庆市化工行业三年振兴规划》;行业内部结构现状数据来自《重庆市化工行业统计公报》(2005-2010);化工行业分能源品种能源消耗量数据来自《中国能源统计年鉴》(2005-2012);各主要耗能产品产量数据来自《重庆市统计年鉴》(2005-2012);各主要高耗能产品综合能耗参照《中国化学工业年鉴》、《中国低碳发展报告2011~2012》、高耗能产品能耗限额标准(由国家标准化管理委员会制定和颁布)和《能效及可再生能源项目融资指导手册(2008)》,各主要高耗能产品未来所采用的工艺比例和能源消耗参考《2050中国能源和碳排放报告》中的设置,不同的情景将设置不同的技术参数;各种一次能源的二氧化碳排放因子以及各主要耗能产品工业过程与产品使用的排放因子均来自《省级温室气体清单编制指南》,电力的二氧化碳排放因子参考中国国家发改委每年公布的“中国区域电网基准线排放因子的公告”,蒸汽的二氧化碳排放因子通过重庆市的能源平衡表间接计算得到,单位尿素吸收的二氧化碳量用尿素的碳含量(12/60)乘以二氧化碳与碳的转换因子(44/12)得到。主要耗能产品的单价参照中国化工产品网的报价。

3.4结果分析

3.4.1绝对减排潜力

(1)行业总体排放情况

通过模拟计算,重庆市化工行业未来的二氧化碳排放量如下图1所示。

图1重庆化工行业各情景二氧化碳排放总量

图1重庆化工行业各情景二氧化碳排放总量下载原图

随着石油化工的引进,未来重庆化工行业将进入一个飞速发展的阶段。三个情景的二氧化碳排放总量都呈明显的上升趋势,但由于所采取的结构调整和技术改进措施不同,二氧化碳排放总量上升的幅度有所不同。

BAU情景中,由于精细化工比例不高,到2020年只为45%,技术进步率有限,二氧化碳排放上升幅度最大。2015年和2020年的二氧化碳排放量分别为2005年的7.5和13.3倍。

节能情景中,化工行业的精细化工比例相比BAU情景有所提高,到2020年达到50%,工艺设备的技术进步也更显著。2015和2020年二氧化碳排放总量比BAU情景分别低492万吨和1338万吨。

低碳情景中,化工行业的精细化比例进一步提高,到2020年达到55%左右,主要耗能产品的技术水平达到或接近国际先进水平。2015年和2020年二氧化碳排放总量比BAU情景分别低985万吨和2644万吨。

(2)主要耗能产品排放情况

2005年,合成氨、烧碱、纯碱、甲醇和钛白粉这五种主要耗能产品合计的二氧化碳排放量占重庆市化工行业总体二氧化碳排放的46.5%。未来由于化工行业产品结构的调整,高能耗产品产出占化工行业的比例越来越低,加上化工行业工艺技术的改善,尤其对主要耗能产品进行的技术改造,使得主要耗能产品的二氧化碳排放量在重庆化工行业二氧化碳排放总量中所占的比重越来越低,见下图2:

图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重

图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重下载原图

BAU情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重为29.7%,到2020年降低到18.4%。

节能情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重降至26.2%,到2020年进一步降低到16.7%。

低碳情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重为22.0%,到2020年进一步降低到15.2%。

虽然未来各情景主要耗能产品的二氧化碳排放占化工行业总体的比重有所下降,但仍在化工行业中占有重要的地位,未来在进行产品结构调整的同时,主要耗能产品的节能减排仍将是化工行业实现二氧化碳减排的重要方面。

3.4.2相对减排潜力

(1)行业总体相对减排潜力

重庆市化工行业未来的二氧化碳排放强度(万元GDP二氧化碳排放量)如下图3所示。

图3重庆化工行业各情景二氧化碳排放强度

图3重庆化工行业各情景二氧化碳排放强度下载原图

与排放总量显著上升形成鲜明对比的是,重庆化工行业的二氧化碳排放强度下降明显。原因在于重庆化工行业在未来十年将进入一个飞速发展的阶段,2020年重庆化工行业的增加值相比2005年将增加30倍。而由于对高耗能产品规模的控制,精细化工比例的大幅提高,化工行业内部结构得到不断优化;同时由于化工行业的能效水平不断提高,到2020年逐步接近或达到国际先进水平,使得三个情景中,2020年重庆化工行业的二氧化碳排放总量相比2005年分别只增加了13.3、11.6和9.9倍。从而导致三个情景化工行业的二氧化碳排放强度均有较大幅度的下降。各情景二氧化碳排放强度相比2005年降低幅度见下表3。

表3重庆化工行业各情景二氧化碳排放强度相比2005年降低百分比下载原表

表3重庆化工行业各情景二氧化碳排放强度相比2005年降低百分比

(2)主要耗能产品相对减排潜力

随着节能减排技术的不断改进和推广,未来重庆市化工行业各主要耗能产品的单位二氧化碳排放量将不断降低,由于篇幅有限,本文仅以合成氨为例进行分析。

重庆市合成氨均以天然气为原料,2005年重庆市大型天然气制合成氨的比重仅为3.8%。单位合成氨二氧化碳排放量为3.0吨。若扣除末端尿素固碳量,则2005年单位合成氨二氧化碳排放量为2.7吨。未来由于大型天然气制合成氨所占比重越来越高,使得重庆市未来单位合成氨二氧化碳排放显著降低,见下图4和图5。

图4单位合成氨二氧化碳排放量

图4单位合成氨二氧化碳排放量下载原图

图5单位合成氨二氧化碳净排放量(去除尿素固碳)

图5单位合成氨二氧化碳净排放量(去除尿素固碳)下载原图

BAU情景中,2015年大型天然气制合成氨的比重达到50%,合成氨二氧化碳排放总量占化工行业总排放的6.7%,单位合成氨二氧化碳排放降低到2.2吨;2020年大型天然气制合成氨的比重达到80%,合成氨二氧化碳排放只占化工行业总排放量的3.8%,单位合成氨二氧化碳排放进一步降低到1.8吨。

节能情景中,2015年大型天然气制合成氨的比重达到60%,合成氨二氧化碳排放总量占化工行业总排放的5.3%,单位合成氨二氧化碳排放降低到2.0吨;2020年大型天然气制合成氨的比重达到90%,合成氨二氧化碳排放总量占化工行业总排放的2.9%,单位合成氨二氧化碳排放进一步降低到1.6吨。若扣除末端尿素固碳量,2015年和2020年重庆市合成氨的二氧化碳排放量分别可减少117.3万吨和146.7万吨,单位合成氨二氧化碳排放分别降低到1.1吨和0.7吨。

低碳情景中,2015年大型天然气制合成氨的比重达到70%,合成氨二氧化碳排放总量占化工行业总排放的3.8%,单位合成氨二氧化碳排放降低到1.8吨;2020年大型天然气制合成氨的比重将达到100%,合成氨二氧化碳排放总量仅占化工行业总排放的2.3%,吨合成氨二氧化碳排放进一步降低到1.5吨。

4结语

本文结合化工行业产品种类繁多的特点,分别从行业和产品视角构建了一种两阶段二氧化碳排放核算模型;在此基础上,综合考虑化工行业的发展规模、结构调整、技术进步等因素,建立了化工行业二氧化碳减排潜力的情景分析方法。并利用此分析方法分析了重庆市化工行业的二氧化碳减排问题。结合实际案例,本文认为化工行业低碳转型应该遵循产品结构调整和技术进步并行的原则。在行业结构调整方面,中国各区域应该结合各自的发展水平,控制高耗能产品产能,有序的从粗加工向精细化工转变;在技术进步方面,重点应关注合成氨、烧碱、纯碱、电石、黄磷、乙烯等高耗能产品,同时随着精细化工的比重提升,应该重视精细化工的节能减排。

二氧化碳排放方式篇7

全球科学家已经基本上达成了一致共识,正在发生的全球气候变化,主要是由于人类活动引起,包括燃烧石化燃料。如果我们不及时制止,后果将会是灾难性的。而且,科学家们也一致呼吁,我们必须采取行动,制止气候剧变。

拯救地球,拯救人类。从我们的日常生活做起,从现在做起,从自身做起。

低碳生活进行时三:爱护森林,节约使用木、纸制用品

合理使用纸张和木材。不但保护森林,增加二氧化碳吸收量,而且减少了纸张和木材加工、运输过程中的能源消耗。

拒绝一次性筷子。中国每年生产约800亿双―次性筷子,首尾相接,可以从地球往返月球21次,可以铺满363个天安门广场。每年为生产一次性筷子减少森林蓄积200万立方米。如果全国减少10%的一次性筷子使用量,那么每年可相当于减少二氧化碳排放约10.3万吨。每回收3双一次性筷子,就可以生产一张A4纸。

重复使用教科书。如果全国每年有1/3的教科书得到循环使用,那么可减少耗纸约20万吨,节能26万吨标准煤,减排二氧化碳65万吨。

纸张双面打印、复印。这样既可以减少费用,又可以节能减排。只要全国10%的打印、复印做到这一点,那么每年可减少耗纸约5.1万吨,节能6.4万吨标准煤,相应减排二氧化碳16.4万吨。

提倡使用再生纸。使用原木为原料生产1吨纸,比生产1吨再生纸多耗能40%。使用1张再生纸可以节能约1.8克标准煤,相应减排二氧化碳4.7克。如果将全国2%的纸张使用改为再生纸,那么每年可节能约45.2万吨标准煤,减排二氧化碳116.4万吨。

选择电子邮件和书刊。使用电子书刊代替印刷书刊,用电子邮件代替纸质信函。用1封电子邮件代替1封纸质信函,可相应减排二氧化碳52.6克。如果全国1/3的纸质信函用电子邮件代替,那么每年可减少耗纸约3.9万吨,节能5万吨标准煤,减排二氧化碳12.9万吨。

用手帕代替纸巾。用手帕代替纸巾,每人每年可减少耗纸约0.17千克,节能0.2吨标准煤,相应减排二氧化碳0.57千克。

减少装修木材使用量。如果全国每年2000万户左右的家庭装修能做到少使用口1立方米装修用的木材,那么可节能约50万吨标准煤,减排二氧化碳129万吨。

减少使用过度包装。商店购物、过节送礼,使用过度包装既浪费资源又污染环境。减少使用1千克过度包装纸,可节能约1.3千克标准煤,相应减排二氧化碳3.5千克。如果全国每年减少10%的过度包装纸用量,那么可节能约120万吨标准煤,减排二氧化碳312万吨。

积极参加植树活动。1棵树1年可吸收二氧化碳18.3千克,相当于减少了等量二氧化碳的排放。如果全国3.9亿户家庭每年都栽种1棵树,那么每年可多吸收二氧化碳734万吨。

低碳生活进行时四:减缓气候变化,采用绿色的出行方式

尽量选择乘坐公共交通工具。在选购车辆时选择排量小的汽车。

每月少开一天车。如果每月少开一天车,一辆车每年可节油约44升,相应减排二氧化碳98千克。如果全国1248万辆私人轿车的车主都做到,每年可节油约5.54亿升,减排二氧化碳122万吨。以节能方式,骑自行车或步行代替驾车出行100公里,可以节油约9升;坐公交车代替自驾车出行100公里,可省油5/6。按以上方式节能出行200公里,每人可以减少汽油消耗16.7升,相应减排二化碳36.8千克。如果全国1248万辆私人轿车的车主都这么做,那么每年可以节油2.1亿升,减排二氧化碳46万吨。

选购小排量汽车。汽车耗油量通常随排气量上升而增加。排气量为1.3升的车与2.0升的车相比,每年可节油294升,相应减排二氧化碳647千克。如果全国每年新售出的轿车(约382.89万辆)排气量平均降低0.1升,那么可节油1.6亿升,减排二氧化碳35.4万吨。

低碳生活进行时五:减缓气候变化,节约洗浴用水

洗澡时,合理用水。给电热水器包裹隔热材料。有些电热水器因缺少隔热层而造成电的浪费。如果家用电热水器的外表面温度很高,不妨自己动手“修理”一下,包裹上一层隔热材料。这样,每台电热水器每年可节电约96度,相应减少二氧化碳排放92.5千克。如果全国有1000万台热水器能进行这种改造,那么每年可节电约9.6亿度,减排二氧化碳92.5万吨。

淋浴代替盆浴并控制洗浴时间。盆浴是极其耗水的洗浴方式,如果用淋浴代替,每人每次可节水170升,同时减少等量的污水排放,可节能3.1千克标准煤,相应减排二氧化碳8.1千克。如果全国1千万盆浴使用者能做到这一点,那么全国每年可节能约574万吨标准煤,减排二氧化碳1475万吨。

适当调低淋浴温度。适当将淋浴温度调低1℃,每人每次淋浴可相应减排二氧化碳35克。如果全国13亿人有20%这么做,每年可节能64.4万吨标准煤,减排二氧化碳165万吨。

洗澡用水及时关闭。洗澡时应该及时关闭自来水开关,以减少不必要的浪费。这样,每人每次可相应减排二氧化碳98克。如全国有3亿人这么做,每年可节能210万吨标准煤,减排二氧化碳536万吨。

使用节水的水龙头。使用感应节水龙头可比手动水龙头节水30%左右,每户每年可因此节能9.6千克标准煤,相应减排二氧化碳24.8千克。如果全国每年200万户家庭更换水龙头时都选用节水龙头,那么可节能2万吨标准煤,减排二氧化碳5万吨。

避免家庭用水跑、冒、滴、漏。一个没关紧的水龙头,在一个月内就能漏掉约2吨水,一年就漏掉24吨水,同时产生等量的污水排放。如果全国3.9亿户家庭用水时能杜绝这一现象,那么每年可节能340万吨标准煤,相应减排二氧化碳868万吨。

用盆接水洗菜。用盆接水洗菜代替直接冲洗,每户每年约可节水1.64吨,同时减少等量污水排放,相应减排二氧化碳0.74千克。如果全国1.8亿户城镇家庭都这么做,那么每年可节能5.1万吨标准煤,减少二氧化碳排放13.4万吨

二氧化碳排放方式篇8

“零碳”排放一小时体验

2009年3月28日,家住北京通州区的刘先生用DVD看完了电影《机器人总动员》,正好是晚上八点。他拉掉了家中的总闸,与朋友一起在黑暗中度过。

这一刻的黑暗,让从农村出来的刘先生回忆起儿时家中经常停电的情景。然而,时过境迁,这一次的体验,是他身体力行参加了“地球一小时”减少“碳排放”的活动。用他的话说,是“为环保做了一次小贡献”。

根据现有的资料计算,刘先生所做的贡献有:少看电视一小时,减少排碳0.096公斤;少听音响一小时,减少排碳0.034公斤;少开节能灯一小时,减少排碳0.011公斤;少用笔记本电脑一小时,减少排碳0.013公斤;冰箱停用一小时,减少排碳至少0.65公斤。

仔细算下来,刘先生这一小时的贡献总计减少排碳0.804公斤;若刘先生在一年里坚持每天减少一小时用电,他减少的排碳量为293.46公斤;如果在接下来的40年内,刘先生每天都坚持如此,到他70岁的时候,他一生减少的排碳量为11738.4公斤。

在3月28日这一天,刘先生并不是孤独的。据统计,共有来自横跨各个时区80多个国家和地区的近3000个城市超过10亿人参与了这项活动。这场全球上千个城市的“关灯接力”,从新西兰起,传递到悉尼、首尔、上海、北京、保定、香港、吉隆坡、马尼拉、新加坡、曼谷、雅加达、孟买和新德里。

在中国保定,这个城市在市长的带领下一起见证这个美丽的黑暗时刻。北京、上海的新世界商场、宜家、沃尔玛也关闭了景观照明灯,和它们的顾客一起,倡导绿色消费。大连、成都、武汉、深圳、佛山、顺德等地也纷纷掀起了关灯的热潮,越来越多的城市正在加入应对气候变化的行列。

这里,我们屡次提及的一个名字“碳排放”。“碳排放”是关于温室气体排放的一个总称或简称。温室气体中最主要的气体是二氧化碳,因此用碳(Carbon)一词作为代表。虽然并不准确,但作为让民众最快了解的方法就是简单地将“碳排放”理解为“二氧化碳排放”。

以目前的科学技术水平来看,多数科学家和政府承认温室气体已经并将继续为地球和人类带来灾难,碳排放量,已经成为本世纪初最重要的环保话题之一。

2007年,联合国开发计划署在北京的《2007-2008年人类发展报告》提出,目前,中国的能源消费和二氧化碳排放量仅次于美国,已经居全球第二位。到2015年,中国的人均碳排放量将达到5.2吨。预计到2025年前后,中国的二氧化碳排放量上升到全球第一位。

“如果发展中国家的每一个人都拥有像加拿大人或者美国人一样的碳排放量,我们需要九个地球来吸收这些污染。而现实是我们只有一个地球。”联合国驻华系统协调代表、联合国开发计划署驻华代表马和励说。

从报告里可以看到,到2020年,中国的平均气温将比1961年至1990年间高1.1到2摄氏度。如果目前的排放模式继续,中国三分之二的冰川,包括天山,将会在2060年前融化,而剩下的那三分之一也会在本世纪结束前消失。

据《关于我国碳排放问题的若干政策与建议》显示,1999-2002年间,我国二氧化碳排放的30%是由居民生活行为及满足这些行为的需求造成的。刘先生“零碳”排放一小时的体验,虽然不能从根本上改变这种现状,但终究是一个开端。

“烧碳人”的忏悔

“烧碳人”这个称呼是他参加了社区“少开一天车”的活动后,自愿这么称呼的,现在回顾起来,有些惭愧。他直言自己以前是名副其实的破坏自然“败家子”。

这话还得从2005年家里拆迁入住通州后说起。自从入住通州以后,他的生活发生了“翻天覆地”的改变:原来乘坐公共汽车上班的他改自驾车前往国贸附近上班。从此,刘先生的生活再也离不开他的座驾。不光用水用电不节制,连去菜市场买菜都要开车。

直到2008年北京奥运会开幕前夕北京实行单双号限行,刘先生的“车奴”生活才开始有了改变。刘先生说,其实政府倡导单双号限行,一开始自己还有些抵触。但当刘先生在社区网站看到了“碳排放计算器”之后,让他深受震动。“不算不知道,一算吓一跳。这几年我每年的平均碳排放量达到7吨,竟然是全国平均水平的3倍。”

一份报告的数据表明,截至2008年12月,中国机动车保有量达到了1.68亿辆;汽车保有量达到了6289.3万辆。民盟中央副主席、清华大学汽车工程系主任欧阳明预测,按目前的增长速度和油耗水平,我国汽车保有量到2020年将超过1.5亿辆,年耗油将突破2.5亿吨,如果不加以节制,碳排放量和空气污染将达到惊人的地步。

现在,刘先生每天能不开车的时候就不开车,“即使开车上下班,也会载上几个邻居,一路上有说有笑,聊得十分开心。”刘先生说,这么做其实还是受一个人的影响。刘先生介绍,他看到过一个报道,回龙观社区的王永已经坚持搭载邻居十年有余。粗略一算,十年的时间,如果按照每次搭3个人计算,王永已经搭载乘客近7000人。

“每次把邻居送回家,都会收到感谢的短信。其实环保没那么难,反而给我们都带来了意想不到的快乐,多载几个人,也能减少我的碳排放。”刘先生开起了玩笑。

努力做个“低碳人”

就在刘先生意识到践行“低碳”生活的前夕,联合国环境规划署在2008年6月了两份报告,为刘先生“消除碳依赖”提供了日常生活准则。报告指出,造成温室气体排放的一半是我们可以人为控制的,例如我们的驾车方式、航空旅行方式、房屋的能源以及取暖方式。只要采用气候友好的生活方式,这不会对我们的生活方式造成太大改变,更不用做出什么大的牺牲!

《改变生活方式:气候中和联合国指南》提出,选择非电动牙刷将避免近48克的二氧化碳排放量;用烤面包机烤面包,而不是用15分钟的烤箱,这样可以少排放近170克的二氧化碳;将火车而不是汽车作为日常上下班的工具,仅仅8公里的路程,就可减少1.7公斤的二氧化碳排放;在午休和下班后关掉你的电脑和平板显示器,将使这些设备造成的排放减少1/3;购买使用节水型淋浴喷头,不但每分钟会节省10升的水,而且也将洗3分钟热水澡造成的二氧化碳排放量大幅削减到一半。

现在,刘先生正努力按照这个指南,就如同文章开头那一幕“零碳”排放一小时体验一样,做个“低碳人”。他的生活已经不仅仅局限于少开一天车:刘先生的家中已经没有待机状态的电器,吃午饭的时候自带筷子,电脑不用的时候总会随时关机。刘先生的“低碳”生活已经扩展到了生活的方方面面。“虽然有时候还是经常忘记,但我努力让低碳成为我的一种习惯。”刘先生说。

“碳补偿”的尝试

在现实生活中,不光是人们开车排放了二氧化碳,其实每个人都会留下了自己的碳足迹,每项日常活动所消耗的能源、资源,都可以算清二氧化碳的排放量。

我们当然完全没必要“因噎废食”,回到原始社会。公众都能承担个人行动对气候影响的责任,自愿对自己的行为进行合理有效的补偿,这就是“碳补偿”。“碳补偿”是伴随着“碳排放”而产生的一个概念。就是公众捐资给专门机构,以植树或其他减排项目,抵消自己二氧化碳排放量的自愿行为。

根据专家测算,每亩人工林每年约吸收1.83吨二氧化碳。每1辆奥迪A4汽车1年排放20.2吨二氧化碳,约需11亩人工林来吸收,按照1亩人工林造林管护及监测成本250元,总成本为2750元。

2008年7月,在北京八达岭碳汇造林暨中国绿色碳基金北京专项启动仪式上,北京市民罗福来从国家林业局副局长祝列克手中接过一个绿黄色相间图案的车贴和一个购买5.6吨二氧化碳的凭证。他因此成为第一个使用“碳补偿”标志车贴的普通北京市民。

看着路边公交车站上李冰冰代言的“地球一小时”公益广告,刘先生说,他要和几个朋友进行“碳补偿”:在4月22日地球日那天去郊区种树,“坐公交车去”。

让我们一起回顾文章开头刘先生观看的动画片《机器人总动员》。电影中的故事发生在2700年,由于人类无度地破坏环境,地球此时已经成为漂浮在太空中的一个大垃圾球,人类不得已移居到太空船上。但愿那一天,人类不用住在太空船上……

链接:

二氧化碳计算器

二氧化碳计算器根据你的住房结构、你的个人能源消耗量、你的环保习惯,以及你的个人交通习惯, 对于控制你的二氧化碳排放量提供简单易行的指导。 二氧化碳排放量(简称碳排量)是代表一年里,家庭能源消耗,交通和废物处置的过程中排放到空气里的二氧化碳。

这个版本的二氧化碳计算器是根据家庭能源消耗的研究数据而制定的。它会告诉你可以怎样改变你在家中使用能源的方式。 你交通的选择也可能影响二氧化碳排放量。由于计算器不要求你具体地提供你消耗燃料或用电量的数据,所以,虽然它易于使用,但只可以作为一个大概的指南。

要使用二氧化碳计算器,请回答各个部分的问题。你选择答案的时候,你的二氧化碳排放量会显示在上面。

“百度”一下“二氧化碳计算器”,就会出现不少网站,方便计算你的碳排放数量。

一个都市人的碳足迹:

少烫一次衣服0.02kg

少洗热水澡0.42kg

少搭电梯上下一层楼0.218kg

少开冷气机一个小时.0.621kg

少看电视一小时0.096kg

少听收音机一小时0.006kg

少听音响一小时0.034kg

少开节能灯一小时0.011kg

少开钨丝灯泡一小时0.041kg

少开电扇一小时0.045kg

少用笔记本电脑一小时0.013kg

少开车一公里0.22kg

少骑摩托车一公里0.055kg

少用一吨水0.194kg

少用一立方米天然气2.1kg

少搭高速列车一公里0.05kg

少搭公交车一公里0.08kg

少使用一公斤木炭3.7kg

少吃一个快餐0.48kg

少吃一公斤牛肉36.4kg

上一篇:垃圾渗滤液的水质特点范文 下一篇:体育产业内涵范文