欧姆定律的作用范文

时间:2023-11-25 12:17:45

欧姆定律的作用篇1

关键词:初中物理;欧姆定律;应用

在电学的定律当中,欧姆定律是非常关键的一项,它贯穿于整个电学的始终。深入、系统和全面地理解欧姆定律是有效解决牵涉电学问题的基础和前提条件,针对欧姆定律的教学,教师需要做好如下的两个方面:

一、引导学生注重三个物理量之间的关系

“导体当中的电流,跟导体两端的电压成正比,跟导体的电阻成反比”,这就是欧姆定律。在此,教师应当引导学生注重三个物理量之间的关系。(1)欧姆定律强调电压与电阻决定了导体当中的电流,而不是由电源提供的电压,这跟电阻和电流是毫无关系的,电阻属于导体自身的性质,这跟电压和电流也是毫无关系的,因此是电压与电阻一起决定了电流。(2)注重计算关系。在公式:I= 当中,只要确定了任意的两个物理量,就可以对另外的一个物理量进行计算,这就需要引导学生熟练地掌握公式的变化。(3)注重这三个物理量一定要根据同一段的导体,比如,将R1与R2进行串联,接在30 V的电源上面,R1是10欧姆,经过R1的电流是0.2安,问R2的电阻与R2两端的电压是多少。教师在指导学生练习或者是讲解的时候,需要将电路图画出来,注明相应的物理量,突出需要注意的问题,以实现理想的教学效果。

二、拓展和应用欧姆定律

教师在讲解欧姆定律的时候,需要引导学生注重知识的应用和拓展。通过并、串联电路的电压和电流规律,对电阻规律进行推导,可以概括并联电路的规律是:(1)电流I=I1+I2;(2)电压U=U1=U2;(3)电阻 。可以概括串联电路的规律是:(1)电流I=I1=I2;(2)电压U=U1+U2;(3)电阻R=R1+R2,再应用电阻规律对一些实际问题进行解决。比如,教师在教学的过程中,可以提问学生下面的一些问题:为什么调节台灯的亮度按钮,灯泡能够变亮或者是变暗?为什么手电筒当中的电池使用时间长了之后,灯泡会变暗?这两个问题的原理是一样的吗?这样,学生就能够积极主动地探讨,纷纷发表自己的看法,课堂氛围顿时活跃起来。学生通过应用欧姆定律,对实际生活当中一些不好理解的问题进行了解释,从而调动了学生的学习兴趣。

总之,在初中物理教学当中,欧姆定律是非常重要的。教师一定要引起高度的重视,实施有效的教学策略,教授学生关于欧姆定律的知识。

参考文献:

杨小平.关于欧姆定律的两点辨析[J].物理通报,2009(03).

欧姆定律的作用篇2

高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的。教材在设计中意在从能量守恒的观点推导出闭合电路欧姆定律,从理论上推出路端电压随外电阻变化规律及断路短路现象,将实验放在学生思考与讨论之中。为了有效提高课堂教学质量和教学效果,我们特提出在《闭合电路欧姆定律》教学中创设“问题情境”的教学设计。

1.《闭合电路欧姆定律》教学目标分析

《闭合电路欧姆定律》教学目标主要有以下几个方面:一是,经进闭合电路欧姆定律的理论推导过程,体验能量转化和守恒定律在电路中的具体应用,培养学生推理能力;二是,了解路端电压与电流的U-I图像,培养学生利用图像方法分析电学问题的能力;三是,通过路端电压与负载的关系实验,培养学生利用实验探究物理规律的科学思路和方法;四是,利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。高中物理《闭合电路欧姆定律》教学主要是围绕定律的推导和定律的应用这两个问题展开的,其中涉及到了“电动势和内阻”、“用电势推导电压关系”、“焦耳定律”以及“欧姆定律”等诸多内容,这些内容之间具有一定的联系, 只要能够为其构建一个完善的体系,将这些知识有机的结合起来,就能够得出闭合电路的欧姆定律。以建构主义教学思想为基础,采用创设“问题情境”的教学设计,对于提高课堂教学有效性具有积极意义。

2.创设“问题情境”的教学设计具体实践

首先,通过问题的提出激发学生的求知欲。例如:将一个小灯泡接在已充电的电容器两极,另一个小灯泡在干电池两端,会观察到什么现象?并展示生活中的一些电源,演示手摇发电机使小灯泡发光和利用纽扣电池发声的音乐卡片实验,使学生进行思考这些现象出现的原因。通过观察学生会发现手摇发电机是将机械能转化成电能的过程,停止摇动就没有电能,灯泡就不会亮,而干电池、蓄电池是将化学能转化成电能,其化学能能够为干电池提供持续供电的功能,因此小灯泡能够持续发光。然后教师再在这个基础上提出问题:什么是电源的电动势?之后指出电源电动势的概念,帮助学生认识电源的正负极,并画出等效的电路图,利用学生已知的知识,如电势相当于高度,电势差则相当于高度差,这样学生就能够很好的对电势差以及电源电动势的内电压和外电压等概念进行理解了。

其次,在教学中可采用类比、启发、多媒体等多种方法进行教学。教师在课堂教学汇总可借助于多媒体播放flash课件, 借助于升降机举起的高度差或者儿童滑梯两端的高度差,帮助学生更好的理解电源电动势。另外还可以从能量的角度引导学生对其进行理解,例如小花去买衣服,共有100元,其中10元用于打车,90元用于买衣服,在这里,100元就相当于电源的电动势,车费相当于内电压(必要的无用功),买衣服的费用就相当于外电压(有用功),从而使学生掌握内外电压的本质属性。

最后,要通过实验来引导学生进行探究。物理学是一门以实验为基础的科学,观察和实验是提出问题的基础,在实验教学中应鼓励学生观察要细致人微,要善于从实验中发现问题,直观、形象的实验现象能激发学生思考。可以让学生通过实验来探究路端电压与外电阻(电流)的关系,得出路端电压与外电阻(电流)的关系,再从理论上进行分析。然后演示电动势分别为3V和9V(旧)的电源向一个灯泡供电实验,引发学生学习的兴趣,让学习进行讨论,解释现象原因。通过这种方式能够让学生很容易就明白流过灯泡的实际电流不仅与电源的电动势有关,还与电路中的总电阻有关,从而顺理成章的得出闭合电路欧姆定律,完成课堂教学任务。

3.总结语

物理学是一门实验科学,闭合电路欧姆定律是恒定电流一章的核心内容,具有承前启后的作用。本节课在教学过程中,以演示实验和学生探究实验为基础,来创设良好的教学情景,激发学生学习的兴趣,引发认知上的冲突,让学生分享成功的快乐,增强学习的信心和动力。另外,还要充分发挥多媒体课件的优势,变抽象为具体,化难为易,并突出教学重点、突破教学难点,从而大大提高课堂教学的有效性,促进学生创造能力和创新能力的发展。

欧姆定律的作用篇3

一、 课堂教学知识量大,学生难以吸收

初中物理“闭合电路欧姆定律”这一节教学内容有过多次变动,实验教材里的内容主要有两点:一是闭合电路欧姆定律;二是路端电压和负载的关系;此外还外加了路端电压和电流的关系。因为知识点较多,课堂教学量很大,所以课堂上时间紧,学生思考和参与实践都比较少,课堂上没有充分发挥学生的主体作用。从课后反馈的情况来看,学生掌握的情况并不是太好。

因此,针对这种情况,在该课的教学中,教师可以将这一节课的内容分成两节课来讲。第一节课讲闭合电路欧姆定律,在复习电动势、内阻等概念和规律的基础上,通过闭合电路欧姆定律的推导,引出闭合电路欧姆定律。然后对照比较简单的电路图,阐述能量转化的关系以及定律的使用范围等。紧接着通过例题的讲解和课堂训练,使学生对欧姆定律有个全面的认识。在引导学生理解电流和外电阻的关系时,教师演示实验,让学生有个直观的感受,然后再加上理论分析,让学生对物理知识的认知由感性到理性。第二节课讲路端电压和负载的关系,路端电压和电流的关系,在上一节欧姆定律的基础上,导出路端电压和负载的关系U=E1+rR,仍然是先进行演示实验,后进行理论分析,让学生对路端电压和负载的关系有一个从感性到理性的认识。最后讲路端电压和电流的关系U=E―IR,先观察实验,通过改变滑动变阻器的阻值,使电路中电流表和电压表的示数同时发生变化,学生会观察到电流变大时,路端电压变小,反之电流变小,路端电压变大,再利用公式进行分析,这样可给学生留下比较深的印象。

二、演示实验,可视性较差

在演示路端电压和负载(或电流)的关系时,学生要观察电流表、电压表指针的偏转情况,由于表盘小,颜色暗,放在桌面上又有些低,所以站在后面的同学看不清楚,影响了实验效果。针对这种情况,教师可以做如下改进。

在实验课堂上做演示实验时,一方面教师可以把仪器放在一个升降台上,把台子升起来,使全班学生都能看清楚;另一方面对有些演示实验,用投影仪把实验情况投影到大屏幕上,便于学生观察;此外,如果课堂人数较少,教师还可以将演示实验改为6组学生实验,真实性、可视性都会更好。这样不仅能够达到演示实验的预期效果,也能提高学生的动手能力和学习兴趣。

三、 学生活动少,主体作用没有很好体现

在“闭合电路欧姆定律”教学中,一方面是教学内容安排得比较多,为了在规定的时间内完成任务,必须按照设定好的节奏进行,课堂上并没有给学生留下较多思考和发散的时间;另一方面,教师思想保守,教学不够大胆,认为学生物理基础较差,害怕学生不发言,出现冷场情况,或者学生课堂发言不入主题而不好收场。针对这种情况,教师可以做如下改进。

对教学内容做了相应的调整以后,就可以给学生留有更多的思考时间和发表见解的机会,如果学生在课堂上不敢发言,教师可以鼓励、引导学生融入课堂教学活动,学生说错了正好可以纠正其错误,只要学生积极思考,积极参与,勇于发言,就要给予鼓励,这是培养学生良好思维习惯的大好时机。因为,在课堂教学中,任何层次的学生都可以与他互动起来,就看教师怎样引导,如何让学生互动。当然,在实验教学中,很多实验具有安全性和特殊操作性,对于这类实验教师要规范学生的实验行为。加强学生动手实验的目的就是为了充分发掘学生的好动性、探知性,让学生从自己的角度去思考问题,让学生在张扬个性的同时,拓展创新能力。

参考文献

[1]雷光锦.《闭合电路欧姆定律》教学设计[J].昭通师范高等专科学校学报,2011,1(25):111.

[2]谢建华.浅谈“闭合电路欧姆定律”的教学[J].内蒙古民族大学学报,2011,3(15):124-125.

[3]田维友.《闭合电路欧姆定律》教学设计[J].湖南中学物理,2009,9(15):68.

欧姆定律的作用篇4

欧姆定律在中考中的题型主要有填空题、选择题、图像题、问答题、实验探究题、计算题等。填空题、选择题、图像题主要考查欧姆定律的基础知识,实验探究题主要集中在探究电流与电压、电阻的关系及伏安法测电阻上,问答题一般在实际应用方面出题,计算题主要考查欧姆定律的计算。

重点考查:

1.探究实验:探究电流与电压、电阻的关系;伏安法测电阻及变形;

2.欧姆定律的意义及应用:对欧姆定律的理解及应用欧姆定律解决问题。

考查热点:

1.实验:探究电流与电压、电阻的关系;伏安法测电阻及变形;

2.理解:对欧姆定律的理解;

3.应用:应用欧姆定律分析动态电路、计算及解决实际问题。

考点1: 电流与电压、电阻的关系

例1:小华用如图所示的电路探究电流与电阻的关系。已知电源电压为6V,滑动变阻器R2的最大电阻为20Ω,电阻R1为l0Ω。实验过程中,将滑动变阻器滑片移到某一位置时,读出电阻R1两端电压为4V,并读出了电流表此时的示数。紧接着小华想更换与电压表并联的电阻再做两次实验,可供选择的电阻有l5Ω、30Ω、45Ω和60Ω各一个,为了保证实验成功,小华应选择的电阻是 Ω和 Ω。

解析:要探究电流与电阻的关系时,必须要控制电阻R1两端的电压一定,即R1两端电压U1=4V不变。要能保证实验成功,滑动变阻器两端电压控制为6V-4V=2V,R2中也就是电路中的最小电流为2V/20Ω=0.1A,此时定值电阻最大为U1/I=4V/0.1A=40Ω,故只能选择l5Ω、30Ω的电阻。

答案:15,30。

点拨: 探究电流与电阻的关系,要改变电阻大小,而必须控制其两端电压一定。

考点2: 欧姆定律表达式及其物理意义

例2:关于欧姆定律公式I= ■,下列说法正确的是( )。

A.导体的电阻与电压成正比,与电流成反比

B.导体两端的电压越大,其电阻越大

C.据欧姆定律公式变形可得R= ■,可见导体电阻大小与通过它的电流与它两端电压有关

D. 根导体电阻的大小等于加在它两端的电压与通过它的电流的比值

解析:I、U、R三者不能随意用正比、反比关系说明,R=U/I,它是电阻的计算式,而不是决定式,导体的电阻是导体本身的性质,与电流电压无关,只与导体的长度、材料、横截面积和温度有关,但可用电压与电流的比值求电阻。

答案:D。

点拨:理解欧姆定律中的“成反比”和“成正比”两个关系及知道决定电阻大小的因素。

考点3:动态电路分析

例3:如下图所示,电源电压不变.闭合S1后,再闭合S2,电流表的示数 ,电压表的示数 。(选填“变大”、“变小”或“不变”。)

解析:当闭合S1后,再闭合S2,此时R2被短路,电压表接到电源两端,因此电压表示数变大,此时电路中的总电阻减小,电流表示数也变大。

答案:变大,变大。

点拨:分清原来开关闭合时电路状态和两个开关同时闭合时电路的状态。

考点4:欧姆定律计算

例4:实验室有甲、乙两只灯泡,甲标有“15V 1.0A”字样,乙标有“10V 0.5A”字样。现把它们串联起来,则该串联电路两端允许加的最高电压为(不考虑温度对灯泡电阻的影响)( )。

A.25V B.35V C.15V D.12.5V

解析:甲灯的电阻是R甲=■=■=15Ω。乙灯的电阻R乙=■=■=20Ω,两灯串起来后,总电阻是15Ω+20Ω=30Ω,允许通过的最大电流是0.5A,所以最高电压是30Ω×0.5A=15V。

答案:C。

点拨:不能把两额定电压的值相加作为最高电压;串联应取小电流。

考点5:电阻的测量

例5:现有一个电池组,一个电流表,一个开关,一个已知电阻R0,导线若干,用上述器材测定待测电阻Rx的阻值,要求:①画出实验电路图;②简要写出实验步骤并用字母表示测量的物理量;③根据所测物理量写出待测阻值Rx的表达式。

解析:此题是伏安法测电阻的变形――双安法,在两表一器不全的情况下设计电路测电阻,因有电流表和定值电阻,故设计并联电路,测出两支路电流,利用电压相等,电流比等于电阻反比列关系式解答。答案不唯一,但基本原理是设计成并联电路。

答案:①电路图如下图;②实验步骤:(1)闭合开关S,读出电流表示数I0,(2)断开开关S,把电流表改接与Rx 串联,闭合开关S,读出电流表示数Ix;③表达式:Rx= I0 R0/Ix。

欧姆定律的作用篇5

(一)知识目标

1、理解伏安法测电阻的原理。

2、知道伏安法测电阻有内接和外接两种方法。

3、理解两种方法的误差原因,并能在实际中作出选择。

4、理解多用电表直流电流档、直流电压档、欧姆档的基本原理.

(二)能力目标

1、通过本课的测量误差分析,实际测量对比分析,培养学生动手操作能力和分析能力。

2、了解欧姆表的原理,学会使用欧姆表。

3、练习使用多用电表。

(三)情感目标

1、通过本课学生测量分析,器材选择判断,树立学生知识来源于实践,应用于实践的观点。

教学建议

1、伏安法测电阻这个实验学生在初中阶段已经学习过了,但是初中时只要求学生掌握测量基本原理,不需要学生考虑测量的误差以及引起误差的原因,也不需要学生掌握两种连接方法,而在高中阶段,本节重点是伏安法测电阻的两种接法,使学生知道在什么情况下应该用哪种接法,知道两种接法对测量值带来的不同测量结果,要求学生对两种连接方法所产生的误差来源有所了解。

在新课讲解中可以首先复习电阻定义,引出测量电阻的思路,结合具体实际,提出两种测量方式,分析误差原因,总结适用条件,通过测量分析,进一步巩固。通过器材分析选择,培养学生解决实际问题能力。

学生活动展开时应该在教师的引导下,分析两种测量电阻方法的误差原因及适用条件,利用自行测量进一步体会适用条件,通过练习题,进一步培养学生综合分析能力,器材选择判断能力,解决实际问题能力。本节是闭合电路欧姆定律的运用,具有联系实际的意义,为学生提供运用知识分析和解决问题的机会

2、教材要求了解欧姆表的原理,不要求进一步讲解欧姆表的刻度等问题.

通过对欧姆表原理的讲解,进一步加强学生使用欧姆表的能力,重点强调欧姆表在使用前调零的重要性和必要性,使学生分清欧姆表的各档位之间的转换,知道欧姆表内置电源的正负极与两个表笔之间的连接,会对欧姆表进行读数和测量。

3、对于程度不同的学生可以采取不同的教学方法,如果学生的程度较好,可以对电阻的测量进行展开教学。除了讲解以上两种电阻测量方法以外,还可以向学生介绍其他方法。比如替代法,补偿法,惠斯通电桥法,另有利用一个已知电阻和伏特表,一个已知电阻和安培表进行测量的方法。

教学设计示例

电阻的测量

一、教学目标

1、在物理知识方面的要求:

(1)了解用伏安法测电阻,知道伏安法测电阻有内接和外接两种方法,无论用“内接法”还是“外接法”,测出的阻值都有误差。

(2)懂得误差的产生是由于电压表的分流或电流表的分压作用造成的,并能在实际中根据给出的具体数据考虑选用什么规格的仪器。

(3)知道欧姆表测电阻的原理。

2、能力方面的要求:

(1)引导学生理解观察内容的真实性,鼓励学生寻查意外现象及异常现象所发生的原因。

(2)通过本课的测量误差分析,实际测量对比分析,培养学生动手操作能力和分析能力。

(3)培养学生细心操作、认真观察的习惯和分析实际问题的能力。

二、重点、难点分析

1、重点:使学生掌握引起测量误差的原因及减小误差的方法。

2、难点

(1)误差的相对性。

(2)根据给出的具体数据考虑选用什么规格的仪器来减小误差。

三、教具

电压表,电流表,欧姆表,测电阻的示教板。

四、主要教学过程

(-)引入新课

我们在初中时已经做过了“用电压表、电流表测电阻”的实验,现在,再做“伏安法测电阻”,是不是简单的重复呢?大家可以回想一下,当初做实验时的情况,把两个示数相除,再多次求平均即可,那你们有没有想过,这样得到的就是电阻的真实值吗?不是,原因在于电压表和电流表都不是理想的。

(二)教学过程

1、伏安法测电阻

我们已经了解了电流表并非无电阻,而电压表也并不是电阻无穷大,用这样的表去测量电阻,会对测量结果有什么样的影响?

(1)、原理:利用部分电路欧姆定律

我们利用电压表,电流表测量电阻值时,需把二者同时接入电路,否则无对应关系,没有了测量的意义,那么接入时无非两种接入方法,那么电路应如何?请同学们画出。

(2)、电路:

如果是理想情况,即时,两电路测量的数值应该是相同的。

提出问题,实际上两块表测量的是哪个研究对象的哪个值?测出来的数值与实际值有什么偏差,是偏大还是偏小?

外接法

是两端电压,是准确的,是过和的总电流,所以偏大。

偏小,是由于电压表的分流作用造成的。

实际测的是与的并联值,随,误差将越小。

内接法

是过的电流,是准确的,是加在与A上总电压,所以偏大。偏大,是由于电流表的分压作用造成的。

实际测的是与A的串联值,随,误差将越小。

进一步提问:为了提高测量精度,选择内、外接的原则是什么?

适用范围:;

[思考题]给你电源、电流计、已知电阻、开关和未知电阻各一只,如何设计测量电阻的电路。

方法:将A前后两次串入和各支路,测得电流强度为和,应有,则)

2、欧姆表测电阻

伏安法测电阻比较麻烦,实际应用时常用能直接读出电阻值的欧姆表来测电阻,关于欧姆表的构造,先请同学们看书。

以上欧姆表的结构示意图。借助电流表显示示数,测电阻不同于测电流、电压,表内本身含有电源,表盘上本身刻定的是电流值。试想,在两表笔间接入不同的电阻时,电路中的电流强度会随之发生改变,且一个阻值对应一个电流值,即指针偏在某一位置,所以可知:

(1)、原理:闭合电路欧姆定律

(2)、刻度的标定:

①两表笔短接,调,使,刻出“0”

②两表笔断开,指针不偏,刻出“∞”

③任意加上,,在指针偏转到的位置,刻出“”;

④若是正好是呢?应有,不难看出此时、,是此时的欧姆表内阻,也称中值电阻。

拿出一块欧姆表演示一下刚才的过程,同时说明:

①红、黑表笔的规定是为了与以往的电压表、电流表“+、-”极统一,即电流流入的为正极,电流流出的为负极。

②由于与并不是简单的反比关系,所以欧姆表的刻度是不均匀的,从有向左,刻度越来越密。

(3)、使用欧姆表的注意事项:(请同学回答并总结出)

①测电阻时,要使被测电阻同其它电路脱离开。

②欧姆表一般均有几档,而且使用时间长了,电池的E,r均要发生改变,所以在每次使用前及换挡后都要进行调零。

③每次使用后要把开关拨到OFF档或交流电压档的最大量程。

由此也可看出,利用欧姆表测电阻仅是粗测而已,在此基础上,应再利用伏安法测量才会比较准确。

3、课后小结

(1)、伏安法测电阻虽然比较准确,但是无论采用哪种连接方法均会给测量带来误差,这是测量方法本身存在的问题,应属系统误差。

欧姆定律的作用篇6

老师预先将全班同学五人一组,分若干组,每组桌面上放置仪器有:电源(6V)、滑动变阻器(0~20Ω)、定值电阻(20Ω)、阻值约数十Ω的定值电阻各一个;电流表、电压表各一只;开关、导线若干。

首先,引导学生回顾了电阻的相关知识:如电阻的定义、符号、单位,影响电阻大小的因素;滑动变阻器改变电路电阻的原理、连接方法、元件符号。

其次,引导学生回顾一个实验,即“伏安法”测电阻,复习“伏安法”测电阻的原理、电路图如图1所示。学生依据电路图连接实物图,着重指出实验注意事项,认真讨论滑动变阻器在电路中的作用。

2 合作探究

在此基础上,引导同学动手操作、实践测量,并依据欧姆定律,实际计算出Rx的阻值。

老师接着问:如果现实中缺少电流表,该如何测量未知电阻Rx呢?

学生马上想到“串联电路电流处处相等”,于是就想到如图2所示的设计方案。

学生代表解释说:如图2所示,先用电压表测出R0两端的电压U0;再测出Rx两端电压Ux。先依据I=U0/R0,计算出通过R0的电流I,由于R0与Rx串联,故通过R0的电流也就是通过Rx的电流,利用欧姆定律:

Rx=Ux/Ix=Ux/(U0/R0)=UxR0/U0。

待阐述完毕,各组根据该同学的讲述,选择桌面上的仪器,实际操作。教师适时点拨,利用滑动变阻器,再测量两组数据,实现多次测量求平均值从而减少误差,并与已测得的Rx比较,验证该办法的正确。

一阵忙碌之后,老师又问:若缺少电压表呢?

诸多学生马上想到:一定能利用“并联电路各支电压相等”来完成。

各组学生积极投入到设计、实验中。不一会儿,有学生发言道:

如图3所示,先用电流表测出通过R0的电流I0,再用电流表测出通过Rx的电流lx,由于R0与Rx并联,根据欧姆定律和并联电路的特点,推算出:Rx=Ux/Ix=U0/Ix=I0R0/Ix。

学生马上投入实践探究中,经实际测量并与已测Rx比较,该同学方法正确。

接着,教师见同学探究积极性高,乘胜追问道:上述方法2、3我们都进行了两次测量,并利用串、并联电路特点,利用欧姆定律测出了Rx的值。下面大家开动脑筋,能否仅连接一次,有效利用前面的经验也可以测量出Rx的值呢?

五组学生都积极投入探究之中,教师适时巡视点拨,一会儿工夫,探究成果出来了:

学生1:方法如图4所示,学了闭合时,Rx短路,电路仅有R0工作,故电流表此时的示数是通过R0的电流即I合。根据欧姆定律,电源电压为:U=I合R0;当S断开时,A的示数是通过Rx和R0的电流,即I断,故此时电源电压为

U′=I断(R0+Rx)。

由于前后电源电压不变,却

I合R0=I断(R0+Rx),所以

Rx=R0(I合-I断)/I断。

学生2:如图5所示,当开关S闭合时,电路中仅Rx工作,V的示数为Rx两端电压U合;当S断开时,R0与Rx串联,V的示数为Rx此时分得的电压U断,根据串联电路特点,此时R0分的电压为U0=U-U断,故通过R0的电流为:

I0=(U合-U断)/R0。

即此时通过Rx的电流,故Rx的值为:

Rx=U断R0/(U合-U断)。

之后,学生纷纷发言,各组开始展示自己的探究成果。

学生3:如图6所示,当开关S断开时,A的示数是通过R0的电流I断;S闭合时,R0与Rx并联,A的示数是Rx与R0的总电流I合;由于电源电压不变,根据并联电路特点与欧姆定律得:

Rx=U/(I合-I断)=R0I断/(I合-I断)。

学生4:如图7所示,由于R0为滑动变阻器,且阻值为0~20Ω,所以,当滑片P在a端时,A的示数是通过Rx的电流Ia;当滑片P滑到b端时,A的示数是通过Rx与R0的电流Ib;由于电源电压不变,故有:IaRx=Ib(Rx+R大)。

所以Rx=IbR大/Ia-Ib)。

学生5:如图8所示,开关闭合后,滑片P在a端时,V为Rx两端电压,即电源电压为Ua;当滑片P滑至b端时,由于Rx与R0串联,此时V仅为Rx分得的电压Ub,根据串联电路特点和欧姆定律得:Rx=UbR大/(Ua-Ub)。

老师总结说:电路计算题关键是根据电路中开关的断开和闭合正确判断电流的流向,从而得出用电器(电阻)的串、并联情况,然后根据串、并联电路特点和欧姆定律灵活解决电学有关计算问题。同学们,只要掌握方法,牢记规律一定没有解决不了的问题。

一节复习课,紧紧围绕“电阻”的相关知识,将学生分组探究,有效地复习了欧姆定律和串并联电路特点,并实际操作,反复验证,对本章节的“一定律”、“一规律”、“一实验”作了详尽回顾,既培养了学生自主探究,分组协作的能力,又激发了学生的创新意识,并体验了成功的幸福,为中考冲刺复习开辟了全新的面孔,很是值得同学和老师借鉴。

注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”

欧姆定律的作用篇7

分析多用电表中的欧姆档的内部构造以及工作原理时发现,根据闭合电路欧姆定律,当两表笔短接时,满偏电流额,则可看出半偏时,说明半偏时指针指向的中值就是此时欧姆表的内阻。我们对欧姆表读数时,读数结果是:倍率指针所指的数值,表盘中央的数值始终不变,那么当选不同倍率时,中值电阻不同,倍率越大,中值电阻越大,也就是说大倍率档位对应的内阻大,小倍率档位对应的内阻小。但是,若用欧姆表测同一定值电阻,发现用大倍率测的指针比用小倍率测的指针偏右,对多用电表而言指针偏右说明电流更大,那么大倍率测电阻时电流更大,根据闭合电路欧姆定律电流更大说明阻值更小,若按这个思路,用欧姆档大倍率内阻更小,这不是自相矛盾了吗?如何分析这个问题,就必须从误区来源、欧姆表的内阻和倍率进行分析。

一、误区来源

教材上对多用电表欧姆档的电路图画得非常简单,如图一这就是一个简单的串联电路,这个电路根据必定会得到若指针越偏右,即电流越大。说明内阻越小的结论,也就是上面提到的若同一个电阻用大倍率测电流越大,说明内阻越小的结论。但是,实际上并非如此,教材只想说明欧姆表的内部构造由电 图一

源、表头、电阻这三大部分组成,没有深入分析。事实上欧姆表的内部电路连接方法与教材上是有很大不同的,而我们按这个图分析肯定会陷入误区。

再比如有些资料上的多用电表的内部结构图,如图二 在这个电路图中1、2档位测电流,5、6档位测电压,3、4档位测电阻即欧姆表。从这个电路图看,欧姆档共用一个电源,4档比3档多一个电阻,那么也就是说4档内阻比3档内阻大,倍率就大,但若就像这样通过改变串联电阻来换倍率的话,出现一个问题,倍率越大,内阻越大,那么电流就越小,指针就越偏左,但实际上是换了大倍率后指针要偏右。所以这种电路也不合理。 图二

二、欧姆表的内阻和倍率

要想增大倍率的同时,增大内阻,用大倍率测同一电阻还要让指针偏右,即电流偏大,只能通过并联的方法。如图三

若将开关调至×1K倍率,此时是最高倍率基本电路,若将开关调至×100倍率,电路中并联接入R1电阻,使内阻减小,选择合适大小的R1可以让此时的总阻值为基本电路总阻值的,此时当两表笔短接时,总电流增大,但由于R1分流,使流经表头的电流基本没变,还是满偏电流。同理,将开关调至×10档位时,此事并上更小的电阻R2,使内阻更小,此时内阻为基本电路×1K档内阻的。这三个档位中一定是R1>R2>R3。当在不同倍率档位时短接表笔,并联电阻越小,总电阻就越小,总电流就越大,但同时并联的电阻分的电流越多,所以基本能使表头的电流处于满偏电流。

欧姆定律的作用篇8

一切的根源:欧盟的《汽车空调系统指令》

随着人们对于环保理念的重视日渐加深,汽车行业作为一个全球性的大产业自然需要以身作则、将环保的思想注入产品的方方面面,并与时俱进地更新相关零部件,以满足越来越严苛的环保规定。

2006年5月,为了防止全球气候变暖、达到京都协议中承诺的目标,统一欧洲内部市场,欧洲议会和欧盟理事会制定了关于汽车空调系统排放物的指令,要求各成员国以这个指令为指导,结合自己国内的情况,在2008年1月4日之前将其转变为本国的法律法规和政府规定,并开始实施。指令规定对于客车和轻型商用车将从2007年1月1日起逐步禁止汽车空调系统温室效应气体(俗称氟化气体)的排放,2016年结束。禁止的过程中将会分两个阶段:1. 2007年1月1日起,不能再允许汽车空调系统使用的氟化的温室气体的全球变暖指数超过150的欧共体标准或国家标准,除非空调系统的单个蒸发器系统泄漏率不超过每年40克氟化温室气体,或两个蒸发器的泄漏率不超过每年60克氟化的温室气体。2. 从2011年1月1日起所有新批准型号汽车将禁止使用含有全球变暖潜值(GWP)超过150氟化气体的空调系统,从2017年1月1日起所有新出厂的车辆将禁止使用含有全球变暖潜值(GWP)超过150氟化气体制冷剂的空调系统,违反规定的新车将不予注册、销售或使用。由于这一指令的强制性要求,原有的车载空调系统制冷剂R134a从2011年起禁止被新车使用,而到目前为止,根据欧盟所制定的新规,符合要求的制冷剂只有霍尼韦尔与杜邦生产的R1234yf制冷剂。一旦该制冷剂能全面取代原有的R134a,这两家公司将会垄断全球的汽车空调制冷剂市场。

起因:戴姆勒指出新型制冷剂易燃

2012年12月,路透社发表文章称,奔驰测试员模仿实际情况在奔驰B级旅行车的空调管路上制造了一点泄漏,制冷剂以及空调压缩机的机油混合物发生泄漏并喷洒至该车的涡轮增压发动机中,接触到发动机发热的表面后,液体立刻起火,并瞬间释放出刺激性的有毒气体。致命的氟化氢气体在挡风玻璃表面凝结,并在其表面上覆盖上一层乳白色的薄膜。该项测试最终确定这些被释放的R1234yf制冷剂在特定情况下将有可能被点燃,产生的火焰则可能扩散并引燃其余的可燃物。负责此次测试的戴姆勒高级工程师Stefan Geyer说:“这一发现难以置信,实验室最精细的仪器都没有测试出这样的危险,而我们的一次无意之举竟然发现该制冷剂可以导致汽车起火。”霍尼韦尔公司和杜邦公司的工程师对此均表示震惊。在过去两年中,他们花费了几百万美金对新产品做过测试,没有发现起火现象。根据奔驰调查结果显示,包括大众等13家主要汽车制造商也做过同样测试,并发现R1234yf在2/3的车辆正面撞击中十分易燃。基于这项测试结果,戴姆勒明确表示拒绝使用该制冷剂并宣布召回已经加注此制冷剂的车辆。

交锋:多个势力“大乱斗”

尽管对这些制造商的测试结果感到震惊,该制冷剂的生产厂商霍尼韦尔和杜邦依旧表示,戴姆勒的测试夸大了新型制冷剂的危险性。他们认为,汽车引擎盖下方有着很多其它易燃材料,戴姆勒拒绝使用新型环保制冷剂只是为了节约成本。然而在当时,至少有2家德国和奥地利试验单位已经就R1234yf的安全性提出了警告。

由于制冷剂争端在业界产生了不小的影响,今年年初,曾对新型制冷剂R1234yf进行过研究的美国汽车工程师协会(SAE)再次成立项目研究小组,旨在对该制冷剂在汽车中的使用进行再次研究。而他们在今年6月表示,戴姆勒所做的模拟碰撞测试是“不切实际的”。 他们在报告中指出,戴姆勒在测试中模拟了一种极易起火的极端条件,却忽略了在现实碰撞中会降低火灾发生概率的因素。因此,汽车因该制冷剂泄露而起火的概率微乎其微,属于可以被接受的范畴。SAE的报告甚至尖锐地指出,“人们因遇到飞机失事而致死的机率比由R1234yf泄露起火而致死的机率高两万倍”。

作为《汽车空调系统指令》的制定方,欧盟曾表示,R1234yf的使用将被强制执行,但并未提到对违反该条例的汽车制造商会有什么处罚。然而由于戴姆勒对制冷剂新规的不配合,欧盟也采取了相应的措施。据欧洲媒体今年3月的消息,欧盟文件表示,所有不符合欧盟法律的奔驰车型将被禁止在欧盟地区销售。与此同时,欧盟工业和企业委员会专员安东尼奥・塔亚尼(Antonio Tajani)公开宣称,如果欧盟成员国不遵守规定,他将对其进行侵权诉讼。

争端升级:欧洲国家纷纷禁售奔驰汽车

自从争端爆发,戴姆勒对欧盟的警告一直采取不配合的态度,令欧盟委员会及多个成员国十分不满。而在这种风口浪尖之际,德国环境署于今年2月份向欧盟提交议案,希望允许德国汽车制造商于2015年年底之前完成欧盟法律规定的汽车空调用制冷剂采用环保制冷剂的强制要求。而原本今年是欧盟《汽车空调系统指令》要求的开始淘汰R134a作为空调制冷剂在整车中使用的最后期限。德国环境署这一提案一旦被批准,意味着德国汽车制造商制冷剂替代的期限将被延长。很明显,虽然并未表明,但德国政府已经做出了支持本国汽车制造商的姿态,这更使得制冷剂争端愈演愈烈,直到7月份,这一争端终于达到了高潮。

今年的7月对于戴姆勒公司来说可谓“四面楚歌”。刚刚进入7月,欧盟就有消息称,由于制冷剂存在争议,法国已经采取行动,拒绝注册在6月12日以后生产的奔驰A系列、B系列和CLA车型。若法国政府这一行动得到法律许可,戴姆勒每年可能损失2.9万辆的销量,相当于全球销量的2%。欧盟工业事务主管安东尼奥・塔亚尼随后发表声明支持法国政府这一举动,并称目前欧洲市场上戴姆勒所生产的汽车并不符合标准。他向德国政府施压,要求其针对未能强制戴姆勒遵守欧盟规定而作出解释。欧盟的这一声明一时间造成了一边倒的态势,欧盟28个成员国代表在与欧盟汽车技术委员会的会谈中一致同意所有在欧盟销售的汽车必须采用新型制冷剂,奔驰新车遭到禁售的范围似乎将进一步扩大,戴姆勒一时间陷入了“四面楚歌”的境地。

然而戴姆勒也并非任人摆布的羔羊,该公司一名发言人表示,其所生产的汽车得到了德国机动车辆管理局(KBA)的批准,在整个欧洲地区是合法的,因此任何人都不应阻止这些车辆进行注册。法国国内也有一家法庭认为法国政府没有准确地遵循欧盟安全法规,并要求法国政府尽快解除针对奔驰新车的禁令。但法国政府仍未妥协,法国生态与交通部在26日了一项声明,声称根据欧盟相关法规,将继续禁止奔驰A级、B级和CLA级新车在法国进行销售,直到戴姆勒遵循欧盟法规,采用新型制冷剂。戴姆勒随即宣布将法国政府,并强硬表示,“(法国政府禁售奔驰新车)这种做法匪夷所思,并不能适用于这种情况,因为在欧洲的公路上几乎所有的新车和二手车都使用了安全的R134a制冷剂,而且会持续到2016年底”。

峰回路转:德国政府支持戴姆勒

正在戴姆勒四面楚歌深陷泥潭之时,事情又出现了转机。今年以来一直在为本国汽车制造商争取利益的德国政府在8月19日了官方声明,并向安东尼奥・塔亚尼递交了一份长达9页的意见说明,对戴姆勒表达了支持。德国交通部一名发言人表示:“德国政府认为戴姆勒的行为符合法律规定。”

随后不久,戴姆勒一方又获得了新的支持力量――丰田汽车于8月26日宣布,鉴于安全性方面的原因,该公司已经在欧洲地区弃用了新式R1234yf空调制冷剂,并重新启用了旧式的R134a制冷剂。而在此之前,戴姆勒是唯一一家拒绝逐步弃用旧式的R134a式制冷剂的车企。就此,丰田发言人表示,由于新式制冷剂在德国引发争端,考虑到顾客的安全性问题,该公司已经在三款车型中采用了旧式制冷剂,这三款车型分别为普锐斯Plus、GT86以及雷克萨斯GS。丰田称其对于新型制冷剂的安全性“很有信心”,但该公司不希望被拖入因制冷剂所引发的争端中。

最终,戴姆勒诉诸法律的行动得到了回报。8月底,法国最高行政法院做出判决,废除了法国政府针对多款梅赛德斯-奔驰新车的禁令,并下令相关机构恢复对上述奔驰车型进行注册。但值得注意的是,法国最高行政法院作出的判决只是临时性的,该法院还需针对该案进行审查,在未来数月中才会做出最终判决。据了解,尽管之前欧盟多个成员国均同意欧盟提出的所有在欧盟销售的汽车必须采用新型制冷剂的要求,但到目前为止法国是欧盟地区唯一一个对采用旧式制冷剂的新车禁令的国家。

戴姆勒针对上述判决声明称:“我们希望法国监管机构能够在48小时内重新开始对我们的车型进行注册,从而使欧洲所有汽车制造商之间的平衡得以恢复。”

评论:如此大动干戈的实质是什么?

今年以来,德国车企在德国政府的支持下不断挑战欧盟标准。从年初的2020年欧洲汽车二氧化碳排放标准草案到近期刚刚告一段落的制冷剂纠纷,无不见到德国车企与德国政府的活跃身影。他们与欧盟在这些问题上不惜大动干戈,难道真的是从环保和安全的方面考量吗?他们真的为了环保和安全,不惜禁售所造成的经济损失?答案或许并非如此。

今年上半年,默克尔成功阻止了欧盟对欧产车实施新的排放限制,并坚称严格的排放限制会严重危害德国的汽车工业、影响德国汽车行业的就业稳定。

当时德国所为就曾经被行业内斥为自私和无担当的表现。而在此之前,德国作为世界汽车强国之一,也曾经数度对欧盟尾气标准持强硬反对态度。德国每每在欧盟规定可能影响到本国豪车企业利益的时候百般寻求拖延之法,究其原因,自然是为了借拖延实施期限来保护本国车企,并为他们的相关新技术开发制造更多的缓冲时间。另外,近年来受欧债危机的冲击,德国本土的平均车龄已经达到8.7年新高,较经济危机之前多出整整一年。尽管德国车企纷纷使出浑身解数大规模开展海外业务以填补欧洲市场的下滑,但它们在本土汽车销售量迟迟未能提振,这必然令整个产业链承受了巨大的压力。因此,由于标准变严而导致的成本上升在这种背景下可谓是雪上加霜,自然会被在世界汽车行业拥有庞大势力的德国车企联合抵制。

而这一次制冷剂事件,德国需要打破的还有国外公司对制冷剂行业的垄断。事实上,制冷剂一事背后牵扯的是数十亿美元的制冷剂市场的商业版图。一旦新型制冷剂被欧盟成功强制执行,其制造厂商――美国霍尼韦尔和杜邦将垄断价值数十亿美金的制冷剂市场,德系车企对该制冷剂的抗拒和德国政府要求推迟新型制冷剂执行时间的做法正与德系车企在研发基于二氧化碳的空调系统有关。目前二氧化碳系统还未开发成功,德国方面自然不甘心制冷剂这块大蛋糕让美国公司独吞,便借奔驰的一次安全测试出现的安全隐患发难,以便为自己的二氧化碳空调系统的研发提供缓冲时间。

而法国政府在纠纷中“身先士卒”地对奔驰的新车禁令,其本质很可能是为了保护本国车企。众所周知,以标致雪铁龙为代表的法国车企近年来经济压力巨大,甚至濒临破产。法国政府则尽其所能积极对其进行援助,甚至提出为标致雪铁龙寻找投资银行。而德国车企此次对欧盟制冷剂规定的不配合态度对法国来说是正中下怀,一旦在法国成功禁售德系车,势必会给法国车企留出更多的市场份额,助其恢复元气。据了解,法国政府的这种保护主义也曾有先例:2012年,由于韩系车在法国本土市场销量猛增,法国政府就不顾贸易自由的基本准则,公开主张对现代汽车进行不公正行为调查,要求欧盟采取紧急措施、加大进口限制力度。

由此可见,制冷剂风波如此大动干戈,表面上看是出于环保、安全等方面的考量,而实际上各方势力均是为了自己的利益而战。德方是为了打破垄断和降低成本,法方则是为了保护本国车企。在这时,包括新型制冷剂在内的一系列新技术是否真的有安全隐患,对于他们来说已经无关紧要了。

链接

其它汽车厂商态度:

通用:坚持使用新型制冷剂

尽管已经知晓霍尼韦尔和杜邦两家供应商提供的R1234yf制冷剂在测试中发生起火,通用汽车坚持使用这款制冷剂。通用制冷剂工程师Curt Vincent表示:“我们对新型制冷剂进行了碰撞测试、计算机仿真以及热分析实验,并未观察到任何危险迹象。”Vincent与霍尼韦尔副总裁Terrence Hahn均指出,R1234yf制冷剂不存在安全性问题。

欧宝:新型制冷剂安全可靠

通用汽车旗下欧宝于今年4月表示,他们与德国技术监督协会(TüV Rheinland)进行合作,对一辆采用R1234yf制冷剂的Mokka车型进行了一项碰撞测试,该车的空调系统在碰撞中遭到损毁,并在发动机歧管附近发生泄漏,但并没有导致起火。据此,欧宝认为R1234yf制冷剂安全可靠,并表示近期内不会出现其它可以代替它的制冷剂。

大众:弃用霍尼韦尔制冷剂

据路透社报道,今年3月,大众决定仿效戴姆勒,拒绝使用由美国霍尼韦尔及杜邦公司开发的R1234yf新型空调制冷剂,并计划推出基于二氧化碳的新型空调系统。大众集团发言人拒绝透露该公司将于何时开始使用基于二氧化碳的空调系统,指出这一进度与竞争对手有关,并确定该公司今年不会推出基于二氧化碳的空调系统。

丰田:在欧洲市场重新启用旧式制冷剂

上一篇:初中地理教学活动设计范文 下一篇:旅游管理方法范文