神经网络研究现状范文

时间:2023-10-14 00:04:08

神经网络研究现状

神经网络研究现状篇1

【关键词】 新常态; 中小板上市公司; 财务风险; 财务预警; BP神经网络

中图分类号:F275.5 文献标识码:A 文章编号:1004-5937(2016)04-0055-04

一、引言

财务风险是每一个企业从初创、成熟直至衰退的整个过程都无法消除的,企业的存在始终伴随着财务风险。若企业长期存在过高的财务风险,不仅会增加企业的经营负担,也会使投资者失去信心,形成恶性循环,最终导致企业资金链断裂,财务危机爆发。因此,如何及早地发现企业的财务风险并合理应对,是企业良性运转的必要条件。

时下,新常态已是中国经济发展的现状与趋势。新常态下,中国经济增速放缓,企业面临转型升级,这一宏观环境可能会增加企业的财务风险。中小板上市公司是流通股本规模较小的公司,由于受到自身规模及管理水平的限制,对于经济新常态的宏观影响的反映更为敏感。因此,在经济新常态背景下建立适用于中小板企业的财务预警模型,使企业在财务危机到来之前预先察觉,并及时采取措施,是中小板上市公司健康发展过程中需要解决的重要问题。

二、概念界定及文献回顾

(一)经济新常态的含义和特点

经济新常态一词是主席2014年5月在河南考察时首次提出的,所谓“新”,就是有异于旧质;“常态”,就是时常发生的状态。新常态,就是一种不同于以往的、相对稳定的状态,经济新常态意味着中国经济已经进入了一个与过去三十多年高速增长期不同的新的阶段。

中国经济呈现新常态有以下主要特点,一是从高速增长转为中高速增长,经济增长更趋平稳;二是经济结构不断优化升级,发展前景更为稳定,第三产业消费需求正逐步成为主体,城乡区域差距逐渐缩小,居民收入占比上升,发展成果惠及更广民众;三是从要素驱动、投资驱动转向创新驱动。中国经济新常态揭示了中国经济增长率的新变化,体现了未来经济发展的新趋势。

(二)财务预警的含义

财务预警是指根据企业的经营状况和财务指标等因素的变化,对企业财务管理活动中存在的财务风险进行检测、诊断和报警的方法。具体而言,财务预警有广义和狭义之分。广义的财务预警是对所有可能引发企业财务风险的因素进行研究,只要发现企业存在潜在风险就会进行预警。而狭义的财务预警是企业财务危机预警,是对企业资金周转不利、出现经营亏损、甚至濒临破产等财务困境进行预警。本文采用广义的财务预警。

财务预警是企业的一种诊断工具,对企业的财务风险进行预测和诊断,防止潜在的财务风险演变成为财务危机,起防患未然的作用。企业的管理者可以通过财务预警及时发现企业财务管理活动中存在的风险隐患,从而及早采取措施,保障企业良性运转;企业的投资者可以通过财务预警了解企业的风险状况,合理做出投资决策;债权人可以利用财务预警对企业的风险状况进行判断,制定合理的信贷政策;政府监督部门可以通过财务预警有效地监督企业风险,从而对市场进行引导和控制;企业的关联方等其他利益相关者也可以通过财务预警来了解企业的财务风险,从而作出科学的决策。综上,有效的财务预警模型对于企业各利益相关者都具有重要的意义。

(三)财务预警模型

财务预警始于1932年Fitzpartrick的单变量破产预警研究,此后,Altman(1968)运用多元线性判定进行财务风险预警,建立了Z-Score模型,该模型对财务风险判断具有很高的准确率,至今仍有借鉴意义。多元线性判定模型要求破产和非破产两组企业样本自变量服从正态分布且协方差相等,为克服这些限制条件,Ohlson(1980)将多元逻辑回归模型应用于财务预警领域,通过条件概率来判断企业的财务风险。随着信息技术的发展,人工神经网络逐步被运用到企业财务预警中,Odom et al.(1990)运用神经网络对企业破产进行预测,结果发现利用神经网络构建的财务预警模型有较好的预测能力。人工神经网络模型克服了统计方法上的局限性,并且有较强的容错能力和纠错能力,因此被很多学者认可。

我国资本市场起步较晚,国内对于财务预警的研究也相对较晚,研究方法大多是从借鉴国外相关研究开始。周首华等(1996)最早对Altman的Z分数模型进行了改进,建立了F分数模型,此后,也有学者利用Z计分模型对我国不同行业的财务预警进行研究。朱洪婷(2015)、王宗胜等(2015)分别运用Logistic模型对我国制造业上市公司进行财务预警研究,具有较好的预测效果。在我国首次提出建立神经网络预警系统的是黄小原等(1995),研究结果表明基于神经网络的预警系统构造简洁,使用方便,具有广阔的应用前景。此后,一些学者分别将BP神经网络应用于我国不同行业上市公司的财务预警中,均得到了较高的预测准确率。

综上所述,国内外对财务预警的研究已经取得了不小的成果,而随着证券市场的不断发展和完善,对财务预警的研究也越来越受到国内外学者的重视。综合国内外学者的研究现状,目前研究主要存在着以下不足:一是相关研究主要集中在机械制造业、房地产行业等主板上市公司,而对于中小企业的研究较少;二是学者在财务预警的研究中,大多数将研究对象分为ST公司和非ST公司进行研究,而企业财务危机的形成是一个过程,简单地将企业分为此两类来表示其财务状况健康与否会略显粗糙,可能会降低预警效果。鉴于此,本文将中小板企业的财务风险作为研究对象,在新常态背景下利用神经网络对中小板企业的财务状况进行财务预警。

三、BP神经网络概述

根据以往学者的研究经验,利用BP神经网络进行财务预警不要求样本服从特定分布,克服了统计上的局限性,具有较强的容错性和纠错能力,并且对企业财务状况预测的准确率较高,具有较好的预警效果,因此本文采用BP神经网络进行财务预警。

BP神经网络是一种按照误差逆传播算法训练的多层前馈网络,是目前应用最为广泛的神经网络模型之一,由信息的正向传播和误差的反向传播两个过程组成。BP神经网络包括输入层、中间层和输出层,输入层的神经元负责接受外界的输入信息,并传递给中间层,中间层负责内部信息的处理,中间层的最后一个隐含层的信息经进一步处理后传递到输出层,完成一次信息的正向传播,由输出层向外界输出信息处理结果。当实际输出值与期望输出不符时,则进入误差的反向传播阶段。误差通过输出层,按照误差梯度下降的方式来修正各层的权值,向中间层、输入层逐层反向传播。如此循环往复的信息正向传播和误差的反向传播过程,是神经网络学习训练的过程,通过学习使各层权值不断调整,此循环过程一直进行到网络输出的误差减少到可以接受的水平,或者达到预先设定的学习次数为止。BP神经网络模型如图1所示。

四、实证研究

(一)样本选取与分类

1.样本的选择

财务风险预警的意义在于预测公司未来的财务风险,因此对于预警数据的选择既应当具有前瞻性,又要保证预测的准确度。鉴于此,本文利用2012年和2013年的财务指标分别来预测中小企业板上市公司2014年的财务状况。

本文研究的对象为中小企业板上市公司,截至2014年12月31日,在深圳证券交易所中小企业板块上市的公司共有732家。鉴于本文在构建模型时需要使用2012和2013年的数据,因此选择2012年12月31日及以前上市的公司,共计701家,剔除金融业(3家)和数据不完整的公司(3家),本文选取695家中小企业板上市公司作为研究样本。

2.样本的分类

在以往关于财务预警的研究中,研究者通常将研究对象分成两类,即根据公司是否被特殊处理来分类。这样的分类方式意味着研究中认为企业的财务状况只有健康和危机两种状态,而实际上企业财务风险的变化是一个渐变的过程。基于此,本文不采用将样本企业分为ST公司和非ST公司两类的配对分类方法,而是选择采用聚类分析方法对样本数据进行处理,将企业的财务状况分为从健康到重警五个等级。

根据中小板上市公司2014年的财务指标数据,运用SPSS软件进行两步聚类分析,将聚类数量分成五类,统计结果见表1。

本文将中小企业板上市公司的财务状况分成五个等级,分别为健康、良好、一般、轻警和重警,其中健康和良好状况下公司面临的财务风险较小,需要继续保持;处于一般状况下公司可能存在风险隐患,应给予适当的关注;处于轻警状况下公司存在一定的财务风险,公司应提高警惕,及时发现问题并采取适当措施;而处于重警状态下的公司可能即将面临或者已经面临财务危机,公司应当立即采取应对措施。

(二)指标确定

预警模型中选用哪些指标作为变量,对模型的预测效率和准确率有很大的影响,本文从企业的偿债能力、经营能力、盈利能力和发展能力四个方面来选取预警体系中的财务指标,构建财务预警指标体系,详见表2。

(三)参数确定

BP神经网络的参数影响了网络的运行效率和预测误差,不同性质的样本适用的函数也不尽相同。本文根据神经网络相关设计的理论经验和实际运行时的不断修正,最终选择以下参数构建适用于中小板上市公司财务预警的神经网络模型。本文构建的BP神经网络参数设置如表3所示。

(四)模型训练及检验

本文运用MATLAB程序对以上构建的BP神经网络进行训练和检验,将每一预测年度的695个样本分成学习样本和检验样本,其中由程序随机选择100个样本作为检验样本,而用其余的595个样本进行训练。

由于神经网络工具箱的自身特性,每一次初始化网络时都是随机的,并且在训练完成时的权值和阈值也不完全相同,网络的误差也会有所不同,因此每次运行网络得到的结果也会有所差异。为了避免网络运行结果的偶然性,本文将2012年和2013年两个预测年度的程序分别运行了20次,并对每一次的预测准确率进行了统计,统计结果见表4和表5。

根据表4及表5提供的神经网络模型运行结果统计可知,利用2012年的财务指标构建的预警模型,对检验样本检验的准确率基本上在64%至75%的区间浮动,20次运行的平均检验准确率为69.15%。利用2013年的财务指标构建的预警模型对检验样本财务状况预测的准确率在75%至82%的区间浮动,20次运行的平均检验准确率为78.2%。可见利用本文构建的BP神经网络对公司财务状况的预测具有较高的准确率,且利用2013年财务指标对2014年公司财务状况预测的准确率要高于利用2012年财务指标的预测准确率。

对比两个模型的预测情况,利用2013年财务指标预测的准确率高于2012年的预测准确率,在对公司的财务状况进行预测时,使用第(t-1)年的财务数据可以比使用第(t-2)年的财务数据得到更为准确的公司财务状况。而在实际运用该模型进行公司财务状况的预测时,可以分别使用预测年度前1年和前2年的财务指标来进行预测。即在提前2年时可以首先对公司2年后的财务状况进行预判,若预测出潜在风险可以提早予以关注,之后在提前1年时再次使用(t-1)年的预测模型对公司的预警进行修正,对公司财务状况进行更为准确的判断,因此两个模型结合使用可以达到更好的预警效果。

五、结论

本文运用BP神经网络对我国中小企业板上市公司财务状况预测的准确率较高,表明这一预测模型对中小板上市公司具有较好的预测效果,模型具备一定的预测能力。虽然每一次运行结果的准确率不尽相同,但是结果准确率的浮动水平基本维持在一个可以接受的区间内,因此该预测模型具有一定的稳定性。综上,本文构建的财务预警模型对企业的管理者、投资者和其他利益相关者都具有一定的参考意义。

在经济新常态背景下,我国中小板上市公司面临更多的机遇和挑战,管理者应当根据财务预警的结果,从以下方面防范企业的财务风险:第一,适应新常态的发展特征,重视企业的创新能力,逐步实现转型升级;第二,将对企业财务风险的检查和预警视为企业财务管理的常态化活动,提高中小板企业的财务管理水平;第三,完善中小板上市公司的治理结构,尽量避免家族式控股的状况,保证企业决策的科学性;第四,提高管理人员的风险意识,对于企业存在的潜在风险能够尽早发现,并及时采取应对措施。中小板上市公司只有科学地防范财务风险,才可以在经济新常态背景下实现健康、可持续的发展。

【参考文献】

[1] FITZPATRICK P. J. A Comparison of The Ratios of Successful Industrial Enterprises with Those of Failed Firms [J]. Certifies Public Accountant,1932(5):46-51.

[2] ALTMAN E I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy[J]. The Journal of Finance, 1968,23(4):589-609.

[3] OHLSON J A. Financial Ratios and the Probabilistic Prediction of Bankruptcy[J].Journal of Accounting Research,1980,18(1): 109-131.

[4] ODOM M D, SHARDA R. A Neural Network Model for Bankruptcy Prediction[C]. International Joint Conference on Neural Networks. IEEE, 1990:163-168.

[5] 周首华,杨济华,王平.论财务危机的预警分析――F分数模式[J].会计研究,1996(8):8-11.

[6] 朱洪婷. 基于Logistic模型的机械制造业上市公司财务预警应用与分析[J].时代金融,2015(2):228-229.

[7] 王宗胜,尚姣姣.我国制造业上市公司财务困境预警分析[J].统计与决策,2015(3):174-177.

[8] 黄小原,肖四汉,樊治平.神经网络预警系统及其应用[C].中国控制与决策学术年会,1995.

[9] 杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18.

[10] 张根明,向晓骥,孙敬宜.基于BP神经网络的制造业上市公司财务预警[J].山东工商学院学报,2006,20(4):56-61.

[11] 王新利, 陈敏. 基于偏最小二乘BP神经网络的财务预警研究――以农业上市公司为例[J]. 农业技术经济, 2011(11): 122-128.

神经网络研究现状篇2

人工神经网络属于一种对人脑结构及功能进行反映的数学抽象模型,对人的思维以及存储知识等功能进行模拟,从而完成某项工作。对于岩土工程来说,主要包括岩体和土体两项内容,且这两项内容均具备很高的复杂性。在岩土工程研究过程中,有必要借助人工神经网络,从而使岩土工程的研究得到有效进步发展。本文在分析人工神经网络的基础上,进一步对人工神经网络在岩土工程中的应用进行分析,以期为岩土工程研究的进展提供一些具有价值的参考建议。

关键词:

人工神经网络;岩土工程;应用

岩土工程的研究对象分为两大类:其一为岩体;其二为土体。岩土工程涉及的介质存在两大特性,即模糊性和随机性,这两大特性又统称为不确定性。近年来,不少学者在岩土工程研究过程中,提出了人工神经网络这一概念,即利用人工神经网络,将其应用到岩土工程研究领域当中,从而为深入了解岩土工程的某些介质特征奠定有效基础[1]。从岩土工程研究的优化及完善角度考虑,本文对“人工神经网络在岩土工程中的应用”进行分析意义重大。

1人工神经网络分析

1.1人工神经网络概念

对于人工神经网络来说,是一种对人脑结构与功能进行反映的数学抽象模型;主要通过数理策略,经信息处理,进一步对人脑神经网络构建某种简化模型,进一步采取大量神经元节点互连,从而形成复杂网络,最终完成人类思维及储存知识的能力的模拟。神经网络无需构建反映系统物理规律的数学模型,与别的方法比较,在噪声容忍度方面更强[2]。与此同时,还拥有很强的非线性映射功能,对于大量非结构性以及非精准性规律存在自适应能力,具备超强的计算能力,可完成信息的记忆以及相关知识的推理,且其自身还具备自主学习能力;与常规算法相比,优势、特点突出。

1.2BP网络简述

从研究现状来看,基于实际应用过程中,人工神经网络模型大多数采取BP网络。BP网络即指的是多层前馈网络,因多层前馈网络的训练通常使用误差反向传播算法,所以将BP网络称之为属于一类误差反向传播的多层前馈网络。对于其网络而言,具备输入节点和输出节点,同时还具备一层隐层节点与多层隐层节点,基于同层节点当中不存在耦合状态。其中的输入信号从输出层节点依次传过各个隐层节点,进一步传输至输出节点,每一层节点的输出只对下一层的节点输出产生影响。

2人工神经网络在岩土工程中的应用分析

在上述分析过程中,对人工神经网络的概念有一定的了解,由于其模型算法的优越性,可将其应用到岩土工程研究领域当中,从而为解决岩土工程问题提供有效凭据。从现状来看,人工神经网络在岩土工程中的应用主要体现在以下几大方面。

2.1在岩石力学工程中的应用

岩石力学工程是岩土工程中尤为重要的一部分,将神经网络应用到岩石力学工程当中,主要对岩石非线性系统加以识别,同时还能够为工程岩体分类提供有效帮助,此外在爆破效应预测方面也具备一定的应用价值。对于人工神经网络来说,存在从有限数据中获取系统近似关系的优良特性,而岩石当中的各项参数之间又存在很复杂的关系,并且难以获取完整的参数集。在这样的情况下,使用人工神经网络技术,便能够使岩石非线性系统识别问题得到有效解决[3]。此外,有研究者将岩石抗压强度、抗拉强度以及弹性能量指数等作为岩爆预测的评判指标,进一步对岩爆预测的神经网络模型进行构建,然后预测了岩爆的发生与烈度。通过计算得出结论:采取人工神经网络方法进行岩爆预测行之有效,值得采纳借鉴。

2.2在边坡工程中的应用

对于岩土工程中的边坡工程来说,边坡失稳状况突出,且是由多因素造成的,比如边坡失稳的地质形成条件、诱发因素的复杂性以及随机性等。与此同时,由于边坡动态监测技术从目前来看尚且不够成熟,因此边坡失稳在岩土工程研究领域一直视为是一项难以解决的工程项目。而对于神经网络方法来说,因其具备非常好的预测功能,因此相关岩土工程研究工作者通常会采取人工神经网络对岩土工程中的边坡工程问题进行求解。并且,从现有研究成果来看,将人工神经网络应用于岩土工程的成果突出。有学者对影响岩质边坡的稳定性的相关因素进行了分析,包括地形因素、岩体因素以及外部环境因素等,并构建了边坡稳定性分析的BP网络模型[4]。此外,还有学者将大量水电边坡工程的稳定状况作为学习训练样本及预测样本,对以人工神经网络技术的边坡岩体的稳定性进行了研究,结果显示,采取人工神经网络对边坡岩体的稳定状况进行预测可行性高。

2.3在基坑工程中的应用

采取人工神经网络对基坑变形进行预测主要分为两种情况:其一,对会影响基坑变形的各大因素及位移的神经网络模型加以构建;其二,把变形监测数据作为一个时间序列,以历史数据为依据,将系统演变规律查找出来,进一步完成系统未来发展趋势的分析及预测。有学者针对基坑变形利用了人工神经网络方法进行预测,结果表明:对前期实测结果加以应用,使用此方法能够对后续阶段的基坑变形实时预测出来,并且预测结果和实测结果保持一致性。此外,还有学者根据具体工程项目,采取人工神经网络,对深基坑施工中地下连续墙的位移进行了深入分析及预测,结果显示:使用人工神经网络方法进行分析及预测,在精准度上非常高,值得在深基坑工程相关预测项目中使用[5]。

2.4在地铁隧道工程中的应用

在地铁隧道施工过程中,存在地表变形和隧道围岩变形等状况,为了深入了解这些状况,可将人工神经网络应用其中。有学者在对地层的影响因素进行分析过程中,列出了可能的影响因素:盾构施工参数、盾构物理参数以及地质环境条件,进一步利用人工神经网络,构建了人工神经网络模型,进一步针对盾构施工期间的地层移动进行实时动态预测,最终得到了不错的预测成果。此外,还有学者对BP网络算法进行改进,然后对某地铁工程中隧道上方的地表变形进行了未来趋势预测,结果表明:和其他地表变形预测方法相比,人工神经网络预测方法的应用价值更为显著。

3结语

通过本文的探究,认识到基于人工神经网络模型的算法具备很高的优越性,由于岩土工程地质条件复杂,为了深入研究岩土工程,可将人工神经网络应用其中。结合现状研究成果可知,人工神经网络在岩石力学工程、边坡工程、基坑工程以及地铁隧道工程中均具备显著应用价值。例如:将人工神经网络应用于岩石力学工程当中,能够预测岩爆的发生与烈度;应用于边坡工程当中,能够边坡工程的稳定性进行精准预测;应用于基坑工程当中,实现对基坑工程变形的实时动态监测;应用于地铁隧道工程当中,能够进一步了解地铁工程中隧道上方的地表变形情况。

总而言之,人工神经网络在岩土工程中的应用价值高,值得相关工作者采纳应用。

作者:张洪飞 单位:山东正元建设工程有限责任公司

参考文献

[1]郑惠娜.章超桦.秦小明.肖秀春,等.人工神经网络在食品生物工程中的应用[J].食品工程,2012(01):16-19.

[2]邹义怀.江成玉.李春辉,等.人工神经网络在边坡稳定性预测中的应用[J].矿冶,2011(04):38-41.

[3]曹建智.张健.人工神经网络在白洋淀水质评价中的应用[J].电子技术与软件工程,2016(08):261-262.

[4]王祖顺.韩吉德.王春青,等.回归-Elman网络在矿坝变形预测中的应用[J].测绘工程,2016(01):39-42.

神经网络研究现状篇3

1 引言

神经网络是近年来得到广泛关注的一种非线性建模预报技术。它具有自组织、自学习、自适应和非线性处理、并行处理、信息分布存储、容错能力强等特性,对传统方法效果欠佳的预报领域有很强的吸引力。基于神经网络的非线性信息处理方法已应用于军事信息处理及现代武器装备系统的各个方面,并有可能成为未来集成智能化的军事电子信息处理系统的支撑技术。该技术在一些先进国家已部分形成了现实的战斗力。

船舶在波浪中航行,会受到风、浪和流的影响,因而将不可避免地发生摇荡运动。严重的摇荡会使船员工作效率下降、物品损坏、军舰的战斗力下降。如果能够预知未来一段时间船舶的运动情况,不仅有利于尽早采用先进控制算法控制舰载武器平台隔离船舶运动的影响,使其始终稳定瞄准目标,而且还可获得未来一个海浪周期内的船舶运动情况,以研究船载武器上层的控制策略,从而提高火力密度,因此,有必要研究在海浪中具有一定精度的海浪中船舶运动的短期预报。此外,如能有效准确地预报船舶的横摇运动,对于提高船舶的耐波性和适航性也有重要意义。

国内外学者也将神经网络用于船舶运动预报研究,但往往没有考虑实时性等实现问题,因而不能实用化。神经网络实现技术是神经网络研究的一个重要方面。神经网络实现可分为全硬件实现和软件实现两种。目前神经网络的实现还主要以软件模拟为主,由于现行的冯诺曼计算机体系结构不能实现并行计算,因而神经网络软件的实时应用还受到一定限制。

目前,一些著名集成电路制造公司如Intel、Mo-torola、松下、日立、富士通等均已推出自己的模拟或数字神经网络芯片,这些芯片无论在网络规模还是运行速度上都已接近实用化的程度,因而给神经网络应用的发展以极大的推动。由于舰载武器系统,需选用具有在片学习功能的神经网络芯片,即将网络训练所需的反馈电路及权值存储、计算和修正电路都集成在了一个芯片,因而可实现全硬件的、具有自学习能力的神经网络系统,也可以说,这是一种具有自适应能力的神经网络。

2 ZISC78的功能及工作原理

ZISC78是由IBM公司和Sillicon联合研制的一种低成本、在线学习、33MHz主频、CMOS型100脚LQFP封装的VLSI芯片,图1所示是ZISC78的引脚排列图。ZISC78的特点如下:

内含78个神经元;

采用并行结构,运行速度与神经元数量无关;

支持RBF/KNN算法;

内部可分为若干独立子网络;

采用链连接,扩展不受限制;

具有64字节宽度向量;

L1或LSUP范数可用于距离计算;

具有同步/异步工作模式。

2.1 ZISC78神经元结构

ZISC78采用的神经元结构如图2所示,该神经元有以下几种状态:

(1)休眠状态:神经网络初始化时,通常处于这种状态。

(2)准备学习状态:任何时侯,神经网络中的神经元都处于这种状态。

(3)委托状态:一个包含有原型和类型的神经元处于委托状态。

(4)激活状态:一个处于委托状态的神经元,通过评估,其输入矢量处于其影响域时,神经元就被激活而处于激活状态。

(5)退化状态:当一个神经元的原型处于其它神经元类型空间内,而大部分被其他神经元类型空间重叠时,这个神经元被宣布处于退化状态。

2.2 ZISC78神经网络结构

从图3所示的ZISC78神经网络结构可以看出,所有神经元均通过“片内通信总线”进行通信,以实现网络内所有神经元的“真正” 并行操作。“片内通信总线”允许若干个ZISC78芯片进行连接以扩大神经网络的规模,而这种操作不影响网络性能。

ZISC78片内有6 bit地址总线和16 bit数据总线,其中数据总线用于传输矢量数据、矢量类型、距离值和其它数据。

2.3 ZISC78的寄存器组

ZISC78使用两种寄存器:全局寄存器和神经元寄存器。全局寄存器用于存储与所有神经元有关的信息,每片仅有一组全局寄存器。全局寄存器组中的信息可被传送到所有处于准备学习状态和委托状态的神经元。神经元寄存器用于存储所属神经元的信息,该信息在训练学习操作中写入,在识别操作中读出。

2.4 ZISC78的操作

ZISC78的操作包括初始化、矢量数据传播、识别和分类等三部分。

初始化包括复位过程和清除过程。

矢量数据传播包括矢量数据输入过程和神经元距离计算过程。神经元距离就是输入矢量和神经元中存储的原型之间的范数。通常可选L1范数或Lsup范数:

其中,Xi为输入矢量数据,Xs为存贮的原型数据。

对于识别和分类,ZISC78提供有两种可选择的学习算法RBF和KNN。其中RBF是典型的径向基函数神经网络。在该RBF模式下,可输出识别、不确定或不认识的状态;KNN模式是RBF模式的限制形式,即在KNN模式下,新原型的影响域总被设为1,输出的是输入向量和存储原型之间的距离。需要指出的是,ZISC78具有自动增加或减小神经元个数以适应输入信号的分类和识别功能,神经元个数的最大值和最小值在全局寄存器组中设定。

2.5 ZISC78的组网

一个ZISC78芯片内可以通过寄存器操作定义若干个独立的网络。若干个ZISC78芯片通过层叠可以组成一个更大的神经网络,组网芯片数量没有限制,小于10个ZISC78组网时,甚至连电源中继器件也不需要。所以,ZISC78具有最大的灵活性,能够满足不同的需要。

3 仿真实例

为了验证ZISC78用于船舶运动实时预报的精度,本文对径向基函数神经网络预报进行了仿真,图4给出了基于径向基函数神经网络和船舶运动惯导实测信号预报的0.3秒(15步)误差曲线图。

通过以惯导实测数据ZHX_lg.dat为例预报0.3秒(15步)以后的船舶运动,作者运用相空间重构理论已经判断出本数据为非线性信号。

该仿真的最大预报误差方差为6.4666e-004,该数据可以满足战技指标。

4 结束语

本文根据船载武器系统的整体要求,结合船舶运动的特点研究了基于径向基函数神经网络芯片ZISC78在船舶运动实时预报方面的应用情况。仿真表明:这种方案预报精度高,且可进行较长期预报,能够满足船摇实时建模预报的要求,因而具有较高的实用价值。

神经网络研究现状篇4

关键词:灰色理论;神经网络;财务预警

中图分类号:F23

文献标识码:A

文章编号:1672―3198(2014)10―0134―01

1引言

随着我国的经济技术的不断发展,对于企业的财务预警也得到了更多人的重视,为了加强对企业的财务监管,做好内部控制工作,出现了大量的财务预警模型。根据国内已有的文献资料研究表明,迄今为止,财务预警模型研究涉及的模型类型极为丰富,经历了从单变量到多变量、从统计方法到非统计方法、从单一模式到混合模式的发展过程。基于上述考虑,本文运用灰系统理论中Verhulst模型结合BP神经网络模型构建出的预测模型,对四川省矿产资源类企业的财务状况作出及时有效的预警。

2模型建立

2.1指标选取

本文对以上16个指标中选取变量指标进行t检验和相关性检验相关性检验,以0.05作为t检验标准,去掉大于005的指标,以0.7作为各变量指标间多重共线性评估的标准,去掉具有高度共线的变量指标。

综合各种分析,本文最终选取每股净资产、每股收益、每股现金含量以及流动比率作为预警模型采用指标。

2.2样本的选取

为了更好的获取数据,本文选取两类样本,一类是用于训练BP神经网络的训练样本,这类样本选取了全国20家上市公司(其中20家为st企业,20家为非st)。另一类是预测样本,选取的是四川省6家矿产资源型上市公司(3家st公司和3家非st公司)。所有训练样本中st公司选择其被特殊处理的前一年的数据,即t-1年的数据。而预测样本中st公司的数据为其被特殊处理前一年即t-1年的前四个季度的数据,若数据缺失则向前顺延。

2.3Verhulst与BP神经网络预测模型

本文构建Verhulst与BP神经网络预测模型具体步骤如下:

建立一个三层BP神经网络模型模型,其中由于指标为四个,则输入层神经元个数由财务预警指标确定为4个,输出层神经元只有1个即企业财务状况的综合评分,由于输入神经元是4个,本文选取了9个节点。对于传递函数,其中中间层本文采用S型正切函数tansig,而输出层本文则采用了S型对数函数logsig,目的是满足输出值映射到0,1之间。对于BP神经网络的训练函数,本文采用trainlm函数,设置训练次数为1000次,训练目标为0.01。为了更好,更方便的实现其预警能力,本文利用训练样本训练BP神经网络。其中网络训练样本的输入即建模样本中上市公司的4种财务预警指标数据,目标输出即当前上市公司的实际财务状况。由于本文所选的上市公司分为ST与非ST两大类别,因此将其分为两个判别组,即安全与危机。为了便于建模,需要对安全与危机概念进行量化处理,建设各训练样本的目标输出为y,则有:当y=0,输入样本为ST公司;当y=1,输入样本为非ST公司。

利用灰系统理论中Verhulst模型对四川省6家矿产资源型企业的t-1年财务指标做动态预测。

将灰色系统模型动态预测的结果作为训练完毕的BP神经网络的输入,获得企业的综合评分,完成对企业的财务预警。如果输出值越接近0,表示财务危机程度越严重,即财务状况越危机;如果输出值越接近1,表示财务危机程度越轻微,即财务状况越健康。

3实证分析

3.1训练好的BP神经网络模型

通过训练样本训练出的BP神经网络。

建立一个三层BP神经网络模型模型,让训练样本训练这个网络,得出训练好的神经网络模型。通过Matlab 7.0 得出图1所示的结果。

从图1可以看出训练到第6步时,网络的目标误差达到要求。

3.2灰系统Verhulst模型的预测结果

利用灰系统理论中Verhulst模型对四川省6家矿产资源型企业的t-1年财务指标做动态预测。表2为预测的结果。

3.3预测样本的预警结果

将灰色模型的动态预测结果作为训练好的BP神经网络模型的输入,从而建立企业财务危机的动态预警模型,模型所得预测结果如表所示。

从结果可以看出,ST公司财务状况都被判定为危机,而非ST公司的财务状况都被判定为健康,无一错判。因此本文多建立的财务危机预警模型是有效的,可以对上市公司财务状况进行动态预警。

4结束语

Verhulst与BP神经网络预测模型可以实现财务指标的趋势预测实现财务危机的动态预警。实证分析显示该方法具有良好的预警效果,能够在实践中加以利用。

参考文献

[1]张玲.财务危机预警分析判别模型及其应用[J].预测,2000,(6).

[2]李帆,杜志涛,李玲娟.企业财务预警模型:理论回顾及其评论[J].管理评论,2011.

[3]秦小丽,田高良.基于灰色理论和神经网络的公司财务预警模型[J].统计与决策,2011,(16).

[4]童新安,魏巍.灰色VerhulstBP网络组合模型在预测中的应用研究[J].计算机工程与应用,2011,47(23).

神经网络研究现状篇5

关键词:人工神经网络 遗传算法 模拟退火算法 群集智能 蚁群算法 粒子群算

1 什么是智能算法

智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。

2 人工神经网络算法

“人工神经网络”(artificial neural network,简称ann)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家mcculloch、数学家pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,f rosenblatt、widrow和j. j .hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。

神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

2.1 人工神经网络的特点

人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。用神经网络的术语来说,即是人脑具有1014~1015个互相连接的存储潜力。虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。

人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。

由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。

正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。

人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。

2.2 几种典型神经网络简介

2.2.1 多层感知网络(误差逆传播神经网络)

在1986年以rumelhart和mccelland为首的科学家出版的《parallel distributed processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络,即:输入层i、隐含层(也称中间层)j和输出层k。相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接。

但bp网并不是十分的完善,它存在以下一些主要缺陷:学习收敛速度太慢、网络的学习记忆具有不稳定性,即:当给一个训练好的网提供新的学习记忆模式时,将使已有的连接权值被打乱,导致已记忆的学习模式的信息的消失。?

2.2.2 竞争型(kohonen)神经网络

它是基于人的视网膜及大脑皮层对剌激的反应而引出的。神经生物学的研究结果表明:生物视网膜中,有许多特定的细胞,对特定的图形(输入模式)比较敏感,并使得大脑皮层中的特定细胞产生大的兴奋,而其相邻的神经细胞的兴奋程度被抑制。对于某一个输入模式,通过竞争在输出层中只激活一个相应的输出神经元。许多输入模式,在输出层中将激活许多个神经元,从而形成一个反映输入数据的“特征图形”。竞争型神经网络是一种以无教师方式进行网络训练的网络。它通过自身训练,自动对输入模式进行分类。竞争型神经网络及其学习规则与其它类型的神经网络和学习规则相比,有其自己的鲜明特点。在网络结构上,它既不象阶层型神经网络那样各层神经元之间只有单向连接,也不象全连接型网络那样在网络结构上没有明显的层次界限。它一般是由输入层(模拟视网膜神经元)和竞争层(模拟大脑皮层神经元,也叫输出层)构成的两层网络。两层之间的各神经元实现双向全连接,而且网络中没有隐含层。有时竞争层各神经元之间还存在横向连接。竞争型神经网络的基本思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并且只将与获胜神经元有关的各连接权值进行修正,使之朝着更有利于它竞争的方向调整。神经网络工作时,对于某一输入模式,网络中与该模式最相近的学习输入模式相对应的竞争层神经元将有最大的输出值,即以竞争层获胜神经元来表示分类结果。这是通过竞争得以实现的,实际上也就是网络回忆联想的过程。

除了竞争的方法外,还有通过抑制手段获取胜利的方法,即网络竞争层各神经元抑制所有其它神经元对输入模式的响应机会,从而使自己“脱颖而出”,成为获胜神经元。除此之外还有一种称为侧抑制的方法,即每个神经元只抑制与自己邻近的神经元,而对远离自己的神经元不抑制。这种方法常常用于图象边缘处理,解决图象边缘的缺陷问题。

竞争型神经网络的缺点和不足:因为它仅以输出层中的单个神经元代表某一类模式。所以一旦输出层中的某个输出神经元损坏,则导致该神经元所代表的该模式信息全部丢失。

2.2.3 hopfield神经网络

1986年美国物理学家j.j.hopfield陆续发表几篇论文,提出了hopfield神经网络。他利用非线性动力学系统理论中的能量函数方法研究反馈人工神经网络的稳定性,并利用此方法建立求解优化计算问题的系统方程式。基本的hopfield神经网络是一个由非线性元件构成的全连接型单层反馈系统。

网络中的每一个神经元都将自己的输出通过连接权传送给所有其它神经元,同时又都接收所有其它神经元传递过来的信息。即:网络中的神经元t时刻的输出状态实际上间接地与自己的t-1时刻的输出状态有关。所以hopfield神经网络是一个反馈型的网络。其状态变化可以用差分方程来表征。反馈型网络的一个重要特点就是它具有稳定状态。当网络达到稳定状态的时候,也就是它的能量函数达到最小的时候。这里的能量函数不是物理意义上的能量函数,而是在表达形式上与物理意义上的能量概念一致,表征网络状态的变化趋势,并可以依据hopfield工作运行规则不断进行状态变化,最终能够达到的某个极小值的目标函数。网络收敛就是指能量函数达到极小值。如果把一个最优化问题的目标函数转换成网络的能量函数,把问题的变量对应于网络的状态,那么hopfield神经网络就能够用于解决优化组合问题。

对于同样结构的网络,当网络参数(指连接权值和阀值)有所变化时,网络能量函数的极小点(称为网络的稳定平衡点)的个数和极小值的大小也将变化。因此,可以把所需记忆的模式设计成某个确定网络状态的一个稳定平衡点。若网络有m个平衡点,则可以记忆m个记忆模式。

当网络从与记忆模式较靠近的某个初始状态(相当于发生了某些变形或含有某些噪声的记忆模式,也即:只提供了某个模式的部分信息)出发后,网络按hopfield工作运行规则进行状态更新,最后网络的状态将稳定在能量函数的极小点。这样就完成了由部分信息的联想过程。

hopfield神经网络的能量函数是朝着梯度减小的方向变化,但它仍然存在一个问题,那就是一旦能量函数陷入到局部极小值,它将不能自动跳出局部极小点,到达全局最小点,因而无法求得网络最优解。

3 遗传算法

遗传算法(genetic algorithms)是基于生物进化理论的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。它是在70年代初期由美国密执根(michigan)大学的霍兰(holland)教授发展起来的。1975年霍兰教授发表了第一本比较系统论述遗传算法的专著《自然系统与人工系统中的适应性》(《adaptation in natural and artificial systems》)。遗传算法最初被研究的出发点不是为专门解决最优化问题而设计的,它与进化策略、进化规划共同构成了进化算法的主要框架,都是为当时人工智能的发展服务的。迄今为止,遗传算法是进化算法中最广为人知的算法。

近几年来,遗传算法主要在复杂优化问题求解和工业工程领域应用方面,取得了一些令人信服的结果,所以引起了很多人的关注。在发展过程中,进化策略、进化规划和遗传算法之间差异越来越小。遗传算法成功的应用包括:作业调度与排序、可靠性设计、车辆路径选择与调度、成组技术、设备布置与分配、交通问题等等。

3.1 特点

遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为: ① 首先组成一组候选解; ② 依据某些适应性条件测算这些候选解的适应度; ③ 根据适应度保留某些候选解,放弃其他候选解; ④ 对保留的候选解进行某些操作,生成新的候选解。在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点:

(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,硬度大的个体具有较高的生存概率,并获得更适应环境的基因结构。

3.2 运用领域

前面描述是简单的遗传算法模型,可以在这一基本型上加以改进,使其在科学和工程领域得到广泛应用。下面列举了一些遗传算法的应用领域: ① 优化:遗传算法可用于各种优化问题。既包括数量优化问题,也包括组合优化问题。 ② 程序设计:遗传算法可以用于某些特殊任务的计算机程序设计。 ③ 机器学习:遗传算法可用于许多机器学习的应用,包括分类问题和预测问题等。 ④ 经济学:应用遗传算法对经济创新的过程建立模型,可以研究投标的策略,还可以建立市场竞争的模型。 ⑤ 免疫系统:应用遗传算法可以对自然界中免疫系统的多个方面建立模型,研究个体的生命过程中的突变现象以及发掘进化过程中的基因资源。 ⑥ 进化现象和学习现象:遗传算法可以用来研究个体是如何学习生存技巧的,一个物种的进化对其他物种会产生何种影响等等。 ⑦ 社会经济问题:遗传算法可以用来研究社会系统中的各种演化现象,例如在一个多主体系统中,协作与交流是如何演化出来的。

4 模拟退火算法

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据metropolis准则,粒子在温度t时趋于平衡的概率为e-δe/(kt),其中e为温度t时的内能,δe为其改变量,k为boltzmann常数。用固体退火模拟组合优化问题,将内能e模拟为目标函数值f ,温度t演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解计算目标函数差接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(cooling schedule)控制,包括控制参数的初值t及其衰减因子δt、每个t值时的迭代次数l和停止条件s。

5 群体(群集)智能(swarm intelligence)

受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群集智能的研究。群集智能(swarm intelligence)中的群体(swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解”。而所谓群集智能指的是“无智能的主体通过合作表现出智能行为的特性”。群集智能在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。

群集智能的特点和优点:群体中相互合作的个体是分布式的(distributed),这样更能够适应当前网络环境下的工作状态; 没有中心的控制与数据,这样的系统更具有鲁棒性(robust),不会由于某一个或者某几个个体的故障而影响整个问题的求解。可以不通过个体之间直接通信而是通过非直接通信(stimergy)进行合作,这样的系统具有更好的可扩充性(scalability)。由于系统中个体的增加而增加的系统的通信开销在这里十分小。系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性(simplicity)。因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。

在计算智能(computational intelligence)领域有两种基于群智能的算法,蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization),前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。

5.1 蚁群优化算法

受蚂蚁觅食时的通信机制的启发,90年代dorigo提出了蚁群优化算法(ant colony optimization,aco)来解决计算机算法学中经典的“货郎担问题”。如果有n个城市,需要对所有n个城市进行访问且只访问一次的最短距离。

在解决货郎担问题时,蚁群优化算法设计虚拟的“蚂蚁”将摸索不同路线,并留下会随时间逐渐消失的虚拟“信息素”。虚拟的“信息素”也会挥发,每只蚂蚁每次随机选择要走的路径,它们倾向于选择路径比较短的、信息素比较浓的路径。根据“信息素较浓的路线更近"的原则,即可选择出最佳路线。由于这个算法利用了正反馈机制,使得较短的路径能够有较大的机会得到选择,并且由于采用了概率算法,所以它能够不局限于局部最优解。

蚁群优化算法对于解决货郎担问题并不是目前最好的方法,但首先,它提出了一种解决货郎担问题的新思路;其次由于这种算法特有的解决方法,它已经被成功用于解决其他组合优化问题,例如图的着色(graph coloring)以及最短超串(shortest common supersequence)等问题。

5.2 粒子群优化算法

粒子群优化算法(pso)是一种进化计算技术(evolutionary computation),有eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。

pso同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。

同遗传算法比较,pso的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。

粒子群优化算法(pso) 也是起源对简单社会系统的模拟,最初设想是模拟鸟群觅食的过程,但后来发现pso是一种很好的优化工具。

5.2.1 算法介绍

pso模拟鸟群的捕食行为。一群鸟在随机搜索食物,在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

pso从这种模型中得到启示并用于解决优化问题。pso中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

pso初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pbest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gbest。另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。

5.2.2 pso算法过程

① 种群随机初始化。

② 对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关。

③ 种群根据适应值进行复制 。

④ 如果终止条件满足的话,就停止,否则转步骤 ② 。

从以上步骤,我们可以看到pso和遗传算法有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解。但是,pso没有遗传操作如交叉(crossover)和变异(mutation),而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。

与遗传算法比较,pso的信息共享机制是很不同的。在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。在pso中, 只有gbest (or lbest) 给出信息给其他的粒子, 这是单向的信息流动。整个搜索更新过程是跟随当前最优解的过程。与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。

现在已经有一些利用pso代替反向传播算法来训练神经网络的论文。研究表明pso 是一种很有潜力的神经网络算法,同时pso速度比较快而且可以得到比较好的结果。

6 展望

目前的智能计算研究水平暂时还很难使“智能机器”真正具备人类的常识,但智能计算将在21世纪蓬勃发展。不仅仅只是功能模仿要持有信息机理一致的观点。即人工脑与生物脑将不只是功能模仿,而是具有相同的特性。这两者的结合将开辟一个全新的领域,开辟很多新的研究方向。智能计算将探索智能的新概念,新理论,新方法和新技术,而这一切将在以后的发展中取得重大成就。

参考文献

[1] “ant-colony optimization algorithms(aco)”,

leanair4.mit.edu/docushare/dscgi/ds.py/get/file-378/rg_ee141_w8aco.pdf

[2 ] “swarm intelligence-what is it and why is it interesting”

神经网络研究现状篇6

(1.克拉玛依职业技术学院,新疆克拉玛依834000;2. 新疆农业大学机械交通学院,新疆乌鲁木齐830052)

摘要:学习向量量化(LVQ)神经网络可以通过监督学习完成对输入向量模式的准确分类,提出了一种基于改进的LVQ神经网络的发动机故障诊断方法,介绍了LVQ神经网络及其改进的学习算法。以长城哈佛GW2.8TC型发动机为实验对象,让发动机在怠速状况下,对发动机进行故障设置,利用金德KT600电脑故障诊断仪采集发动机数据流,运用改进的LVQ神经网络建立诊断模型,诊断结果表明,改进的LVQ神经网络能对发动机故障做出正确分类,准确率比较高。

关键词 :改进的LVQ神经网络;发动机;故障诊断;神经元

中图分类号:TN98?34 文献标识码:A 文章编号:1004?373X(2015)17?0107?03

0 引言

人工神经网络(Artificial Neural Networks,ANNs),也称为神经网络(NNs),是模拟生物神经网络进行信息处理的一种数学模型。它以对大脑的生理研究成果为基础,目的在于模拟大脑的某些机理与机制,实现一些特定的功能。由于人工神经网络具有联想记忆功能、优化计算能力以及其他的一些性质,所以人工神经网络具有较强的分类识别功能。学习向量量化(LVQ)神经网络是常用的一种神经网络,LVQ神经网络是一种有导师训练竞争层的方法,竞争层自动学习识别输入向量,并对输入向量分类。

本文以长城哈佛GW2.8TC 型发动机为例,运用LVQ神经网络对发动机进行故障诊断。

1 LVQ 神经网络

1.1 LVQ神经网络结构

LVQ神经网络是两层的网络结构,即竞争层和线性层。竞争层对输入向量进行学习分类,把竞争层的分类称为子分类;线性层根据用户的要求将竞争层的分类结果映射到目标分类结果中,把线性层的分类称为目标分类。LVQ神经网络结构如图1所示。

由图1可以看出,竞争层和线性层每一类别各有一个神经元,竞争层通过学习,可以得到S1类子分类结果;然后,线性层将S1类子分类结果再分成S2类目标分类结果(S1始终大于S2)。例如,假设竞争层的第1,2,3个神经元对输入空间的子分类所对应的线性层的目标分类为第2类,则竞争层的第1,2,3个神经元与线性层的第2个神经元的连接权将全部为1,而与其他线性层神经元的连接权全部为0,这样,当竞争层的第1,2,3 个神经元中的任意一个神经元在竞争中获胜时,线性层的第2个神经元将输出1。

1.2 LVQ神经网络学习算法的改进

LVQ 神经网络学习算法的改进是在LVQ1 的基础上进行的,它可以改善LVQ1学习结果的性能。改进的LVQ网络的学习过程与LVQ1类似,在应用LVQ1 进行学习后,再用改进的LVQ 网络进行学习,不同的是,改进的LVQ 是针对最接近输入向量的两个相邻神经元的权值进行的,其中一个神经元对应正确的分类模式,另一个神经元对应错误的分类模式,而输入向量位于定义的窗口时,有:

这样,如果给定两个很相近的输入向量,其中一个对应正确的分类,而另一个对应错误的分类,则改进的LVQ也能对靠的非常近,甚至对刚刚可分的模式进行正确地分类,从而提高分类结果的鲁棒性。

2 改进的LVQ 神经网络在发动机故障诊断中的应用

基于改进的LVQ神经网络在发动机中的故障诊断仿真步骤如下:

(1)让发动机处在怠速状态下,并对其进行故障设置,用电脑检测仪及其他设备测出发动机有无故障时的数据流参数;

(2)用改进的LVQ神经网络建立诊断模型,并用已知的样本数据训练网络;

(3)用训练好的网络对发动机进行故障诊断,并对训练结果进行分析。

2.1 发动机故障设置及采集样本

为了验证改进的LVQ神经网络在发动机故障诊断中的可行性,本文以长城哈佛GW2.8TC 型发动机为研究对象,让发动机在怠速状况下,对发动机进行故障设置,并利用金德KT600故障诊断仪采集发动机数据流。以发动机在正常怠速、油门踏板1接地线开路、凸轮轴传感器线路故障、1缸喷油器线路故障、冷却液温度传感器线路串联某阻值电阻和油门踏板插头开路六种状态下,采集发动机数据流,采集到的样本数据如表1所示。

2.2 程序设计

在Matlab环境中,调用LVQ神经网络工具箱,创建的代码如下:

在代码中,p 中数据为样本数据;t 中以1表示正常状态,以2表示故障状态;T=ind2vec(t)为使t 中的向量转换成学习向量量化网络使用的目标向量;net=newlvq()为创建LVQ 神经网络,神经元数目设置为20,0.17 和0.83,分别表示所采集的样本种类中正常状态和故障状态所占的比例,网络学习率设为0.5;net=init(net)为网络初始化,使其每次训练时权值都是随机的,这样可以达到预期的目标;网络训练步数设置为200;训练间隔设置为50;训练目标设置为0;网络设置好后,开始训练网络,运行程序后所得的网络训练状态图如图2所示,训练曲线如图3所示。

由图2和图3所示,网络训练只训练了8次,用时不到1 s,就达到了预期目标,可见,用改进的LVQ神经网络进行故障诊断,速度非常快,精确度很高。

3 结语

LVQ神经网络将监督学习和无监督学习结合起来,可以完成对输入向量模式的准确分类。本文以长城哈佛GW2.8TC 型发动机为实例,并对发动机进行故障设置,采集数据流,介绍了LVQ神经网络及其改进的学习算法,运用改进的LVQ神经网络建立诊断模型,诊断结果表明,改进的LVQ 神经网络能对发动机故障进行模式识别和准确分类,诊断结果完全正确,而且训练速度极快。改进的LVQ 神经网络具有较高的研究价值,该方法不仅可以运用到汽车诊断领域,而且可以运用到其他故障诊断领域。

参考文献

[1] 董长虹.神经网络与应用[M].北京:国防工业出版社,2005.[2] 史忠植.神经网络[M].北京:高等教育出版社,2009.

[3] 孙祥,徐流美,吴清.Matlab 7.0[M].北京:清华大学出版社,2005.

[4] 周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M].北京:清华大学出版社,2005.

[5] 张德丰.Matlab神经网络应用设计[M].北京:机械工业出版社,2009.

[6] 李国勇.智能控制及其Matlab实现[M].北京:电子工业出版社,2005.

[7] 舒宁,马洪超,孙和利.模式识别的理论与方法[M].武汉:武汉大学出版社,2004.

[8] 蒋宇,李志雄,唐铭.LVQ 神经网络在滚动轴承故障诊断中的应用研究[J].机械科学与技术,2011(3):408?411.

[9] 康健,左宪章,吴彩华,等.基于神经网络的柴油发动机故障预测研究[J].计算机测量与控制,2006(8):987?989.

神经网络研究现状篇7

关键词:人工神经网络;前馈神经网络;递归神经网络

中图分类号: TP183 文献标识码: A 文章编号: 1673-1069(2017)06-165-2

1 绪论

人工神经网络(Artificial Neural Network, ANN)是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。ANN通过模仿人类大脑的结构和功能,并借鉴生物神经科学的研究成果,实现对信息的处理,是一种新兴的交叉学科,不但推动了智能化计算的应用和发展,同时也为信息科学和神经生物学的研究方法带来革命性的变化,现已成功应用于脑科学,认知科学,模式识别,智能控制,计算机科学等多个领域。

在实际应用中,人工神经网络的选取通常包括适当的神经网络模型,合理的网络结构及快速有效的网络参数训练算法[1]。而针对某一特定网络模型,ANN的研究主要集中在结构的调整和训练算法的改进两个方面。所谓神经网络训练,也就是网络参数的学习和调整,是一个反复调节节点之间权值和阈值的过程,其学习可以分成三类,即有监督学习(Supervised learning),无监督学习(Unsupervised learning)和强化学习(Reinforcement learning),本文基于有监督和无监督学习进行分类,分别分析了前馈神经网络的特点及研究现状、递归神经网络的特点及研究现状。

2 前馈神经网络

2.1 前馈神经网络的特点

前馈神经网络的主要种类包括:感知器,线性神经网络,BP网络,径向基网络(RBF)等。其训练算法主要采用梯度下降法(Gradient descent),包括:误差反向传播算法(Back Propagation, BP),改进的BP算法,Levenberg-Marquardt法(LM)等。前馈神经网络具有学习简单,收敛较快等优点,因此在实际应用中,一般选取三层或以上的网络结构,神经网络的任意逼近定理指出,训练合适的多层前馈神经网络能够以任意精度逼近任意连续函数[2]。当网络结构已知的情况下,训练前馈神经网络的本质就是确定最优权值和阈值的方法,前馈神经网络的训练方式一般采用网络理想输出和实际输出的误差作为权值调整信号,解空间一般是多峰函数,由于训练过程中很容易陷入局部极小,因此网络的训练目标就是求解一组最优的权值,使误差达到最小。

传统的误差反向传播算法由于为网络的训练提供了简单而有效的实现途径,目前已成为研究和应用最广泛的有监督学习算法。但BP算法存在许多问题,例如在多层网络中收敛较慢且容易陷入局部极小,而且不能对多个网络进行同时训练[3]。改进的BP算法有多种形式,主要有通过附加动量和学习率的引入改进BP网络的自适应能力等方法,附加动量方法虽然在一定程度上改善了易陷入局部极小的问题,仍然存在收敛速度较慢的问题。调整学习率方法通过将学习率限制在一定范围内自动调整,虽然能够提高网络收敛速率,但对权值的改变和影响并不大,仍然导致误差较大问题。LM法具有训练时间段,收敛速度快的优点,但由于LM法需要计算误差的Jacobian矩阵,这是一个复杂的高维运算问题,需要占用大量系统存储空间,同时,LM也存在易陷入局部极小的问题[4、5]。

2.2 前馈神经网络的研究现状

在传统的神经网络训练过程中,预估校正法或者经验选择是最常被使用的网络结构选取方式[6]。在训练和优化网络权值和阈值过程中,训练算法在上述分析中已知,存在着容易陷入局部最优并且难以跳出的缺点,因此误差函数要求必须是连续可求导的函怠R虼耍这些权值训练方法常和进化算法等全局搜索算法相结合。使用全局搜索算法的全局搜索能力帮助网络跳出局部极小。在编码时采用实数编码,克服二进制编码受到编码串长度和精度的限制。例如,Sexton等人用一种改进的遗传算法优化前馈神经网路权值,结果表明改进的算法使网路训练精度得到显著提高[3]。Abbass通过将传统BP算法和差分进化算法相结合,提出了一种的新的权值训练方法并用于乳腺癌的预测实验,取得较好结果[7]。Iionen等人使用差分进化算法对前馈网络的权值进行训练和优化,将优化结果与其他几种基于梯度下降的网络训练方法比较,结果表明该方法具有较好的精度[8]。更多研究成果表明,将DE、PSO应用于网络权值在线训练和优化具有明显优势,这些改进方法也成功应用在了医学和工程技术等领域[9、10]。

此外,多种优化算法相结合也被证明是有效的。例如,在文献[11]中,作者提出了一种DE和LM相结合的神经网络快速训练方法。Liu等人提出一种粒子群算法(Particle Swarm Optimization, PSO)和共轭梯度算法相结合的混合算法,并将其应用于神经网络的权值优化[12]。在优化过程中,首先确定网络结构,然后使用PSO的全局搜索能力获得最后权值组合,最后使用传统方法进行权值微调,取得较好结果。在文献[13]中,作者采用相反方式将基本PSO和传统BP算法相结合使用,首先用BP算法对网络权值进行计算,然后使用PSO对网络结构固定的权值进行优化和改进。有学者提出一种具有控制参数自适应选择能力的差分进化算法,用于训练前馈网络,并将该方法用于奇偶分类实验中,将实验结果与几种其他方法进行比较得知,提出的方法具有更好的准确性。Epitropakis等人在训练离散Pi-Sigma神经网络实验中,采用一种分布式离散差分进化算法和分布式离散PSO算法相结合的方式。该离散网络仍然是一种多层前馈网络,在输出层,通过将神经元求积的方式获得输出,作者认为这种整数权值的离散方式更适合用于硬件实现[14]。在离散化权值方面,Bao等人的工作表明,通过采用一种可重建的动态差分进化算法,可以有效用于训练固定结构的网络权值。

在不同领域中,任务往往各不相同,因此针对不同的动态系统,不同类型的递归网络的也相继被提出并得到研究,使之成为人工智能界的研究热点之一。因其具有独特的优化能力,联想记忆功能,递归神经网络已引起AI界极大的研究和关注,并成功应用于多种模式识别问题,例如图像处理,声音辨识,信号处理等。

4 结论

本章分析和研究了神经网络的两种主要类型,前馈型和递归型,并对其特点进行了分析。前馈网络的主要特点是计算简单,运算方便,缺点是耗时较长,容易陷入局部极小;递归网络的特点是具有动力学特性和联想记忆特性,但使用时需要注意稳定性和收敛性,且对初始状态具有高度敏感特性。针对两类神经网络的特点,可通过多种优化相结合的方法解决收敛较慢且容易陷入局部极小问题,应用参数学习训练算法和网络结构优化算法对递归网络进行适当的调整,以应用于具体问题。

参 考 文 献

[1] N. Garcia-Pedrajas, C. Hervas-Martinez, J. Munoz-Perez. COVNET: a cooperative coevolutionary model for evolving artificial neural networks [J]. IEEE Transaction on Neural Networks, 2003, 14(3): 575-596.

[2] K. Hornick, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989, 2: 359-366.

[3] R.S. Sexton, R.S. Sriram, H. Etheridge. Improving decision effectiveness of artificial neural networks: a modified genetic algorithm approach [J]. Decis Sci, 2003, 34(3):421-442.

[4] 商琳, 王金根, 姚望舒,等. 一N基于多进化神经网络的分类方法[J]. 软件学报, 2005, 16(9): 1577-1583.

[5] S.U. Ahmed, M. Shahjahan, K. Murase. Injecting chaos in feedforward neural networks [J]. Neural Process Lett, 2011, 34(1): 87-100.

[6] Serkan Kiranyaz, Turker Ince, Alper Yildirim, et al. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization [J]. Neural Networks, 2009, 22: 1448-1462.

[7] H.A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis [J]. Artificial Intelligence in Medicine, 2002 , 25 (3) : 265-281.

[8] J. Iionen, J.K. Kamarainen, J. Lampinen. Differential Evolution Training Algorithm for Feed-forward Neural Networks [J]. Neural Processing Letters, 2003, 17(1) : 93-105.

[9] D.M. George, P.P. Vassilis, N.V. Michael. Neural network-based colonoscopic diagnosis using on-line learning and differential evolution [J]. Applied Soft Computing, 2004, (4) : 369-379.

[10] B. Liu, L. Wang, Y.H. Jin, et al. Designing neural networks using hybrid particle swarm optimization [C]. Lecture Notes in Computer Science. Berlin : Springer , 2005 : 391-397.

[11] 王刚, 高阳, 夏洁. 基于差异进化算法的人工神经网络快速训练研究 [J]. 管理学报, 2005, 2 (4) : 450-454.

[12] L. B. Liu, Y. J. Wang, D. Huang. Designing neural networks using PSO-based memetic algorithm [C]. in: Proceedings of the Fourth International Symposium on Neural Networks (ISNN’07), 2007, pp. 219-224.

[13] 李祚泳,汪嘉杨,郭淳. PSO算法优化BP网络的新方法及仿真实验[J]. 电子学报, 2008,36(11):2224-2228.

神经网络研究现状篇8

本文介绍了脑复杂网络的概念和技术现状,分析了功能性、结构性和因效性三种不同的脑网络连接类型,并讨论了基于时间序列的复杂脑网络的建模与分析方法。

【关键词】脑网络 时间序列 脑网络建模 复杂网络

人的大脑是世界上最复杂的系统,包括有百亿计的神经元。每一个处理信息的神经元通过大量的突触与其它神经元相连,神经元和突触共同组成了无比复杂的脑神经网络。人体自身及其与外界交互的所有信息,都由这个脑复杂网络来处理,它的效率和工作状态直接决定人的精神与健康状态。研究脑网络,首先要连接网络中的每一个节点即神经元之间的连接类型,并通过信息在网络中的传递和处理过程,建立起相应的分析模型,然后结合具体的采样数据,做模拟网络运行,以得到网络特征。

1 脑复杂网络及其常见的连接类型

当我们将脑神经网络当做常规意义上的拓扑网络来研究时,脑神经元即为网络中的节点,神经突触则相当于拓扑网络的边,而大脑做出的各种行为,均可以看作这个复杂的网络对各类信息的传递与处理的过程。这其中,神经元之间连接类型关注的重点,通过对常规拓扑网络的三种连接关系在脑复杂网络中的映射,了解脑网络的基础工作原理。

1.1 功能性脑网络(functional brain networks)

功能性脑网络是以分析神经元、神经集群、功能脑区等不同尺度上的脑功能单元之间的连接关系和统计趋势为主的无向网络,一般基于脑网络的各类功能信号,如电、磁、代谢信号等进行网络建模。在目前的脑网络研究领域,研究人员一般主要依据EEG/MEG/fMRI等方式进行建模并模拟研究脑功能性脑网络的特点。EEG和MEG的优点是时间分辨率较高,可以达到毫秒级,缺点是空间分辨率只能达到厘米级,达不到微观尺度上的分析要求。fMR主要反映生理代谢和血液方面的信息,它的空间分辨率达到了毫米级,但时间分辨率只有秒级。在未来,结合了EEG、MEG和fMRI的综合优点,进行多模态脑网络研究将能够更加全面地展现脑网络的特征。

1.2 结构性脑网络(anatomical brain networks)

结构性脑网络主要反映大脑的生理结构,以神经元之间的化学连接和电连接为主。在不同量级的空间尺度上,可以定义不同的结构性脑网络,如单个神经元之间复杂的联系通路即可视为一个“微网络”,而局部的神经通路单元则相当于一个局部的结构性网络,各个局部网络则又是组成脑网络基础节点,最终形成了一个层级结构十分复杂的结构性网络。大脑包括约100亿个神经元和数千倍的突触。用生理解剖的方法来分析神经元结构性连接网络,是目前研究脑网络最重要的方法之一。

1.3 因效性脑网络(effective brain networks)

因效性脑网络聚焦于脑网络中各节点之间的相互作用以及节点间信息流向。不同于无向连接的功能性脑网络。因效性脑网络重点研究网络中各种连接的方向性,着重分析各网络节点之间的因果关系以及统计趋势,并根据信息在节点之间的传播方向来分析脑网络的工作过程。因效性脑网络和功能性脑网络的差别在于如何量化测度网络节点之间的关系。一般采用因果关系分析来对网络连接强度进行量化。

2 时间序列脑网络构建与研究

构建脑网络可分3步,即定义节点、定义和测定结点之间的连接强度,选取合适的阈值并在连接强度大于闽值的节点之间建立连接边。一般通过稀疏性确定节点之间存在边的比率。例如:稀疏性值为0.2,即代表当前脑功能网络中存在边数占完全网络的边数的百分之二十。权值概率分布差异较大,难以避免网络存在散点或冗余的边,使得网络不满足连通性,并通过脑复杂网络的拓扑结构、递归图、度分布、模体分布等特征来揭示脑网络内在机制。

由测量时间序列构建复杂网络方法描述为,给定一个时间序列:

X(sΔt)(s=1,2,…,N)

其中Δt是单位采样时间,N为采样数据长度。假设此方法得到时间序列的延迟时间和最小嵌入维数均满足网络工作,利用延迟坐标嵌入方法得到一个多维向量:

Y={y1(k),y2(k),…,ym(k)}={z1(n),z2(n),…,zM(n)}={x(kΔt),x(kΔt+τ),…,x(kΔt+(m-1)τ)}

其中:n=1,2,…,m,m为嵌入维数;k=1,2,…,M,M=N-(m-1)τ/Δt为数据长度;τ为最佳时延。

为构建网络,分别计算两个向量点间的欧式距离得到一个M×M维的加权邻接矩阵D,给定两个向量点zi(n)和zj(n),向量点间的欧式距离定义为:

dij=||zi(n)-zj(n)||

其中:dij代表为矩阵中的i行j列元素。 rc为一个合适的阀值,即当dij>rc时,表示网络为无连接,反之则表示节点i与j间有连边存在,邻接矩阵A的元素aij为1。具体描述为:

aij =

由此我们就获得了一个初始的时间序列网络模型,通过对各类脑网络信号的获取和输入,即可以得到不同的脑网络拓扑的特性,受篇幅和环境条件所限,本文未进行更深入的实际分析,仅供参考。

3 结语

在脑复杂网络的研究中,结构性网络是物理基础,功能性网络、因效性网络是研究目标的抽象模型。脑复杂网络的研究不仅在了解人体自身机制、防治神经性疾病方面具有现实意义,同时对复杂计算机网络的研究与建设也有十分重要的指导意义。

参考文献

[1]唐孝威,黄秉宪.脑的四个功能系统学说[J].应用心理学,2003,02:3-5.

[2]郝崇清,王江,邓斌,魏熙乐.基于复杂网络的脑电信号分析[J].计算机应用研究,2012,29(9):3870-3872.

[3]蔡世民,洪磊,傅忠谦,周佩玲.基于复杂网络的脑电信号回归分析[J].中国科学技术大学学报,2011,41(4):331-337.

作者单位

上一篇:护理安全隐患排查及防范措施范文 下一篇:多目标优化设计范文