植物隐花色素及其分子调控机制

时间:2022-09-29 07:32:37

植物隐花色素及其分子调控机制

摘要:蓝光受体隐花色素(cryptochrome)对植物生长发育有重要的调节作用,其调节反应主要有去黄化、抑制下胚轴伸

>> 浅谈凤尾鸡冠花的花序及花色素苷积累 遮荫对元宝枫花色素苷含量的影响 超声波法提取“玫瑰香”葡萄皮渣中花色素的工艺研究 常见化妆品原料对杨梅叶原花色素的稳定性影响 脊椎动物毛囊黑色素细胞黑色素表达及其分子机制 植物的色素种类及其应用 生物素的分子作用机制及其对基因调控的影响 诱导植物次生代谢产物生成中胞内信号分子的作用机制及其互作 中药靶向治疗黑色素瘤的分子机制研究进展 植物耐热性的分子机制研究进展 植物抗病毒侵染的分子机制 植物种子萌发及活力的调控机制 三氧化二砷联合维A酸对恶性黑色素瘤细胞株A375的增殖、迁移能力影响及其可能分子机制的探讨 禾本科植物腋生分枝发生的分子与激素调控 从转录水平研究SATB1表达调控的分子机制 肿瘤细胞恶性增殖和细胞周期调控改变的分子机制 氮磷调控根系形态的分子机制研究进展 动物体型大小调控分子机制研究进展 我国科学家破解油菜粒重调控分子机制 自噬调控肾脏衰老的分子机制及中药的干预作用 常见问题解答 当前所在位置:)。

(2)CRY蛋白与COP1蛋白以直接或间接的方式相互作用来抑制COP1蛋白的E3连接酶活性,调节其它受光调节蛋白的降解,从而影响植物的生长。COP1蛋白能调控多种蛋白的降解,包括HY5/HYH、LAF1、HFR1、CRY2、phyA、CO和GI等蛋白[1]。

(3)SPA1蛋白参与隐花色素对COP1蛋白的调控。SPA1是COP1的正调控因子,隐花色素与SPA1蛋白相互作用,抑制了蓝光下依赖于COP1的转录蛋白的降解。Lian等[31]发现拟南芥隐花色素CRY1、CRY2在蓝光下均能直接与SPA1相互作用,黑暗下不能与SPA1相互作用。CRY1和CRY2与SPA1在拟南芥原生质体和洋葱表皮细胞核内均发生共定位。免疫共沉淀(Co-IP)试验证明,拟南芥CRY1与SPA1只能在蓝光下产生相互作用,而在黑暗处理、红光和远红光下都不能产生相互作用。通过对cry1/spa1/spa2/spa3/spa4五突变体、cry2/spa1/spa2/spa3和cry2/spa1/spa3/spa4四突变体的遗传分析,发现SPA1、SPA2、SPA3和SPA4在遗传上位于CRY1和CRY2的下游调控光形态建成、气孔发育和光周期开花时间。蓝光诱导的CRY1-SPA1互作能抑制COP1与SPA1的结合,促进COP1-SPA1复合体解离,导致COP1活性下降,其底物HY5蛋白积累增多,最终促进光形态建成。Zuo等[32]证实拟南芥CRY2与COP1互作蛋白SPA1发生了依赖于蓝光的直接相互作用。SPA1在蓝光照射条件下可抑制开花时间调控因子CONSTANS(CO)的COP1蛋白质水解,蓝光依赖的CRY2-SPA1互作促进CRY2-COP1互作。

3.4CIB1蛋白

CIB1蛋白(CRY-interacting bHLH1)是一种bHLH蛋白,能促进植物开花,其功能依赖于隐花色素。CRY2蛋白在蓝光下抑制CO蛋白的降解,从而调节植物开花,这种调控作用受CRY2对COP1调节的影响。近年来的研究结果表明,CRY2蛋白与CIB1蛋白相互作用直接调节FT(成花素)的表达;也可以与COP1、CO等蛋白形成驮拥牡鞍赘春咸澹共同调控植物开花。CRY2-COP1-CO-FT和CRY2-CIB1-FT的信号转导途径相交汇[33]。

3.5PIF蛋白

转录因子PIF(phytochrome interacting factor)是一种bHLH蛋白。以往研究表明,黑暗中PIF蛋白活性高,能促进细胞伸长相关基因的表达,引起下胚轴伸长;在红光/远红光下,光敏色素与PIF结合,促进PIF蛋白的降解,进而解除了PIF促进细胞伸长的作用。2016年初,美国索克研究所(Salk Institute for Biological Studies)的Joanne Chory实验室、中国科学院上海生命科学研究院的刘宏涛实验室分别在《细胞》、《美国科学院院报》上公布了各自新的研究结果:蓝光也通过PIF来调控植物下胚轴伸长[34-36]。

Casal等[34]发现,低光照度蓝光照射下,植物蓝光受体隐花色素(CRY1/CRY2)能与转录因子PIF直接结合,调控PIF的蛋白活性。借助多种突变体,包括pif4、pif5、pif7、pif1/pif3/pif4/pif5、cry1、cry1/pif4和cry1/pif4/pif5突变体,研究了PIF在低光照度蓝光下的生物学功能,结果表明:在低光照度蓝光照射下,PIF4、PIF5作用于隐花色素下游基因,介导拟南芥下胚轴伸长生长。通过免疫印迹(immunolotting)、免疫共沉淀(co-immunoprecipitation)试验证明了PIF4和PIF5能直接与CRY1、CRY2相互作用。转录组分析结果表明,pif4/pif5突变体差异表达的基因主要与细胞壁修饰、细胞壁发生、细胞生长密切关联。PIF4/PIF5与CRY2处于同一个基因组位点,CRY2能与PIF4/PIF5的转录因子结合来调控低光照度蓝光下拟南芥下胚轴伸长生长。以上结果说明,低光照度蓝光下,隐花色素能直接与PIF相互作用来调控植物的生长发育。

Ma等[35]发现,蓝光抑制温度升高引起的下胚轴伸长,这一过程依赖于CRY1。CRY1对温度响应至关重要,cry1缺失突变体对温度升高敏感,下胚轴伸长显著;CRY1过表达,转基因植株对温度变化不敏感。在蓝光照射下,CRY1与PIF4结合能调控PIF4在高温条件下的转录活性,增强生长素合成基因YUC8的表达,促进生长素合成及下胚轴伸长。CRY1和PIF4能直接结合到YUC8等基因的启动子上,快速调控基因表达。由于PIF4也是光敏色素phyB的受体,所以可以得出结论:PIF4是蓝光、红光/远红光和温度信号转导途径交互作用的关键节点,蓝光、红光/远红光和温度可以使用同一个PIF4实现功能整合,协同调控植物生长发育。

综合上述两实验室的研究结果,得出以下结论:低光照度蓝光下,隐花色素与PIF之间的互作主要调控细胞壁合成相关基因的表达;而在高温下,隐花色素与PIF之间的互作主要调控生长素合成相关基因的表达。因此,隐花色素与PIF之间的互作,在不同环境条件下最后的信号输出方式是有差异的。为此,Zhu等[36]提出了隐花色素与PIF互作模型:高强度蓝光照射或正常温度条件下,隐花色素与PIF之间的蛋白相互作用强,隐花色素抑制PIF的转录因子活性从而抑制下游基因表达,使植物表现为缩短的下胚轴;而在低蓝光照度或高温条件下,隐花色素与PIF之间的蛋白相互作用变弱,从而提高了PIF活性激活下游基因表达,促进下胚轴伸长(见图2)。

4题与前景

自1993年首次发现隐花色素以来,人们在植物隐花色素结构、生物学功能、光激发及信号转导调控机制研究方面取得长足进展[17,37-38]。但是,仍有很多问题亟待人们去解答,如CRY3的生理功能是什么?如何利用隐花色素晶体研究其光诱导下的构象变化机制?依赖蓝光的隐花色素蛋白磷酸化/脱磷酸化、泛酸化作用机制是什么?伴随着对上述问题研究的不断深入,人们将会从根本上揭示隐花色素对光信号转导的分子调控机制。

参考文献:

[1]Yu X, Liu H, Klejnot J, et al. The cryptochrome blue light receptors [J].The Arabidopsis Book, 2010, 8:e0135.

[2]Lin C. Blue light receptors and signal transduction [J]. The Plant Cell, 2002,14: 207-225.

[3]Yu X, Shalitin D, Liu X, et al. Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2 [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(17): 7289-7294.

[4]Yang H Q, Wu Y J, Tang R H, et al. The C termini of Arabidopsis cryptochromes mediate a constitutive light response [J]. Cell, 2000, 103(5): 815-827.

[5]Rosenfeldt G, Viana R M, Mootz H D, et al. Chemically induced and light-independent cryptochrome photoreceptor activation [J]. Mol. Plant, 2008, 1(1):4-14.

[6]Brautigam C A, Smith B S, Ma Z, et al. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana [J]. Proc. Natl. Acad. Sci. USA, 2004, 101(33):12142-12147.

[7]Klar T, Pokorny R, Moldt J, et al. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna [J]. J. Mol. Biol., 2007, 366(3): 954-964.

[8]Pokorny R, Klar T, Hennecke U, et al. Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome [J]. Proc. Natl. Acad. Sci. USA, 2008, 105(52): 21023-21027.

[9]Hitomi K, DiTacchio L, Arvai A S, et al. Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(17): 6962-6967.

[10]Lin C, Shalitin D. Cryptochrome structure and signal transduction [J]. Annu. Rev. Plant Biol., 2003, 54(1): 469-496.

[11]Malhotra K, Kim S T, Batschauer A, et al. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity [J]. Biochemistry, 1995, 34(20): 6892-6899.

[12]Banerjee R, Schleicher E, Meier S, et al. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone [J]. J. Biol. Chem., 2007, 282(20): 14916-14922.

[13]Bouly J P, Schleicher E, Dionisio-Sese M, et al. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states [J]. J. Biol. Chem., 2007, 282(13): 9383-9391.

[14]Lin C, Robertson D E, Ahmad M, et al. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1 [J]. Science, 1995, 269(5226): 968-970.

[15]Berndt A, Kottke T, Breitkreuz H, et al. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome [J]. J. Biol. Chem., 2007, 282(17): 13011-13021.

[16]Koornneef M, Rolff E, Spruit C J P. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh [J]. Z. Pflanzenphysiol. Bd.,1980, 100(2): 147-160.

[17]Ahmad M, Cashmore A R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor [J]. Nature, 1993, 366(6451): 162-166.

[18]Ahmad M, Lin C, Cashmore A R. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation [J]. Plant J., 1995, 8(5): 653-658.

[19]Lin C, Ahmad M, Cashmore A R. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development [J]. Plant J., 1996, 10(5): 893-902.

[20]Lin C, Ahmad M, Gordon D, et al. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light [J]. Proc. Natl. Acad. Sci. USA, 1995, 92(18): 8423-8427.

[21]Mockler T C, Guo H, Yang H, et al. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction [J]. Development,1999,126(10):2073-2082.

[22]Ahmad M, Grancher N, Heil M, et al. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis [J]. Plant Physiol., 2002, 129(2): 774-785.

[23]Blum D E, Neff M M, Van Volkenburgh E. Light-stimulated cotyledon expansion in blu3 and hy4 mutants of Arabidopsis thaliana [J]. Plant Physiol., 1994, 105(4): 1433-1436.

[24]Lin C, Yang H, Guo H, et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2 [J]. Proc. Natl. Acad. Sci. USA, 1998, 95(5): 2686-2690.

[25]Ma L, Li J, Qu L, et al. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways [J]. The Plant Cell,2001,13(12):2589-2607.

[26]Nagashima A, Hanaoka M, Shikanai T, et al. The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana[J]. Plant Cell Physiol.,2004,45(4):357-368.

[27]Guo H, Yang H, Mockler T C, et al. Regulation of flowering time by Arabidopsis photoreceptors [J]. Science, 1998, 279(5355): 1360-1363.

[28]Mao J, Zhang Y C, Sang Y, et al. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening [J]. Proc. Natl. Acad. Sci. USA, 2005, 102(34): 12270-12275.

[29]Kang C Y, Lian H L, Wang F F, et al. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis[J]. The Plant Cell, 2009, 21(9): 2624-2641.

[30]Strasser B, Sanchez-Lamas M, Yanovsky M J, et al. Arabidopsis thaliana life without phytochromes [J]. Proc. Natl. Acad. Sci. USA, 2010, 107(10): 4776-4781.

[31]Lian H L, He S B, Zhang Y C, et al. Blue-light dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism [J]. Genes Dev., 2011, 25(10): 1023-1028.

[32]Zuo Z Z, Liu H T, Liu B, et al. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis [J]. Curr. Biol., 2011, 21(10): 841-847.

[33]Liu H T, Wang Q, Liu Y W, et al. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(43): 17582-17587.

[34]Casal J J. Photoreceptor signaling networks in plant responses to shade [J]. Annu. Rev. Plant Biol., 2013, 64(1): 403-427.

[35]Ma D B, Li X, Guo Y X, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(1): 224-229.

[36]Zhu Z Q, Lin C T. Photomorphogenesis: when blue meets red [J]. Nature Plant, 2016, 2(2):16019.

[37]Li L,Li X,Liu Y W, et al. Flowering responses to light and temperature [J]. Sci. China Life Sci.,2015, 59(4): 403-408.

[38]Liu Y W, Li X, Liu H T, et al. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis[J]. PLoS Genet., 2013, 9(10): e1003861.

上一篇:黄河三角洲芦苇、盐地碱蓬单生与混生群落生长... 下一篇:如何在班级文化活动中实施创新教育