有机半导体材料的应用研究进展

时间:2022-09-09 10:54:33

有机半导体材料的应用研究进展

摘要:近些年来,有机半导体的发展极为迅速,目前有机半导体的主要应用领域包括场效应晶体管、电致发光二极管、太阳能电池、光电导、激光器、光波导、光开关、传感器、调制器以及光电探测等。另外,有机薄膜场效应晶体管、有机太阳能电池等方面的研究也取得了相当不错的进展。

关键词:有机半导体 材料 应用

1、前言

半导体材料是在室温下导电性介于导电材料和绝缘材料之间的一类功能材料。靠电子和空穴两种载流子实现导电,室温时电导率一般在105~107欧·米之间[1]。有机半导体材料的系统研究始于20世纪60年代,并且在近几十年来取得长足进步,2000年度诺贝尔化学奖授予白川英树等三位从事导电聚合物研究的科学家,这标志着有机半导体材料科学已经进入新的发展阶段[3]。

有机半导体材料与传统的无机半导体材料相比有一定的相似性,它们在电导率、载流子迁移率[4]和能隙等方面存在着较多的类似点,应用领域[5]也有一定的相似性。但是有机半导体材料又具有许多不同于无机半导体材料的新特点,有机半导体材料具有质量轻、柔韧易加工性、可低温大面积成膜等特点,将低成本的有机半导体材料用于微电子及光电子器件的研究近年来受到高度重视。近几年来建立起来的超快光谱技术和超微结构表征方法为研究有机半导体的激发态提供了手段,使有机半导体激发态性质、激发态结构[6]的基础研究和应用研究迅速发展。成为目前国际上最活跃的研究领域之一。

2、常见的有机半导体材料

已知的有机半导体[7]有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等。有机半导体器件[8]对所有有机半导体材料有两点要求[9]:(1)高迁移率,以保证器件的开关速度;(2)低本征电导率,尽可能地降低器件漏电流,从而提高器件的开关比。

2.2 有机半导体材料分类

2.2.1 根据载流子传输类型划分

根据载流子传输类型[10~11]来划分半导体材料,无机半导体材料和有机半导体材料的划分标准是不同的。对无机半导体材料而言,它的N、P型主要取决于半导体中密度占优势的载流子类型,这是因为载流子是通过离域带(导带或价带)来传输的。因而,电子占多数的半导体为N型材料,空穴占多数则为P型材料。而对于有机半导体来说,对半导体类型的定义只能根据载流子输运能力大小来划分,这是因为有机半导体内部电子与空穴密度不存在明显差别,而且载流子是通过定域传输的,因而若一种有机半导体对电子输运能力“明显”优于对空穴的输运能力,则定义这种半导体为N型材料,反之则为P型材料。另外,如果对空穴和电子的传输能力相当,则把这种有机半导体材料称之为双极型材料。通常在有机半导体领域中也称N型有机半导体为电子传输材料,P型有机半导体为空穴传输材料。

2.2.1.1 P—型有机半导体材料

P型高聚物典型代表为烷基取代的聚噻吩,如典型的P型高聚物为区域规整聚32烷基噻吩能形成高度三维有序的聚合物分子链,但其场效应行为强烈地依赖于成膜所使用的溶剂。P型低聚物以噻吩及其衍生物为代表。实际上,历史上第一个制备出的OFET就是采用低聚噻吩为场效应材料。低聚物分子[12]由于可通过灵活改变分子链长度和引入官能团来调节分子轨道能级,因而在OFET中占重要地位。P型有机小分子[13]则拥有聚合物无法比拟的优点,如易于提纯,分子间的平面结构则大大降低了分子间的势垒,从而有利于载流子高速迁移;又因为其成膜工艺多,制备的半导体薄膜质量较好,目前部分有机半导体,如并五苯等已能制备成单晶,这大大提高了载流子场效应迁移率,拓展了OFET的应用空间。典型的P型有机小分子通常有并五苯、酚箐类化合物、苝、红荧烯等。

有机半导体材料中以P型有机半导体材料[14]为主,因此P型场效应材料研究进展比较迅速,种类也较多。另外,P型有机半导体材料的载流子迁移率和开关比,采用真空成膜的OFET性能大多比较优良。如单晶并五苯的OFET性能最好,大大超过了其它OFET性能,也大大超过了非晶硅薄膜晶体管。

2.2.1.2 N—型有机半导体材料

1990年第一个N—沟道OFET被报道,它采用双酞菁镥为场效应材料[15],其器件性能一般,载流子迁移率为2×10—4cm2v—1·s—1(典型载流子迁移率约为1 cm2·v—1·s—1)。N—型有机半导体化合物对氧和湿度较敏感,从而造成场效应迁移率低和晶体管工作性能不稳定,因此N型有机场效应材料在数目上大大少于P型有机场效应材料。

为提高N型场效应材料[16]的稳定性和场效应迁移率,通常可通过调节其电子亲合能,如引入强吸电子基团—CN、—NO2或—F等来降低其LUMO能级,使得电子的注入和运输成为可能,这是目前获得高效N—沟道半导体材料的主要途径,或在其表面加一钝化层或完全包裹封装来实现。由于N型半导体材料较少、稳定性达不到要求,但它又是双极晶体管的重要组成部分,因而对稳定的高性能的N型场效应材料的研制是具有非常重要意义的。

同样地,N型场效应材料也分为高聚物、低聚物和有机小分子三类。目前,N型高聚物半导体材料不是很多。通过离子注入对PPV(聚乙烯)进行掺杂后,可以得到优良的工作性能和加工性能的N—沟道有机半导体材料。直到2000年采用蒸镀制膜,得到并五苯OFET的μe达到2.4 cm2/(V·s),Ion/Ioff达到108,分子晶体管的实现为晶体管微型化、大规模集成和超大规模集成奠定了坚实的基础。器件[17]的稳定性也有了很大提高,其中单晶二萘嵌苯的OFET性能最好,也超过非晶薄膜晶体管的载流子迁移率。

2.2.1.3 双极型材料

利用双极型材料可以大幅度的降低互补逻辑电路制造的工艺难度。2003年第一个双极型有机半导体材料DCMT被发现。随后Meijer[18]等人报道了一系列的双极型有机半导体材料。并且认为有机半导体材料普遍具有双极型

有机薄膜电子器件[19]的不断发展迫切需要综合性能优良的高迁移率有机半导体材料。因此通过化学合成和物理共混发展出新型的高迁移率有机半导体材料仍然是有机薄膜晶体管的一个发展方向。

上一篇:加强领导 强化管理促进档案工作持续发展 下一篇:The Comparison of Psychological Archetypes ...