桥梁设计论文范文

时间:2023-03-15 13:23:11

桥梁设计论文

桥梁设计论文范文第1篇

桥址区地形较平缓,跨越的沟渠中部局部地段为负地形,大致呈锅底状,雨季排水较为不畅通,并经常存有死水滩,随后几日,缓慢下渗至地下深处。根据原始勘察资料,桥址区0~10.0m范围内黄土(粉土)具Ⅱ级非自重湿陷性(中等),湿陷系数δs=0.023~0.080,自重系数δzs=0.015~0.034,自重湿陷量Δzs=6.19cm,总湿陷量Δs=56.88cm,桥台基础持力层位于该地层上,虽采用0.5m厚灰土垫层进行地基处理,但处理范围仅在基础之下局部范围内,对基础周围地表水的下渗未起防水作用,从而使地表水扩散运移至基础以下湿陷性黄土之中,在荷载作用下,产生湿陷下沉。其下沉速度较为缓慢,且随季节具有一定的规律,在雨季期间,下沉较迅速,雨季后地下水下渗至地表深处时,下沉较为缓慢或停止。根据地勘报告,基底附加应力为203kPa,第一层土的平均附加应力+自重应力约为124.5kPa,大于9.4m以上土层的湿陷起始压力,故第一层土在上部荷载作用和浸水状态下,0~9.4m范围内将会产生附加湿陷变形,变形量为56.88-2.46=54.42cm。据以上综合分析,桥台地基沉降量主要由湿陷变形量和土层压缩变形量组成,其总的变形量为54.42+8.223=62.64cm,目前已沉降约33cm,完成总沉降的52.7%,以后还会继续下沉,因此对其进行加固是非常必要的。

2桥梁的加固设计

本文针对其出现的桥台整体沉降的病害提出了两个具体加固方案。

2.1方案一

a)在原两侧桥台前1.35m加设双柱式桥墩,形成(1.7+12.6+1.7)m跨径的双悬臂板结构,桥台的支撑作用慢慢消失,新的柱式墩主要起支撑主梁作用,b)铲除后期养护逐年增加的沥青混凝土,以减轻上部恒载,利用液压顶升设备将空心板抬升,恢复原桥面的设计标高。c)在墩顶原铺装层增设一层直径25mm的钢筋网用以承担墩顶负弯矩。d)墩盖梁达到设计强度后,顶升主梁,落梁于墩顶支座上,形成双悬臂结构,完成体系转换。e)将原桥的背墙和侧墙均相应进行加高,原桥台基础周围需做防水封闭处理,以防止其继续渗水下沉。

2.2方案二

a)先采用直径为127mm的钻头钻孔,钻孔按梅花型布置,孔间距为1m,钻孔深度为7m,要求钻孔必须穿透原桥的扩基底部,用直径为127mm的PVC管做护壁。b)通过PVC管将直径为110mm,长度为8m钢管桩垂直击打到原桥扩大基础底以下8m处,利用钢管桩加固原有桥位处的地基,通过桩土复合作用共同承担桥梁的上部荷载。c)为了减轻上部的自重,铲除原桥面沥青混凝土铺装25cm,利用液压顶升设备将主梁进行顶升,梁下垫增高度为25cm焊接好的槽钢,同时更换原桥支座。d)待主梁放下与支座紧密结合好后,需对桥台处进行桥面连续的施工,浇筑钢筋混凝土和沥青混凝土,重新摊铺沥青混凝土铺装层。e)原桥台基础周围需做防水封闭处理,以防止其继续渗水下沉。

3设计方案比对

针对前述桥梁病害以及现行桥梁规范,为彻底消除隐患,保证现有桥梁的正常使用,本文拟定了两个加固设计方案。

4结论

本文通过K706+547小桥整体沉降病害的分析,对其提出了两种加固方案,最终通过造价、施工工艺、加固效果的比较确定方案一为推荐方案。通过MIDAS-civil软件对加固后的桥梁主梁进行了计算分析,根据《公桥规》对其正常使用极限状态应力进行了验算,包括短期效应组合,长期效应组合和基本组合下主梁的应力均满足要求,这说明针对这种病害通过增加桥墩改变原桥的结构体系的加固方案,在理论和实际当中均是合理可行的,对以后该类型桥梁的病害加固提出一定的指导意义。

桥梁设计论文范文第2篇

1三维数字化设计发展与现状

1.1计算机辅助设计系统发展从1963年美国MIT机械工程Coons,首次提出了计算机辅助设计系统(CAD)概念开始,军工、航空航天以及精密制造业等领域就开始了CAD的研究与开发。到20世纪80年代,CAD技术开始走向成熟,并广泛应用于商业领域,开始出现在PC终端系统中。1989年,PTC公司推出Pro/Engineer产品,用参数化的特征设计为CAD三维设计建立了新的标准。此后,随着全球经济的发展,三维CAD设计开始普遍应用于航空航天、船舶、汽车及精密仪器制造业等领域[1-3]。

1.2三维设计应用在国内外的基础建设领域,三维设计技术也正在蓬勃发展,其中在水利水电、公用与民用建筑等行业已经取得较为广泛的应用,初步实现了二维设计向三维协同设计的转换。如图1所示。图1水电厂房剖切视图对于公路工程,特别是桥梁设计领域,CAD设计系统的发展相对较为缓慢,大多还处于二维阶段,或者应用其他主流的三维CAD平台对桥梁结构进行三维展示,中国交通部公路科学研究所研发的桥梁三维造型系统Bridge3D,尝试了采用参数化技术进行桥梁结构外观造型设计。但是,相对于制造行业的参数化、变量化的三维CAD设计系统差距还很大[4-5]。

2基于BIM技术的工程设计概念

2.1BIM技术定义建筑信息模型(BuildingInformationModeling,简称BIM)技术和理念由AutoDesk公司于2002年率先提出,它是通过数字化技术,在计算机中建立一座虚拟的建筑,一个建筑信息模型就是提供了一个单一、完整、逻辑的建筑信息模型[6-7]。BIM是贯穿在工程整个生命周期中,使设计数据、建造信息及维护信息等大量信息保存在BIM中,在建筑整个生命周期中得以重复、便捷地使用,如图2所示。

2.2BIM技术在桥梁工程中的延展BIM的发展是始于建筑行业,但其内涵及外延早已超出了模型的范畴,也延伸出了建筑行业,甚至覆盖了整个工程建设行业。对于桥梁工程而言,可以参考美国国家BIM标准,对桥梁信息模型(BIM)阐释如下:(1)一个桥梁工程物理和功能特性的数字化表达。(2)一个共享有关桥梁建设项目所有信息的资源数据库。(3)一个分享有关桥梁工程的信息,为该工程从概念开始的全生命周期的所有决策提供可靠依据的过程。(4)在项目不同阶段、不同利益相关方,通过在BIM中写入、提取、更新和修改信息,以支持和反映各自职责的协同作业,如图3所示。图3BIM技术支撑的工程范畴

3三维数字化设计与二维设计对比

对于桥梁设计而言,采用BIM的理念与传统CAD相比,改变的是整个设计流程与设计方法。(1)从线条绘图转向构件布置。(2)从单纯几何表现转向全信息模型集成。(3)从各工种单独完成项目转向各工种协同完成项目。(4)从离散的分步设计转向基于同一模型的全过程整体设计。(5)从单一设计交付转向工程全生命周期支持。对于桥梁设计行业,采用BIM技术不仅仅意味着效率与质量的提升,更重要的是设计方掌握了工程项目最核心的信息模型资源,不仅向业主方提供工程设计服务,而是向全寿命周期内各个工程参与方提供高附加值的服务与咨询,使工程项目的潜在价值向设计阶段前移[6]。

4基于BIM技术的桥梁三维设计技术

4.1信息需求的系统分析了解桥梁工程对三维设计技术的需求是建立三维设计系统的基础,虽然其他行业的三维设计技术已经较为成熟,也有了成功的工程案例,但是桥梁工程建设对三维工程信息的要求有自身的特点,并不能将其他行业的工程需求照搬过来。因此,需要重新根据桥梁设计、施工与管理的特点分析其对工程信息的实际需求。只有得到各个工程参与方对三维信息的需求,才能使三维信息模型发挥其在工程建设中的核心数据平台的作用。

4.2信息模型的参数化建立方法三维设计技术的核心是信息化的三维模型,通过前期分析得到各方的信息需求后,如何建立赋含上述信息的三维模型就成为关键。抽象化、变量化、参数化的设计技术是一种高效、直接和便于修改的信息化模型建立方法,该方法的核心思想是把工程项目中具有特征变化的图元要素的特征值抽象为某个函数的变量,通过修改变量值,或者改变函数实现算法,就能够获得赋含各种信息的模型。主要工作在于寻找各类要素的特征变量及其与整个模型的逻辑函数关系[8-10],桥梁三维模型如图4所示。

4.3CAD-CAE信息共享技术桥梁设计的重要特点是结构计算分析在设计中占有极其重要的位置,计算分析结果决定了主要构件尺寸与构造形式,桥梁结构计算工作量在整个设计流程中占据较大的比例,对于复杂桥梁甚至是控制性的节点工作。因此,实现设计平台与计算平台的信息共享乃至无缝结合,对提高设计效率有着积极的作用。

4.4数字化工程的交付方式与标准数字化虚拟工程移交是三维设计发展的必然结果,因为传统的二维图纸载体已经被全信息模型所取代。基于BIM技术的桥梁工程设计产品是一个包含了各阶段、各参与方所需信息的核心数据模型,这就需要针对不同信息接收方制定不同的产品交付方式与标准,交付方式与标准的确立,标志着三维设计阶段转向了三维信息化的施工与运营管理阶段。

4.5一体化协同设计与管理技术从单点、离散式的分布设计转向基于同一模型的一体化协同设计是BIM技术的重要标志,对于项目管理的效率与质量有着质的提升。同时,协同设计不仅仅指设计方内部的流程与设计过程管理,还包括设计产品交付、进入施工与运营阶段后的协同信息交流与管理,甚至可以延展到工程全寿命周期内的各个参与方的协同工作。只有掌握了一体化协同设计与管理技术,才能发挥三维数字化设计对工程全寿命周期的技术支撑作用[7]。

5三维数字化设计发展存在的问题

(1)全行业对三维数字化设计的认识有待统一。目前整个交通建设行业的三维设计刚刚起步,政府主管部门、工程业主单位、设计单位与施工单位等各方对三维设计的理解与需求是不同的,而以上各方都应该是三维设计的参与方,也是受益方。因此,在交通行业发展三维数字化设计需要全行业对其有一个统一的认识。(2)从设计单位看,意味着设计习惯、工程流程与管理体系的再造。二维设计向三维设计的转变,必然是一个缓慢的过程,大干、快上不符合技术发展规律。在三维设计起步阶段,由于设计人员的技术不熟练,设计系统不够完善,管理体系还不健全,可能会导致工作效率降低。因此,需要在工作中寻找发展与稳定生产的平衡点,这是一个不断摸索、发展与调整的实践工作。(3)从整个交通建设流程看,各个环节的发展节奏不一致。目前交通行业三维数字化的工作与重点集中在设计阶段,大部分的实践工作由设计院承担。但是,设计阶段只是工程建设的中间环节之一,其设计基础数据的获得要依靠前期的规划与勘测方,后期产品要交付于审查与施工方,如果各个环节发展脱节,就难以发挥三维数字化的优势。所以,三维数字化技术的变革比当年“甩图板”工程涉及的范围更广,难度也更大。

6结束语

发展基于BIM的三维数字化桥梁设计技术是目前桥梁工程建设的客观需求,不仅可以提高设计产品的质量和效率,更多的是对设计流程乃至整个工程建设流程的再造。通过工程各个参与方共享一个核心的信息模型,实现资源整合与优化配置,极大地提升整个工程的建设与管理水平。

桥梁设计论文范文第3篇

上个世纪末我国公路建设高速发展,而在全国进行大范围公路建设中因为桥梁桩承载力好,节省用料和人力的优点得到广泛运用。桥梁的桥体的承载力主要就是靠桥梁桩来承担,因此桥梁桩的基础加固是公路工程建设的基本保障。尤其是在我国这种地形地质条件相对复杂的山区,公路桥梁路段多且承载量要求较高。但是,我国大范围的桥梁桩基本上是钢筋混泥土进行建设的,很容易出现一些问题。1)水分的自然侵蚀。首先是钢筋混凝土中的钢筋极容易被渗透的水分侵蚀,破换钢筋的支撑力。当水分的侵入混凝土中的时候还会因为同碱性的水泥融合产生膨胀力,甚至导致混凝土裂开从而破坏掉整个桥梁桩,这个时候就会影响到整个桥梁的稳固,因此仅仅是自然的长时间的侵蚀就会造成整个桥梁桩的不稳定。2)极端气候的破坏作用。除了水分的渗入会导致桥梁桩被破坏,低温作用到水上会导致混凝土结构桥梁桩小孔中的水分结冰膨胀。而长时间的气温变化作用的不断循环,就会导致混泥土结构的逐渐剥离甚至瓦解,事实上这个过程并不长,尤其是在地质和气候比较复杂的地区,因此要特别注意防范和处理这种情况的发生。

2加固桥梁桩方法

桥梁桩对整个桥梁乃至整个公路的运行的重要作用不言而喻。因此在防范桥梁桩的损害问题上,必须迅速采取积极的应对处理方法,而这些方法必须是科学地针对桥梁桩的特点和问题,能够切实地保障桥梁桩的稳固,主要从以下三个方面坚持:1)做好防范工作。为了保障桥梁的稳固性,除了针对进行桥梁设计之外,桥梁桩的本身质量要进行较为严格的鉴定并且明确后期追加的加固的方案。加固设计方案无外乎三个方面:硬度方面,强度方面和持久度方面。首先在硬度方面就是桥梁桩建造的稳固性;强度方面就是确定保证桥梁桩的整体性的稳固;持久度方面就是在建造的时候采用耐性良好的同时还要方便之后进行损伤部分的修复。从这三个方面着手,可以比较全面的做好桥梁桩的稳固性的防范工作。2)坚持效益最大化。在工程设计和建造中最基本的原则除了安全稳固之外就是经济,以最小的原料和人工投入获得最优的经济效益,这就要求工程建造人员在桥梁和建设的时候做到效益最大化。3)务求实事求是。在公路建设前桥梁桩做好各项加固工作之外还必须实事求是,不能盲目加固浪费工程建设。合理的加固技术必须在原有的公路建设基础上不仅起到实际加固的效果还可以有效控制工程再建的风险,降低工程建设的成本。

3桥梁桩加固设计的基本方案

3.1增加桩基进行加固

为了保证公路桥梁的整体的安全性,增加桥梁桩和扩大整个承台的承载范围和作用力,可以在桥梁桩基的载重能力不足采用。准确来讲就是将原来的桥梁桩的承重进行扩大并且可以增加新的桥梁桩,这样就可以提高桥梁桩的承载能力并且增加整个桥梁工程的稳定性。这项方法不仅能够节省工程工作量,并且有着较为明显的加固效果,但是它的局限性就在于为了达到加固效果会对原有的交通运行情况有所影响,因此也要考虑到它的实际操作性。

3.2桥梁桩基自体加固法

这个方法是在原有的混凝土桩基础上进行加固,尤其是直径偏小的钢筋混凝土桥梁桩。因此这种方法不仅施工工程相对较小还提升了桥体的承载力。很多县城上的小桥都是采用这种结构,工程实例上来说,某县的公路桥桥宽近六米,桥梁桩为钢筋混凝土结构,随着经济的发展还有桥梁的自然消耗,桥梁本身需要进行拓宽处理,而相应的桥梁的稳固性要求增加。

3.3桥梁桩的本身修补加固法

顾名思义,这个方法主要是针对已经出现受损状况的桩基进行修补处理,从而增加桥梁桩的本身的强度,硬度和持久性。从工程实例上面来说,有一驾桥梁在建设初期河流比较充沛,受侵蚀情况相对比较严重。而最近几年河流河床下降,桩基状况比较明显,尤其是桥梁桩的本身混凝土的表面受到较为严重的侵蚀,甚至钢筋也因为桥梁转的而发生锈蚀,桥梁桩的承载力受到非常严重的损害,整个桥身的安全性也得不到有效地保证。经过多重的分析和方案选择,还有实地的调研考察,最终决定采用桥梁桩修补加固法对整个桥身进行修补加固。首先要调查和考评所有桥梁桩的受损情况和修补范围,然后再通过钢筋水凝土的修补和浇筑封装桥梁桩和桩基。这个办法不仅可以修补损害严重的桥梁桩,而且对桥梁桩的本身强度的增加有着较为明显的作用。这个方法对于承载能力要求不高的桥梁有着较为明显的作用,在大范围的同类工程问题中值得借鉴和推广,有助于为我国桥梁工程建设节约资源。

3.4扩大桥梁基加固法

这个方法是从整体的结构方面来进行加固的,桥梁桩的加固和桥梁基紧密联系在一起。这样一来整体上的稳固性能够更加全面的增加桥体的稳固和安全。举例来说,某个交通桥梁在进行年度检测的时候发现桥梁桩桩体破坏比较严重,有比较严重的被侵蚀的损害现象,并且钢筋也因此暴露出来,混凝土的上还出现了空洞现象,这样一来明显降低了桥梁桩的整体承载能力,并且整个桥梁的桩基承受力也随着降低,因此进行加固处理是十分必要的。

4结束语

无论是技术需求,还是现实大范围的基础桥梁和公路的修补需要,这篇文章就此进行的一个比较浅显的探讨和总结,桥梁桩的加固设计还有亟待解决的一系列问题还需要我们进行不断的探索来解决。

桥梁设计论文范文第4篇

大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结构的弹塑性分析,这不仅是因为相对于几何非线性而言,结构的弹塑性性能对于结构的抗震性能影响较大,而且更由于问题的复杂性。所以国内外众多学者针对后者开展了大量的研究工作。在大跨度公路桥梁弹塑性地震反应分析的力学模型中,根据各种构件的工作状态,将结构简化为杆系结构是合理的,同时对计算而言也是非常经济的。若按构件所处的空间位置可把力学模型分为平面模型和空间模型两种。若按模型中所采用的单元应力水平的种类来分,又可分为微观模型(采用应力空间)和宏观模型(采用内力空间)两种。由于微观模型要求将结构划分为足够小的单元,尽管很有效但所需的计算量较大,只适用较小规模的结构或构件的非线性分析,因此在实际工作中应用的范围比较有限,所以这里仅按前一种分类方法来加以讨论。

在结构弹塑性地震反应分析中,构件恢复力模型的确定是基本的步骤而构件的恢复力关系又集中反映在滞回特性曲线上,基本指标有曲线形状、骨架曲线及其特征参数、强度、刚度及其退化规律、滞回耗能机制、延性和等效滞回阻尼系数等。国内外在这方面已进行了大量的试验研究并取得了相应的研究成果。在平面模型中,根据所采用的塑性铰类型可把它分为集中塑性铰模型和分布塑性铰模型两大类。在集中塑性铰模型中,有代表性的一种是Clough等于1965年提出的双分量单元模型,该单元模型采用两根平行杆来模拟构件,其中一根用来表示具有屈服特性的弹塑性杆,另一根用来表示完全弹性杆,非弹性变形集中于杆件两端的集中塑性铰处,该模型的最大不足是不能考虑构件刚度退化。另一种有代表性的是1969年Giber-son提出的单分量模型,它克服了Clough双分量模型的不足,同时只用两个杆端塑性转角来刻划杆件的弹塑性性能,而杆件两端的弹塑性参数又是相互独立的,因此应用起来较为简便。其缺点是基本假设中有地震过程中反弯点不能移动的限制,所以对一些与基本假设不甚相符的特殊情况其使用的合理性就受到了限制。

二、多点激振效应

通常桥梁结构的地震反应分析是假定所有桥墩墩底的地震运动是一致的。而实际上,由于地震机制、地震渡的传播特征、地形地质构造的不同,使得入射地震在空间和时间上均是变化的。即使其他条件完全相同,由于地面上的各点到震源的距离不同,它们接收到的地震波必然存在着时间差(相位差),由此导致地表的非同步振动。这一点已被地震观测结果所证实。因此,多点地震输入是更合理的地震输入模式。特别是大跨度桥梁结构,当地震波的波长小于相邻桥墩的跨度时,入射到各墩的地震波的相位是不同的,由于在桥长范围内各墩下的基础类型和周围的场地条件可能有很大的差别,因此入射到各墩的地震波的波形也可能是不同的。有关实际震害表明,入射地震波的相位差可增大桥跨落梁的危险性。所以就地震波传播过程中的多点激振效应进行研究是有很大的实际意义的。

从概念上看,仅考虑入射地震波的相位变化情况属于行波效应分析问题。若再考虑地震波的波形变化就属于地震波的多点输入问题。从计算方法上看,由于多点地震输入算法与同步激振的计算方法不同,因此必须重新推导结构体系的动力平衡方程。美国学者Penzien和Clough于1975年推导了多自由度体系考虑地震波多点输入时的动力平衡微分方程及求解方法,通过所谓的影响矩阵,实现了地震波的多点输入算法。这种方法后来被广泛应用,目前所有考虑地震波多点输入的结构地震反应时程分析算法均以此为基本出发点。

综上所述,大跨度公路桥梁的多点激振效应分析是一个比较复杂的计算问题,其复杂性一方面在于计算方法上面,更重要的是对于不同类型的桥梁结构体系可能有着截然不同的计算结果。因此实际计算时只能针对具体的桥梁结构进行具体的分析,不能一概而论。从计算方法上看,目前有关研究基本上仍局限于线弹性体系的多点激振效应分析,而非线性多点激振效应与结构体系非线性地震反应分析的力学模型是密切相关的.

三、结构设计

上部构造形式的选择,应结合桥梁具体情况,综合考虑其受力特点、施工技术难度和经济性。简支空心板结构的桥型,施工方便,施工技术成熟;但跨径小,梁高大;由于桥梁跨径受限制,往往造成跨深沟桥梁高跨比不协调,美观性差;上部构造难以与路线小半径、大超高线形符合,且高墩数量增加;桥面伸缩缝多,行驶条件差。因而,在山区大跨度中,该类桥型一般用于地形相对平缓、填土不高的中、小桥上。预制拼装多梁式T梁在中等跨径桥中具有造价省、施工方便的特点,其造价低于整体式箱梁,是中等跨径直梁桥的常用桥型。但对于曲线梁来说,T梁为开口断面,抗扭及梁体平衡受力能力均较箱梁差,曲梁的弯矩作用对下部产生的不平衡力大。但当曲线桥的弯曲程度较小时,曲线T梁桥采用直梁设计,以翼缘板宽度调整平面线形,可减少曲梁的弯扭作用,在一定程度上可弥补曲线T梁桥受力和施工上的不足。虽然直线设置的曲线桥仍有部分恒载及活载不平衡影响及曲线变位存在,但较曲线梁小。此外,可以采取加强横向联系的措施,提高结构的整体性。对于大跨径桥梁,最好采用悬臂浇筑箱梁。但是对于中等跨径的桥梁,箱梁桥不论采取何种施工方式,费用都较高,与预制拼装多梁式T梁相比,处于弱势。

下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布置均匀。桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。对于高墩,除了要进行承载能力与正常使用极限状态验算外,还要着重进行稳定分析。对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载,下面以连续梁为例进行说明。介于梁、墩之间的板式橡胶支座,梁体上的水平力H(车辆制动力和温度影响力等)是通过支座与梁、墩接触面上摩阻力而传递给桥墩的,它不但使墩顶产生水平位移,而且板式橡胶支座也要产生剪切变形。当梁体完成水平力的传递以后,梁体暂时处于一种固定状态,但由于轴力及墩身自重的影响,墩顶还会继续产生附加变形,这就使得板式支座由原来传递水平力的功能转变为抵抗墩顶继续变形的功能,支座原来的剪切变形先恢复到零,逐渐达到反向的状态。

四、结语

山区大跨度作为公路工程的一部分,很多方面需要探讨。山区大跨度方案的确定应遵循“安全、舒适、经济、美观”的原则,只有把握好规律,抓住侧重点,山区高速桥梁的布置和设计才能准确无误。

参考文献

[1]李伟,朱慈勉,胡晓依.考虑P-Δ效应压杆几何非线性问题的解析法[J].同济大学学报(自然科学版),2006,(10).

[2]阎兴华,苏志宏,朱清峰.钢—混凝土混合结构弹塑性动力分析综述[J].北京建筑工程学院学报,2006,(9).

[3]肖汝诚,郭文复.结构关心截面内力、位移混合调整计算的影响矩阵法[J].计算力学学报,1992,(1).

[4]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].西南交通大学,2003

论文关键词:山区大跨度桥梁;公路桥梁;桥梁设计;非线性地震反应;多点激振效应

桥梁设计论文范文第5篇

在其他许多国家的抗震规范中,也或多或少地采用了这一设计原则,即便如此,各国规范在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足[3]。近年来,专家已建议对两个设防水准的地震力都要进行设计,这在一定程度上更加保证了桥梁结构的抗震安全性,也是未来桥梁抗震设计的一个发展方向。理念的提出基于性能的抗震设计思想是一个比较抽象的概念,它没有明确的力的大小的物理意义,也没有单纯的材料强度或结构位移的具体量化结果。因此,基于性能的抗震设计思想不能比较明确的用一个参数来衡量结构的抗震性能,它是对以往的结构的响应的一个综合考量,结构的性能往往与结构的受力大小、强度或位移,耗能能力以及结构的功能有关,更为直接地反映的是为满足人们的正常使用要求或结构功能性或安全性的性能综合考量。因此,对于不同的需求和功能要求,同样一座桥梁的抗震评估结果将有所不同[1]。基于性能的抗震设计可以简要的概括为,用总少的投入,建总可靠的桥梁。正如著名的地震工程学家胡聿贤先生所讲,工程抗震不仅与工程技术有关,而且与社会经济密切相关。基于性能的抗震设计思想是桥梁抗震设计思想发展的一种必然趋势,对于人类进步和社会发展都将起到积极的作用。基于性能的抗震设计思想是一个全新的思想体系,目前已经取得了一些研究成果,但到广泛的应用还有一定的距离,甚至目前都没有形成完全统一的概念。但这并不妨碍基于性能的设计思想的进一步完善。

设计方法的体现

传统的桥梁抗震设计思想即对某一性能目标进行比较,如对结构的地震响应力、地震位移、结构耗能等单一性能参数进行考虑。从严格意义来讲,这并不能反映结构的真实安全性能。而基于性能的抗震设计,其目标即为业主的期望目标或结构性能,包括地震动性能目标和结构抗震性能目标。基于性能的抗震性能目标,是一个对传统的结构的性能的一个综合考虑,因此,各单一结构性能之间的相互关系显得十分重要而又相互制约,如连续梁桥梁结构的梁端位移与墩底弯矩即为相互制约的关系,基于性能的设计思想即要从这两者之间找到一个平衡点,以达到各单一性能的充分而平衡的发挥。同时,基于性能的抗震设计思想也要对结构的经济指标提出要求。人们总是希望结构设计以社会效益和经济指标为目的,基于性能的抗震设计思想即在对结构进行抗震设计时,对桥梁结构遭受地震破坏所造成的损失、维修成本、社会影响等进行综合评估,这也是基于性能的抗震设计思想所必须考虑的一个关键所在。基于性能的桥梁抗震设计是一个涉及多门学科的综合型研究领域,需要对多个领域,如地震学、桥梁工程、经济等都要有一定程度的认知才能进行基于性能的抗震设计,这也对桥梁抗震设计工程师提出了更高的要求。

结语

桥梁设计论文范文第6篇

作者:肖奎 单位:湖北省建筑设计院

现代桥梁设计特点与表现手法

随着时代和科技的发展,新材料、新工艺的大量应用,国内桥梁的跨度不断被改写,但留给建筑的受体——人的感官体验和印象却日益下降和模糊,更多的是将桥梁看作是一种单纯的通行工具,使得桥梁在现代城市建筑体中的地位反而被削弱,这是一个非常值得桥梁工程师深刻反思的问题,同时也是桥梁工程师向桥梁设计师转型的巨大动力。城市现代人的审美观念在不断变化,现代社会处于高科技时代,现代通讯、现代交通、现代化设施与管理,造就了现代人干练、明确、快捷的工作作风与生活节奏,也形成了相应的审美情趣与感受。对于桥梁,除了结构要求新材料、新技术外,还力图展现工程建筑与社会生产力及社会思想意识的同步发展,要求桥梁造型艺术更贴切时代,或通过修饰和造型引发人的共鸣或精神感染,加强与人的精神互动。基于国内外现代桥梁建筑的风格,可以归纳当前桥梁设计的一些主要的基本手法:“局部适配”如主梁、主拱、桥墩、桥塔等局部构件的修饰手法和设计原则,以及“整体协调”如建筑美学中一些最基本的比例协调、色彩搭配等原则。以单个桥梁体的构件为例,如梁桥或者组合式桥梁的主梁,一般以水平延伸的直线为基本几何形态,艺术表现重在平直、坦途、纤细、流畅,主要表现手法:一是突出缘梁形成“金边”或“饰带”达彼岸,增加连续流畅感;二是可通过梁底的加腋曲线,改变平直的单调感,并能增加跨越感;三是改变梁的断面形态,加长翼缘板,或采用倒梯型、流线型断面,使梁在光影之下更显纤细。而对于拱桥类型的主拱,美在优美的主拱曲线,它孕育着强大的一跨而过的力动感与跨越感,并与直线形态的梁、墩结合,刚柔相济、丰姿绰约,韵律感极强。主拱形态多样,从主拱轴线上看,圆弧拱适用小跨径,施工简便、形态简洁、宁静而稳定;抛物线拱与悬链线拱适用于中、大跨径,前者力动感强,后者则趋于自然和谐。从矢跨比角度看,坦拱比陡拱更显优雅、美观、平和,跨越感强,而陡拱醒目、动人、起伏强烈。从与路面相对位置上看,上承式应用最为普遍,形态自然,桥面通畅且有较大的桥下空间,特别适宜于山区环境,中承式则有起有伏,刚柔相济,形态优美,富有弹性;而下承式桥面上空的曲线轮廊会给人留下更深刻印象,加上色彩涂装,令人赏心悦目,是突出于周围环境创造新景观的最佳选择之一。尽管拱桥形态千姿百态,但无论坦、陡、空、实或上承、下承都应力求结构新颖、构件轻巧纤细韵律优美,并与所处环境相协调。桥梁的墩比梁更靠近人的视点,艺术表现重在轻型、美观。而以混凝土材料为主的桥墩最富可塑性,其几何体态的虚实、空透、刚柔、凹凸、光影等力求比例合谐、韵律优美并与桥梁整体协调统一。桥墩常见断面形态有矩形、多边形、圆形、椭圆形等。对有棱角的断面进行切角或圆弧过渡,以产生斜面或曲面,或者对大面积表面进行凹槽处理以增加纵向线条,都是改善桥墩表面的单调感、增加轻巧感、柔和感、韵律感的有效方法。另外采用生动活泼的上大下小或空透的T、Y、A、X、V、H形墩都可以使桥墩变得体态轻盈,梁下空间增大,视野开放。桥塔是悬索桥、斜拉桥等不可少的主构要素,其高耸挺拨的姿态,起着象征与标志的作用,无疑是景观中的重点。悬索桥由于构造的要求,传统的桥塔无论是桁架式、刚架式都是以门型为主,艺术表现上主要在“门”的形态上下功夫,如塔柱从下向上断面逐渐收分变细,不仅结构上合理,形态上也增加高耸感,另外,柱表面的凹槽、棱角的曲面化同样可增加柔和细腻的美感。上部横梁可为斜线或曲线,以减少呆板单调而增加优美感。横梁或斜撑的安置部位要与总体布置均衡协调,尽可能地简洁、通畅。相对而言,斜拉桥的桥塔可以形式多变而对整体结构没有大的影响,因而设计自由度大是其最大的特点,从仅有1根独柱构成到双柱式、门形、A形、倒Y形、H形等都十分普遍。

现代桥梁设计的多元化趋势

国外诸多建筑师非常善于应用曲线和空间元素以及完美比例打造现代桥梁的个性,譬如西班牙设计桥梁出身的桑地亚哥拉特拉瓦的作品,总有一种腾空飞跃的感觉,轻盈而舒展,是现代建筑中很少见的一类。卡拉特拉瓦作品中秀美的结构,给人以飘逸缈远的遐想。此外,应充分的理解桥梁景观Bridgescape的对于城市CI形象识别系统的重要性。英国桥梁景观学家FrederickGottemoeller将Bridgescape定义为设计桥梁的艺术。Gottemoeller将桥梁景观分解成线型设计、造型设计、平面布局设计、色彩设计、肌理设计、装饰设计等六大部分。Gottemoeller还对桥梁景观设计中符号学运用、历史文化表达及技术美学特性等方面的设计创作进行了阐述,力图使桥梁功能、美学、文化与技术达到统一。综上所述,桥梁设计不是一门科学,更应该是一门艺术。桥梁学科已经不再是单纯的结构设计,也不仅仅是满足功能需求;如果桥梁设计师能把桥梁作为都市建筑生命体灵魂的重要组成部分,通过给桥梁设计引入更多元素和功能,如园林、雕塑、观景台、建筑休闲、等更多人性化设计,桥梁景观设计在我国越来越被重视。伴随其成长过程,还存在一些建筑管理机制、建筑师素质及设计风格等方面的问题,因此,桥梁设计部门应加强景观方面的人才与技术准备,一则为顺应时代潮流,另外也是为与国际接轨使我国的桥梁设计走向世界。

桥梁设计论文范文第7篇

作者:刘贺强 单位:吉林市市政设计研究院有限责任公司天津一分公司

随着斜交的角度不断的变小,在主梁的主要弯矩在不断的减少,对于横梁来说,随着板桥弯矩的不断增大,对于斜交的变化就越发的敏感,在主梁,其弯矩也在不断的减少,横向的弯矩就会越来越大。对于这些因为抗扭刚度引起的影响,对于边梁来说,就是比较明显的,而在中部的位置却显得比较少。在斜交板的整个平面内,进行位置移动和转动的时候是比较重要的,这样做的主要原因是温度不是一成不变的,一旦温度发生了变化,混凝土也会发生变化,产生收缩现象,再加上制动力和地震的力度等方面的原因引起的。在实际应用中,我们可以发现,斜交板会发生一定的爬行的现象,这样的横向斜边以及在比较长的对角线上进行延长,还会发生横向的位置移动,在移动的数值到达一定值的时候,在钝角的位置出现破损现象在所难免,桥台地方也不例外。因此,我们在建设斜交桥的时候,横向方面也要考虑到位置的移动数量,及时采取措施,防止位置移动的发生。

在《桥规》中有着明确的规定:当斜度小于或等于15°的时候,有的国家可能规定为20°的时候,按正交板桥计算,其计算跨径可取板的斜长;当斜度大于15°时按斜交板桥计算,取斜交板桥的斜长作为计算跨径,然后作为正桥来进行计算。就按一个二级公路的斜桥为主要例子进行计算,计算弯矩的时候,选择混凝土的时候,最好能选择那些钢筋布置在主要弯矩的方向,这是最理想的状态,但是实际生活中,这种状态不够好遇见,事实上也没必要。取斜交板桥的斜长作为计算的跨径,然后作为正桥来进行这个公式的计算,对于斜交角度先可以不计算在内,主要运用铰结的方法,主要是依据一个横向分配的原则来进行线路的计算,对于正桥的设计的弯矩可以为A,需要对于斜交的角度的影响进行充分的考虑在内,计算弯扭参数r值,Ka为斜角的折减系数,在斜交板的跨中设计计算的一个最大的弯矩为Amax=Ka-A。对于斜桥来说,在计算支点的时候,或者进行横向的分布计算的时候,这两个都需要采取一个影响混合横向分布的办法,主要的步骤可以分为:首先,先进行绘制坐标,不要计算斜交角,主要是对应的一些正桥的横向分布线坐标的绘制,其次,还要绘制这个方面的影响线,在每一个板处的纵向坐标进行计算,最后进行修正的时候利用杠杆的一个原理,从而得到一个支点的一个混合的横向分布的影响线。提出的这个影响线,首先就要进行不利方面的加载。那么这个加载要先对这个混合的影响线进行,尽最大可能的满足其中可能会产生的一些不利影响。进行支点剪力时的跨中的计算,除此之外,还要计算支点横向分布系数N支及N中加载纵向剪力影响线,这样才能计算支点剪力。对于跨中的剪力来说,是随着斜角的增大而不断的变大,这主要是因为斜板的一个扭曲程度与弯矩的这个梯度的增大所导致的结果。但是我们还要考虑到一个问题就是,在进行跨中剪力的时候不能控制设计,因此,我们在继续计算的时候,需要选择一些相似的正桥的荷载的横向分布影响线,这样在计算正桥的跨中剪力的数值就显得比较容易,再乘以递增的系数。斜桥跨中的的一个最大的弯矩与在跨中截面无关,只是斜度有着很大的关系。斜角越大,向钝角方向偏移也越多。在实际生活中,对于低等级公路中小跨径斜交桥梁设计来说,在设计成的跨中是比较对称的,在实践中,可以在偏安全的在跨中保留一个水平的段。

对于较重要的桥梁,八分点截面处尚需以不折减的弯矩值作比较。来确定设计最大弯矩值。根据上文的分析,随着我国经济的快速发展,公路建设也在日新月异的发展,尤其是一些特别的公路,或者要求比较高的公路,会有较高的技术指标要求。我们可以看出在进行低等级公路中小跨径斜交桥梁设计的时候,因为斜桥的负载的一个横向的分布,还有在受力状态等方面与正桥有着一定的不同之处,在设计计算的时候就不能与正桥相同。所以,在这些低等级公路中小跨径斜交桥梁设计中要充分把握适当的构造方式,选择合适的设计计算方法,这样才能保证等级公路中小跨径斜交桥梁建设的合理性和安全可靠性。

桥梁设计论文范文第8篇

桥梁的结构设计的第一要务则是针对即将建造施工的地区选择一项经济合理的方案,第二就是根据方案选取规范的安全系数,从理论上保证设计结构的安全。桥梁的安全问题一般都出现在施工过程之中,耐久性不够强这类问题往往是由于管理人员的疏忽。在施工之前,桥梁的结构构造体系、结构材料的使用从开始动工到结束都需要技术人员的管理和核对,在这过程之中就有人员疏忽造成的材料结构数据不准确,结构整体性和延长性不足,冗余性较长;另外还有设计的图纸图示不明,在施工时的混凝土的等级的达标问题,所使用的钢筋直径的粗细程度,构件的截面的厚度等问题都需要人员的核实。一旦某一个管理环节被疏忽或者遗漏就会造成桥梁的使用持久性下降。另外,桥梁的安全性和持久性还和使用环境的不同有很大的关系,这是一个不可抗拒因素,无论是再科学合理的设计方案和巨细无遗的管理方案都无法弥补由环境的更新带来的问题。材料以及钢架需要一段时间的适应,这个问题的结构就需要施工人员和设计人员对材料特性的了解以及丰富的经验和准确的判断。

桥梁的结构性能的评比

桥梁的安全性和耐久性并不是被动的等到桥梁出现破损甚至倒塌才能够鉴定出桥梁的建设及使用情况,专业的数据评估制度是完善桥梁建设的标准。在国家建立的专业的桥梁检测标准中对使用年代较旧的桥进行检测。对于桥梁的负荷承载标准比较低和桥梁存在隐患的城市桥梁按标准进行技术评价。对于不能够达到建设时所设定的承载量的桥梁及时设置警示标志。桥梁的评比也只是集中在桥梁的几个重要方面,桥梁的变形观测、桥梁路面的线形弧度、剪力、轴力和基准线方向的偏离等等。国家还明确的规定了桥梁各个部件所使用的比例和限定额,在桥梁的施工后各项指标都不能够低于国家的标准。这也就有利于相关部门的审查与判断,数据的使用也预先知道桥梁的建设情况,保证其使用的安全性。

安全性是桥梁建设的根本出发点

质量桥梁建设的生命,桥梁作为沟通城市与城市之间的纽带,保证桥梁的畅通性。车辆行驶在桥梁上更加注重的是其安全性以及舒适型,因此有关部门必须高度重视桥梁的安全。一般的桥梁主桥部分为钢筋混凝土建成,钢索使用预应力混凝土的斜拉桥,建设过程中因地制宜的加筑排水孔,这些措施都是为了保证桥梁的安全性能。安全性是国家和人民都重视的问题,也是桥梁的基本特性,同时也是桥梁使用的意义所在。桥梁的施工、监理等工作也是相互合作关系,施工方需要接受工程师的监督、管理,这是创造监理工作的核心所在。安全性则满足设计的要求,施工工艺以及施工标准也均达标。只有坚持严格的检查,实行严格的责任问责制才能够换来桥梁的安全使用。

耐久性对桥梁建设的重要意义

钢筋的耐久性都是由材料的主要是由材料的使用以及设计的科学性,其中桥梁混凝土耐久性还受钢筋锈蚀的威胁,这个对桥梁的耐久性破坏主要分为几个表现,钢筋的表面由于空气自然因素出现了锈斑和锈片;随着时间的推移钢桥梁的筋的硬度发生了变化,进行膨胀,出现胀裂情况,桥梁的有效截面不断的减小,导致桥梁的有效截面逐渐变小,对汽车等承载力下降,最后混凝土丧失其承载能力。坚强桥梁的耐久性对桥梁具有重要的意义,只是对人民财产安全的保障,也能够为国家节省建设资本,同时又有于桥梁技术的发展。

对提高安全性和耐久性的建议

桥梁设计论文范文第9篇

要想做好盖梁计算工作,促使盖梁适用性得到提升,就需要从这些方面来努力:一是简化单元:因为盖梁的受力主要集中在弯矩、剪力和轴力,同时考虑了盖梁的几何长度,我们用平面杆单元来进行模拟,就可以顺利开展计算工作。二是简化荷载:通过梁体和支座,就会将物体的荷载传过来,那么就需要对最不利内力状况下,汽车引起的各个支座反力给准确计算出来。通过支座和梁体,将汽车荷载传递下来,如果需要十分准确的计算盖梁在不利情况下汽车产生的每个制作的内力,需要按照这些步骤来进行;求出T型梁支座的反力影响线,在布置车队的过程中,需要充分考虑T型的支座反力,来决定线纵的桥向布置;为了让桥梁拥有某种最不利的内力,布置于顺盖梁的方向汽车的车轮,盖梁中不同位置其最不利内力对应的是不同的车轮布置。结合车轮的位置,求出横向上T梁荷载的分布系数。在计算各片T梁荷载的横向分布系数时,也有一些问题需要注意;T梁上的不同剪力及其横向分布系数对应着不同的车轮的横向分布,T梁是相同的,剪力的横向分布系数是不同的,并且支点和跨中处也需要采取不同的计算方法。三是简化边界条件:对盖梁和墩柱的联结进行模拟,结合具体受力情况,科学分析。总之,在对盖梁计算的过程中,需要结合具体的桥梁情况,将科学的计算方法给应用过来,这样盖梁适用性方可以得到提升。我们举了简化边界条件这个例子。众所周知,相较于双悬臂简支梁模型来讲,连续梁模型计算的支点处控制弯矩比较的小,那么如果将双悬臂的简支梁模型给应用过来,就可以适当的削峰处理支点负弯矩。因为模拟的支点间距离会直接影响到连续梁模型的弯矩图量值,但是我们还没有足够的依据来确定这个距离。对于钢构模型来讲,支点处外侧截面有着较大的计算弯矩,其余处和连续梁模型有着基本相同的计算结果。如果在计算过程中,将钢构模型给应用过来,在设计过程中,对支点处外侧截面的控制标准稍微放松,就可以保证盖梁的计算结果,同时,桥墩横桥向的控制内力也可以同时获得,在桥墩设计中,需要对这些方面的内容进行验算,我们通常将这种方法应用到实际设计中。实践研究表明,不仅可以将盖梁的受力承载情况给反映出来,对于施工者的施工操作也可以发挥指导性作用。因为外侧面的内力被悬臂部分的荷载所完全控制,那么相较于实际情况,模型中计算的悬臂长度就比较小,模型的实际弯矩比实际弯矩的规格远远要小,那么将控制标准适当的放松,就可以减少资源浪费。

2结合盖梁预应力,对施工材料优化组合

在盖梁设计过程中,通过设计预应力盖梁,需要促使施工过程中结构安全不受影响,在营运状态下,盖梁的安全性也需要得到保证。因此,在设计的过程中,就需要将较大吨位钢束给应用过来,促使有效预应力得到提升;要分成两批来张拉钢束,如果有着较多的张拉次数,就会影响到正常的施工;如果有着较少的张拉次数,施工和营运要求无法得到满足。对钢筋合理布置,如果我们用骨和肉来分别比喻预应力筋和混凝土,那么筋就是普通钢筋,预应力结构只有具备了普通钢筋,方可以正常的运行。因为盖梁有着较大的尺寸,那么就需要对普通钢筋的直径严格控制,箍筋保证在11以上,纵筋要控制在15以上。同时,要科学加密箍筋间距,这样承受力方可以得到提升。在桥梁施工过程中,还需要充分重视空心预制板的使用;笔者认为,结合盖梁预应力,在设计过程中,选择的空心预制板需要具备较高的强度,并且整片梁顶板厚度在8厘米以上;如果空心板顶板度在7厘米以内,就需要将开仓处理措施应用过来,凿除掉那些厚度不够的部分,对芯模重新装上,并且将补强筋增加过来,浇筑的混凝土相较于原来的混凝土,有更高一级的标号,这样顶板厚度方可以与设计要求所符合。采取一系列的防水处理措施,如果是空心板底板密实程度不够,或者是没有足够的钢筋混凝土保护层,有渗水漏水问题出现,混凝土有着符合要求的强度,能够顺利通过静载试验,就可以将防水措施应用过来,在不密实的混凝土底板顶面上喷涂赛柏斯防水材料,经过渗透化学作用,混凝土密实度和强度就可以得到显著提升。如果预制空心板建筑高度比设计要求要高,那么就会对桥面铺装层的厚度产生直接影响,如果桥面铺装厚度与设计要求无法符合,那么就可以对墩台帽或者垫石高度进行调整,或者是将较厚的顶板部分给凿除掉,如果已经安装了上构,无法调整墩台帽和垫石,可以对纵坡科学调整;将这样的设计方法给应用过来,工程施工质量可以得到保证,桥梁的承载力也可以得到提升。

3结语

通过上文的叙述分析我们可以得知,要想优化桥梁工程中盖梁的设计,就需要充分把握桥梁建筑特征,对方案科学合理的设计,这样桥梁的承载能力方可以得到提升;要对设计方案的可行性充分重视,结合相关的试验数据,对施工操作起到有效性的指导作用;方案的兼容性也是需要考虑的,只有这样,方可以有效融合桥梁的其他设计方案,促使桥梁施工质量得到提升。

桥梁设计论文范文第10篇

摘要介绍桥梁施工中现浇盖粱的支架选用、主要施工注意事项、计算要点及改进措施。关键词简支桥梁现浇盖板支架1概述盖梁,也称帽梁,一般设于墩柱顶部,是钢筋混凝土简支梁桥中的下部结构主要受力构件。墩柱顶盖梁,如采用现浇施工,其施工质量,不仅受控于混凝土配合比、浇灌方法,且与采用的支架紧密相关。只有选择了坚实的支架,使模板牢固、可靠,拼缝严密、接口顺直,能抵抗混凝土自重和施工荷载,操作人员能安全地进行各种施工作业,才能确保施工质量和安全,杜绝模板漏浆、胀模等质量通病,杜绝模板支撑倒塌等安全事故。墩柱顶盖梁现浇施工的支架型式,主要有自落地支架式、抱箍挑架式和埋设托架式等。自落地支架,即在盖梁下部的地面上立支柱,搭成落地满堂支架,然后在支架上铺设模板,如图10抱箍挑架式,即在盖梁下的墩柱上套钢板箍,拧紧套箍的拼接螺栓,然后利用套箍搭设支架并铺设模板,如图3。埋设托架式,即墩柱上预留水平孔,待墩柱混凝土拆模并有一定的强度后,向预留孔中穿人钢锭,然后利用钢锭两端悬臂部分搭设支架并铺设模板,如图2。2各种支架的计算要点支架设计时,计算承受的荷载包括:模板自重、新浇筑钢筋混凝土重量、施工人员和运输工具重量、倾倒和振捣混凝土产生的荷载及支架自重等。2.1纵横粱的设计计算各种支架中,模板下、支架顶的纵横梁的设计计算大同小异,一般可将之当作简支梁计算。设计计算时,先初选构件类型(如方木、槽钢或工字钢等),再根据最大弯矩或最大剪力的数据,选择构件型号及截面,验算构件的挠度、弯曲强度和抗剪强度。2.2自落地支柱的计算自落地支柱可当作两端简支的轴心受压构件计算,先初选构件类型(如钢管、型钢或门式架等),再根据最大轴力的数据,按计算值选择构件型号及截面,最后验算抗压稳定性和水平联系杆的竖向间距(即水平联系杆的道数),并按构造要求设计扫地杆、剪刀撑、抛撑和缆风绳等。如盖梁离地面高度较大,所在地区基本风力较大,则应考虑风荷载,并核算选择抛撑和缆风绳。2.3抱箍的计算抱箍所能承受的荷载可由抱箍与墩柱之问的摩擦力平衡,其摩擦系数μ由墩柱面的平整度和粗糙程度而定,一般可取为μ=0.3—0.5。设计时应选择拧紧螺栓的数量,并验算其抗剪强度,同时应验算抱箍钢板的局部抗剪强度和抗挤压强度。2.4托架钢锭的计算预埋托架的设计,除选择计算纵横梁外,还应对埋设的钢锭的规格和截面积进行计算,核实其最大弯、剪力和支座处挠度。支架型式的选用,应结合现场设备及施工条件与盖梁的高度,还应保证现浇盖梁的施工质量和操作安全。3支架型式的选用条件支架型式的选用,应结合现场设备及施工条件与盖梁的高度,还应考虑经济成本尽量能就地取材,并应保证现浇盖梁的施工质量和操作安全。各种支架的适用情况和注意事项见表1。自落地支柱可采用钢管、型钢或门式架等,根据施工设备状况及荷载经计算选用;无论采用何种支架,施工时都应按计算挠度值设预拱度,并应搭设足够宽度的操作面(一般每边不小于1m)和周边护栏(高度不小于1,2m);各种支架的护栏边,都应满挂密目安全网,以防止高空坠落。4各型支架的优缺点及改进措施4.1各支架优缺点①自落地支架式结构简单,但在荷载作用下支架变形较大,耗用材料数量较多,文明施工管理工作量较大。②采用抱箍挑架式,在盖梁施工中下部仍可通行,不占地面工作面,便于管理,但抱箍挑梁中钢箍与墩柱之间的摩擦系数的取值难以掌握,依墩柱表面的平整度或粗糙度而异,施工时易发生抱箍滑脱事故,支架能承受的荷载不高。③埋设托架式虽然下部可通行,不占用地面工作面,易于文明施工管理,能承受荷载较大,支架在荷载作用下变形较小,但在埋设钢锭和施工受载时,墩柱混凝土需具备一定强度,施工后在墩柱中留下小孔,影响墩柱外观,施工后宜用微膨胀混凝土填塞小孑L及墩柱表面处理工作。4.2各种支架的改进为提高自落地支架的承受荷载,而减少变形或沉降,可利用万能杆件拼装成桁式支架。桁式支架可设计为满堂式,也可设计为柱梁式。对于在河岸上现浇盖梁,如土质条件较差,做适当压实处理并经采取措施后,也可采用自落地支架。如在地面上先铺木板或槽钢,或浇筑混凝土地板,以增大地基受压面积。对于水上现浇盖梁,由于桩基、系梁及墩柱施工时,已搭设了水上操作平台,因此可利用在该操作平台上直接搭满堂支架。但必须验算操作平台的稳定性和沉降量,慎重采用。一般简支梁桥中,在桩基与墩柱间都设计有水+‘平系梁,因而在水上与土质条件差的地面上,如盖梁与系梁的高差不大,可利用系梁作为受力底座,在系梁面上搭设落地支架。但系梁的强度必须经过计,必要时加大系梁截面或加配钢筋。在使用抱箍挑架式时,为预防施工荷载过大造成钢板箍滑脱,宜采用高强度螺栓和双螺母拧紧抱箍,也可以采用两层抱箍互相支撑的方法,或在抱箍底部预埋钢筋,以加强支撑。但预埋的钢筋在使用后应割,做好墩柱外观处理。如施工荷载不大,可在墩柱中埋设型钢,利用埋设的型钢搭设支托架。另外在埋设托架中,经钢锭。对于埋设托架式,也可将埋设钢锭与工字钢改为埋设牛腿,再在牛腿上搭设支架并铺设模板.5结束语在上海市政工程多年的施工实施中,各类型支架按实地情况经常选用,无论在保证工程质量及支架的设置经验上,虽获益匪浅,但当支架选定后,对一些重点的处理尤应重视。如自落式支架落于地面上的地基整平、夯实、扩大承力面,落于构筑物上对构筑物的核实补强;抱箍、托架式施工完毕后对墩柱外观的处理等。

上一篇:封面设计论文范文 下一篇:防震设计论文范文

友情链接