化学有机合成应用范文

时间:2023-10-26 17:17:12

化学有机合成应用

化学有机合成应用篇1

关键词:微波技术 分析化学 有机合成

引言

化学实验过程中,特别是有机化学实验中,因为加快反应进程,缩短反应时间,或者使反应更加彻底,往往需要对反应过程进行加热。传统的基于酒精灯的石棉加热、坩埚加热、水浴加热等方式,因为对流扰动的存在,可能使得加热过程对反应过程带来不必要的扰动。所以,上世纪八十年代末以来,微波加热在分析化学和有机化学中逐渐兴起。

一、需求分析

本文需要设计一个微波加热设备,用于分析化学和有机合成,可以进行基本的皂化反应、萃取反应、中和反应、食品分析、生物制样等操作。仪器可以设置微波功率、目标加热温度、加热时间等参数,可以对以上设置进行断电保存和策略管理。设备的加热部分有效容积可以满足一般实验室的试验空间需要,以铁架高度计算,目前的有机化学铁架的高度为550cm和450mm两种,为了保证微波照射时铁架尖端与金属反射壳之间不发生放电反应,其安全保护距离为150mm。建议采用450mm铁架的反映下,容器内高度应该至少为600mm。容器内的深度及宽度应该满足振荡器和会转盘的放置,本文设定不小于300mm。

二、总体设计

系统加热仓高度600mm,深度300mm,宽度300mm,内部反射板采用1.2mm铝镁合金板,外部壳体高度720mm,深度380mm,宽度520mm,材质采用1.2mm彩钢板。内部骨架采用20×2mm扁钢焊接而成。内壳采用无缝焊接法,经过打磨后涂纳米反射漆,增加其对微波的反射率,且应确保其反射内部没有突出物和连接螺栓,内壳采用焊接在外壁上的栓接点与框架栓接,外部壳体采用分体设计,与框架逐一栓接。微波管采用2M219JE522高压微波管,回转扇驱动方式为42通道步进电机42BYG250C。

控制方式上,采用5.3寸触摸彩色电容屏控制,输入电源为220AVC电源,使用专门设计的电源分配器,输出127V进入高压微波管,5V进入SCM系统、温度采集系统和步进电机控制系统,12V进入到光电耦合器隔离的高压控制模块。SCM选择基于ARM7核心的全志A20系统。

三、硬件选型

家用微波加热灶具的设计因为对于温度要求不高,所以常使用主动定时算法进行加热,主动定时算法根据既定的时间控制法,可以使用较小的计算能力实现相应的功能。甚至部分家用设备采用全电磁控制即可实现功能。但是,化学反应往往要求反应容器的温度控制在±0.5℃以内,所以,必须采用被动温控算法,通过可以放置在溶液中的温控探头进行温度条件监测。探头需要较好的防水、防酸、防碱、防辐射的封装方式,为了方便起见,探头使用电阻式测试棒,使用三种不同的方式进行封装。探头使用屏蔽双绞线从壳体预留孔中穿入反射壳外,穿孔位置使用树脂套管对尖端进行保护。使用STM32F407VET6芯片对温度模拟量进行数字化预处理,使用UCN5832EP对以上数据进行锁存。回转扇的驱动方式采用扭矩为0.55NM的42BYG250C。由于本文设备是一个单输入双输出模式,所以不设置复合总线,使用PA口接收温度传感器数据,使用PD口驱动回转扇电机。因为回转扇驱动仅需要8位并行数据,所以,可以在PD口32位数据中分出2位同步控制高压微波头。高压微波头前置采用A-HCPL-2631耦合器控制的12V电压控制的70TPS16TO247可控硅控制。

采用10ms的响应速度,系统每10ms需要处理温度数据32位。在LINUX操作系统的动态内存管理模式下,系统用于处理该数据且进行输出的CPU周期约为148个。运行在800MHz下的A20平台,完全可以在完成系统显示任务和网络交互任务的前提下完成此处理任务,系统冗余度高于99%。

四、算法设计

1.算法策略

采用模糊控制的原理,可以根据温度的目标方向和温度的变化速度得到控制策略。形成一个单输入单输出算法模型。

1.1读取温度数据。

1.2检验温度数据()与预设温度()之差。

1.3检验温度的变化速度。

1.4采用模糊算法(见表1)确定执行策略。

1.5向执行部件输出策略。

2.软件辅助功能

结合SQLite,将常见试验的加热时间和加热温度进行保存,特别支持分段策略的方式和温度斜率的控制方式。分段加热是指在试验开始后的不同时间点上执行不同的目标温度,而斜率加热是分段加热的一种特定形式,也就是使用分段加热功能对温度曲线进行微分整理,使得温度可以在较长的时间内持续升高或者持续降温。

五、结束语

综上,通过模糊控制法和A20强大计算能力的支持,本文系统可以实现较为复杂的温度控制,且在加热过程中规避了基于酒精灯加热的受热不均匀带来的对流现象对于有机反应的扰动。特别是在皂化反应等需要静置的有机反应中,本文系统会表现出更强的优势。本文系统可以用于有机化学和分析化学等高精度实验室化学反应的辅助处理,且其硬件成本较低,给软件的科技附加值留出了较大的空间。所以,本文系统可以针对A20系统和LINUX系统进行较大程度的延伸开发。

参考文献:

[1]李峰;张润基;陈学迪.微波技术在化学合成中应用的研究进展.[J].卫生职业教育,2012(01):95-96.

化学有机合成应用篇2

单元教学设计是指在认真解读课标、深刻理解教材并考虑到考试评价的基础上,依据学生的知能实际和心理需求对一个完整的教学主题进行的多课时整合性一体化的教学设计,其关注的焦点在于通过对同一主题多角度、多层次、不同方式的学习,将“点”状态知识结构化组合,将碎片式能力贯通性培养,将散落的科学观念统摄型建构,其目标指向为促进学生多元整体性认知结构的形成。

“有机合成”作为单独的教学内容安排在选修教材《有机化学基础》(人教版)的第三章“烃的含氧衍生物”第四节,以有机物的合成为目标,复习各种官能团之间的相互转化,在基本有机反应的应用过程中,学习有机合成的方法和途径,理解有机化学的价值,促进结构观、联系观、转化观的形成,而在后续“合成有机高分子化合物”的教学内容中,教材又从合成方法和合成原理的角度作了进一步拓展和系统化,知识应用的深广度和问题解决过程中的思维要求进一步提高。学生面对的有机合成问题,通常包括基于分析性思维能力的合成方案的解析和基于创造性思维能力的合成方案的设计,从对化学科学的理解、信息素养、问题的探究与解决能力等学习和评价要素看,“有机合成”是有机化学知识的制高点和生长点,更是学生学习的难点和思维能力培养的绝佳素材,因此,将“有机合成”作为一个教学单元的主题是合理的,更是必要的。

1单元教学目标的设计

本单元的教学内容包括有机合成方案的解析与设计。从知识的精髓看,两者是一致的,都是有机物官能团的结构、性质、转化及其应用;从面临的问题看,合成方案的解析侧重于通过对已知方案中未知物质的分析、线路的评价和探究结果的表达,在方案的理解和体会过程中达成逆合成分析法的形成,而合成方案的设计,则是通过新合成方案的构造和反思优化,在逆合成分析法的应用过程中,促进学生综合思维能力的提升,两者对素养与能力的要求具有明显的递进性;再从问题解决的策略与过程看(见图1所示),两者具有较强的关联性和融合性。

依据以上分析,“有机合成”单元教学目标的设计为:以有机合成为主线,将有机化合物的结构、性质、转化等知识点串联起来,使之系统化;以合成方法原理和特点的分析为重点,在问题解决的过程中,感受有机合成的本质、价值,培养问题解决策略,提升问题解决的思维能力,形成正确的科学观念和价值观念。

本单元的设计教学时段为三课时,课时教学目标的预设为:第一课时,整理回顾各类官能团的结构特征,引导学生从化学键的断裂与形成的角度理解有机化学反应及有机物之间相互转化的本质;关注有机物碳架的构建和官能团引入方法;在简单问题的解决过程中,穿插问题解决基本策略的培养。第二课时,在熟练掌握各类有机物转化关系的基础上,通过对实际生产实验中的合成方案的分析评价,体会有机合成的含义,学会多种问题解决策略的应用。第二课时是将第一课时中掌握的系统化知识应用于实际问题的解决,由此形成的问题解决能力还将对综合性更强、开放度更大的有机合成方案的设计起到先行组织者的作用。第三课时,综合应用有机化学知识和各种问题解决策略,完成对新物质或功能高分子化合物的合成方案设计;体验有机合成在生产、生活及高新技术领域的重要作用。

2 单元教学活动的设计

单元教学活动的设计包括单元学习主线的设计和课时学习活动的设计。

基于单元教学总体目标,本单元学习活动主线设计为:官能团与有机物的转化,在分析各种有机物官能团结构的基础上,理解有机物转化的本质,进而形成官能团转化的系统知识和基本策略合成方案解析,应用有机化学知识和问题解决策略,分析、评价真实背景下的实际合成方案合成方案设计,综合考虑各种因素,构造科学合理的合成方案。

基于课时教学目标服务于单元教学总体目标的原则,课时学习活动的设计既要保持单课时的独立性又要关注前后各课时之间教学目标的一体化达成、知识和能力的递进性和螺旋式上升,鉴于此,本单元课时学习活动设计如下:

第一课时,(1)回顾各类有机物的官能团,从化学键和基团之间的相互影响分析官能团对有机物化学特性的决定性作用,从旧键的断裂与新键的形成理解有机反应的本质。(2)以有机代表物间的相互转化将各类官能团的联系系统化。如要求学生以有机代表物为例,用方程式说明“醇醛酸酯一条线,乙烯联系一大片”的含义。(3)设计恰当“问题串”,在问题解决的过程中形成问题解决的基本策略。

[教学片断1]问题1:①环氧氯丙烷是制备树脂的主要原料,工业上有不同的合成路线,以下是其中的两条合成践线(有些反应未注明条件)。

(问题转化策略、正逆向递归策略)

2. ①当一取代苯继续发生取代反应时,新引进的取代基受到原取代基的影响而取代邻位、对位或间位。使新的取代基进入它的邻位、对位的取代基:-CH3、-NH2、-X;使新的取代基进入它的间位的取代基有:-COOH、-NO2等。

若将②、③两步反应顺序颠倒,也可以得到C,但实际上是不妥的。请你指出不妥之处_____。

②反应步骤BC的目的是什么?

(新信息介入策略、反思评价策略)

3.①多沙唑嗪盐酸盐是一种用于治疗高血压的药物。多沙唑嗪的合成路线如下:

EF的反应中还可能生成一种有机副产物,该副产物的结构简式为_____。由F制备多沙唑嗪的反应中要加入试剂X(C10H10N3O2Cl),X的结构简式为_______。

②合成有机高分子化合物的途径有哪些?

[师生交流]见图2所示。

(式型匹配策略、模型建构策略)

(4)学习反思,由官能团间的转化反应到新物质的获取策略进而引发对合成方案的关注。第一课时作为对已学知识的回顾整理,学生的学习活动更多地以内省式的独立思考、生生间的讨论交流为主要形式展开,教师主导问题的提出并作为问题讨论的首席参与者,融入学生的学习活动。

第二课时:提出核心任务,应用逆合成方法的原理解析有机合成方案。把第一课时获得的学习成果置于真实的问题情境中检验反馈、拓展应用。选取经残缺设置后的实际生产或实验中真实的合成方案作为课堂教学素材,引导学生解决问题、掌握方法:物质分析原料的正向推衍、产物的片断解析、新信息的合理插入、官能团的正逆向对接,直至全部合成线路的贯通并将分析结果运行检验。线路分析合成顺序的科学性、合成路径的简约性、目标产品的产率、环境保护等。准确表达按要求正确书写有机物结构简式、有机反应方程式、同分异构体、识别反应类型等。

[教学片断2]问题1:尼龙-66被广泛用于制造机械、汽车、化学与电气装置的零件,亦可制成薄膜用作包装材料,其合成路线如下图所示(中间产物E给出两条合成路线)。

完成下列填空:

(1)写出反应类型:反应②_________反应③_________。

(2)写出化合物D的结构简式:_________ 。

(3)写出一种与C互为同分异构体,且能发生银镜反应的化合物的结构简式:_________。

(4)写出反应①的化学方程式:_________。

(5)试评价中间产物E的两条合成路线___________________________。

(6)用化学方程式表示化合物B的另一种制备方法(原料任选):_________。

(知识应用,在分析、判断、比较和评价等过程中提高分析性思维能力)

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

[交流]略

2. 以苯乙酮为原料的苯氧布洛芬钙合成路线如下,试回答下列问题:

信息一:氯化亚砜(SOCl2)可与醇发生反应,醇的羟基被氯原子取代而生成氯代烃。

信息二:已知:

(1)写出A_____,B_____,C_____,D_____,E_____,F_____的结构简式;

(2)写出苯乙酮的其他同分异构体(必须含有苯环和羰基)

(应用多种问题解决策略解析有机合成方案)

[交流](1)物质分析的策略与过程:见图3所示。

(2)同分异构体书写(见图4所示):

合成方案的解析是对第一课时知识和方法的拓展、组合型应用,而合成方案本身又是第三课时方案设计的范例,方案解析过程中形成的问题解决策略对第三课时学习活动具有内在的支撑价值,因此,本课时在全单元学习中具有承上启下的作用。本课时的学习活动形式主要为问题解决驱动下的小组合作、师生交流。

第三课时,教师发挥主导作用,根据学生实际设定问题的综合度,提出若干目标产物的合成方案设计任务,引导学生通过小组内交流合作、小组间比较优化、个体体验内化等学习活动,在问题解决的过程中提升思维品质。本课时以具有实际应用价值的目标产物的合成为问题背景,要求学生综合应用有机化学知识和各种问题解决策略,依据逆合成方法的原理,在联想创新中设计方案,在比较评价中优化方案。本课时的学习活动有利于学生进一步构建完善自己的知识网络和方法体系。

[教学片断3]问题1:香豆素( )

是一种用途广泛的香料,可用于配制香精及制造日用化妆品和香皂等。请用合成反应流程图表示出以

乙醇和邻羟基苯甲醛()合成香豆素的合成方案。

提示:①合成过程中无机试剂任选

本单元教学设计始终定位于以有机物之间官能团转化的知识为载体,通过合成方案的解析与设计,在问题解决过程中,培养问题解决策略,提升问题解决能力,所以,本单元设计了两类反馈检测题,一是对给定合成线路的解析,以考察学生对逆合成方法的理解水平;二是合成方案的构造,如“有机玻璃、涤纶的合成方案设计”,以考察学生对逆合成方法的应用水平。

3 单元教学设计的思考

单元教学主题的确定要突出“生本性”。课堂学习过程是师生和谐共创的心理能动过程,特别需要注重师生间的内在心理共鸣与外显教学共振的和谐统一。因此,一定要重视 “学情调研”,从学生实际出发,切实考虑学生当前已有的经验、思维方法和态度及心理需求(包括应对考试的需求), 把有利于学生基础知识的有效加强、认知结构的有效改良、分析问题解决问题等思维能力的有效培养,直至化学科学观念的有效形成,作为我们单元教学设计的出发点和追求目标。这就需要教师真正走近学生,通过作业与考试分析、学习过程观察、交流与访谈等,了解学生对学习内容的看法和自己对学习内容的想法,师生共同确定单元教学主题。

单元教学设计要落实整体性、发展性。一方面单元教学应服务于学科整体知识系统的理解、科学观念的形成和科学思维方法的培养;另一方面“单元”又是一个相对独立的教学单位,有一个相对完整的教学主题,其教学目标的确定、教学内容的整合和教学活动的安排自然具有整体性特征。单元内课时教学活动服务于单元教学目标的达成,各课时教学活动中知识学习与能力培养具有内在的联系性和发展性。如“有机合成”单元教学设计的整体性应落实在理解有机反应本质,将有机化学知识系统化,形成结构观、转化观、应用观,培养问题解决策略与问题解决的思维能力等教学目标的设定上;发展性则应落实在官能团转化知识、应用知识分析合成方案、应用知识设计合成方案的学习活动预设中。

参考文献:

[1]王磊,黄燕宁.单元教学设计的实践与反思[J].中学化学教学参考[J]. 2009,(3):9~11.

化学有机合成应用篇3

关键词:高分子化学;教学研究;有机化学;融通应用

中图分类号:G642 文献标识码:B 文章编号:1002-7661(2013)33-002-01

有机化学(Organic Chemistry)是一个名词,由瑞典化学家贝采里乌斯(Berzelius)在1806年提出的。当时是与无机化学相对立而命名的。同时,又被称为碳化合物的化学,其主要是研究有机化合物的结构、性质以及制备的一门学科,是化学中十分重要的一个分支。其中,含碳化合物被称为有机化合物,这是由于原先的化学家们认为含碳物质一定要由生物(有机体)才能制造,然而,1828年德国化学家弗里德里希・维勒(Friedrich Whler),在实验室中第一次成功合成尿素(一种生物分子),从此以后,有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。

一、高分子化学

高分子化学主要包括高分子化学、高分子物理和高分子工艺,它是高分子科学的三大领域之一。高分子化学主要就是研究高分子化合物合成、化学反应、物理化学、加工成型以及应用等方面的一门综合性学科。在内容上,高分子化学和有机化学以及物理化学有直接关系,所以,我们必须学好这门学科,这对学生掌握有机化学知识的理解十分有利,同时,又为以后的学习打下一个坚实的基础。从而,我们要注意将有机化学知识融入到高分子化学的学习中,提高学生的学习兴趣,进而对学生的创新思维进行培养,学会融会贯通。

二、有机化学分类

对于有机化学我们可以从两方面进行不同分类。

1、有机化合物的碳原子结合的基本结构不同

(1)链状化合物,主要是其化合物分子中的碳原子连接成链状,最开始是在脂肪中发现的,因此可成为脂碳环化合物。

(2)碳环化合物,主要是其化合物分子中含有碳原子组成的环状结构,所以称之碳环化合物,其可以分为脂环族化合物以及芳香族化合物两大类,前者是和脂肪族化合物相似的碳环化合物;后者是其分子中还有苯环、稠苯体系的化合物。

(3)杂环化合物,在这类化合物中除了碳原子以外,还有其他元素的原子,所以就叫做杂环化合物。

2、依据官能团分类

官能团就是决定某一类化合物性质的主要原子、原子团。含有相同官能团的化合物,其化合物的基本性质相同。如下图:

三、高分子有机化学的反应

1、聚合反应

由有机小分子(单体)经过聚合反应制成的就是高分子化合物。聚合反应主要分为两类:

(1)缩聚反应

经过缩聚反应产生的缩聚物,如涤纶,学名聚对苯二甲酸乙二醇酯,它主要是对苯二甲酸和乙二醇合成的。这些都是官能团单体之间多次缩合小分子而成的。

(2)加聚反应

经过加聚反应产生的聚合物,如苯乙烯合成聚苯乙烯等,都是由于烯类单体的双键加成聚合成的。

在有机化学中,我们要通过学习熟练地掌握聚合反应的性质、特点。聚合反应中的缩聚反应和加聚反应是不同性质的,他们的结构、性能也不尽相同。缩聚是为了平衡反应通过官能团(二个或以上)的单体的缩合反应,并去掉某些小分子而成,这种情况属于逐步聚合,要有大于98%的高的基团反应程度才能得到高分子化合物并伴有副反应。加聚是烯类单体通过双键断裂相互加成并且在引发剂、光照等的作用下的聚合反应,在反应中没有生成小分子,这种情况属于连锁聚合,万一发生的话可以很快形成高分子化合物。但必须加快反应的转化率,同时,所得聚合物多属于碳链聚合物。

2、电子效应与位阻效应

电子效应与位阻效应作为有机化学中的重要内容,是高分子化学中的一个非常重要的体现,它涉及到化合物的稳定性以及反应机理的选择等多个方面。如单体对聚合机理的选择性直接影响着分子结构中的电子效应。又因为电子效应中包含着共轭效应以及诱导效应,正因为共轭和诱导作用,可以进行阴、阳离子和自由基聚合。单体中取代基的位阻效应影响着聚合动力学的影响,取代基中的多种效应(共轭效应、极性效应以及位阻效应等)影响了聚合中单体、自由基的活性,但是影响程度并不一样。

3、合成与改性高分子化合物

作为高分子化学中的教学内容,高分子化合物的改性十分重要,它是以高分子材料的性能与引入功能制备新的聚合以及扩大应用范围为主要目的。通常有共聚化学改性以及聚合物化学改性等改性方法。它融入了很多相关的有机化学知识,使其在高分子化学教学中得到融通实践。

综上所述,将有机化学知识融入到高分子化学教学中,不仅使学生的学习兴趣提高了,更加有效的保证了教学效果。

参考文献:

[1] 贾红兵.高分子化学导读与题解(与第4版配套)[M].北京:化学工业出版社,2010.

化学有机合成应用篇4

【关键词】计算机;分析化学;有机化学;实际应用

1前言

有机化学中涉及到大量的复杂分析立体结构、化学反应以及反应机理等,随着近年来科学技术的进一步发展,越来越丰富了有机化学的内容,并且使计算机的应用深入到各个领域中。因此,了解并利用计算机技术能够有机的结合化学领域中原有的分析技术,能够有效解决化学领域中的实际问题,从而促进分析化学与有机化学领域的进一步发展。

2分析化学中计算机的应用

2.1仪器分析

在仪器分析中计算机的应用有效实现了其智能化发展,对于计算机与仪器分析领域中智能化仪器属于全新的课题与研究内容。目前在仪器分析领域中,计算机的应用主要体现在原子吸收光谱、气相色谱-质谱联用为主。在原子吸收光谱分析中,计算机技术的应用主要体现在自动进样与稀释、试样的自动改换与冲洗等。也就是说,院子吸收光谱仪与计算机、打印机及样品台共同组成了一个人工操作的控制系统。除此之外,计算机在仪器分析中的应用能够确保仪器最佳实验状态,并换算被测元素浓度的工作曲线坐标标度,最终通过自动测量及累加平均处理的方式对测量到的信号进行分析。在气相色谱-质谱的联用中,可以对化合物中的分子结构进行分析,从而对未知物相对分子质量、混合物中不同组分含量进行准确地测定。因此,在有机化学、环境保护、石油化工以及生物化学等领域中,气相色谱-质谱联用受到越来越受到关注及应用,并得到了快速的发展。

2.2化学分析

实验者在对数据采用计算机进行处理的过程中,可以对多次试验数据采用一元统计的方式进行统计,根据此计算出置信区间以及标准误差等。若要通过滴定实验的方式在化学分析中确定物质的含量,也可以利用线性回归的方法对相关的数据进行处理,不仅使化学分析方法及过程更加方便快捷,也能够显著地提高对数据处理的精准度。在测定制定的组分中采用计算机能够有效地消除各种干扰因素,一般来说可以采用当量与平衡模型。其中平衡模型指的是通过化学方程式的形式来建立在各种平衡常数基础上共存的每一种平衡。实验者在对某些未知量进行测量后,便能一并计算出被测物质的共存干扰物质具体含量。而平衡模型在实际应用中适合对化学分析问题进行处理,但缺点在于平衡常数的精密度会在一定程度上对平衡模型解决化学分析问题造成影响,溶液浓度也会对平衡模型的使用造成束缚。而当量模型的应用基础便是测定信息与待测物含量之间的关系,在此过程中所提及到的测定信息包括沉淀重量与滴定体积等。将这些信息组成方程组,便能够一一计算出许多种成分的含量。在化学分析过程中适合采用当量模型,同时也适用于对一部分仪器分析中,其所具有的准确度要明显高于平衡模型的准确度,但在实际应用的过程中也会受到一定限制。

3有机化学中计算机的应用

3.1图谱检测

在有机化学的应用中测得的谱图准确性可能存在问题,例如基体与溶剂对图谱所造成的影响,甚至于还包括一些共存物质对谱图所造成的干扰等多种情况。而对于未知待测液来说,由于其本身就属于未知物,因此在研究的过程中无法做到将其分离成纯的一种化合物,此时便需要应用到差谱技术,也就是纯净化合物谱图采用的是差减方法。而在此之前,差谱一般需要应用到双光束补偿以及光学相关原理等方法,但也无法识别出在未知含量中干扰物质对于实验的所造成的影响。人工操作计算机能够使计算机完成差谱程序的任务,差减试样的图谱与换算后的干扰物质的标准图谱,从而实现数据平滑、扣除基体以及多组分逐级差谱等效果,从而能够为有机物成分与结构分析提供新的方法及手段。

3.2检索谱图

在有机化学分析中计算机的应用还包括对谱图进行检索,不同的有机物结构具有不同的检索谱图,凭借不同有机物结构不同会使谱图上的特征峰也不同,这样就可以鉴定出未知有机物的结构。因此,谱图的检索就成为有机分析的关键手段,一般来说较为常用的方法包括红外吸收光谱、核磁以及质谱等谱图。

3.3有机物合成路线的设计及优化

计算机具有的逻辑推理功能,使得推理性很强的有机合成问题得以实现计算机化。计算机辅助有机合成就是指用计算机找出目标化合物的各种可能的合成路线。利用数据库方法把已有的合成路线导入到计算机中,根据实际要求如:最经济的实验合成路线、污染程度最低的实验合成路线、方法最为简单的实验合成路线、产率最高的合成路线等,通过计算机来确定最佳的合成路线。这将为分析者提供解决问题的便捷。

4结语

综上所述,随着科学技术的发展,在仪器仪表中计算机的应用也得到飞速发展,许多其他领域的仪器新技术基本都是与计算机相联用,计算机的应用不仅实现了仪器的智能化,方便了化学分析,同时也加快了化学的变革和发展。在不断创新改进过程中,无论是计算机领域还是化学领域都进入了一个全新的发展阶段,随着技术的进一步发展计算机和化学之间将会具有更加广阔的发展前景。

参考文献:

[1]王慧彦,马卫兴,陶传洲等.计算机在有机化学及其实验教学中的应用[J].广州化工,2013,41(13):265~267.

[2]郭占京,黄宏妙,卢澄生等.计算机模拟技术在有机化学理论教学中的应用[J].广东化工,2014,41(16):196~197.

[3]郑燕,孙文新.计算机化学软件在大学有机化学教学中的应用研究[J].石家庄学院学报,2014(3):122~124,128.

[4]刘明辉.有机化学虚拟实验的多媒体设计和开发[J].中国科教创新导刊,2010(34):190.

化学有机合成应用篇5

关键词:药物合成反应教学;反应机理思维;教学改革;问题现状

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)32-0126-02

一、引言

从药物合成反应教学现状之中,可以分析出传统教学模式构建过程存在很多不足,对学生反应机理思维方式培养较少,而思维引导与启发的艺术性不能得到充分体现。同时教学模式固定化导致教学开展途径较为单一,对学生参与积极性的调动难度较大。针对这几方面的问题进行具体的改革,烘托出学生反应机理思维方式的重要性,并且将其思维培养的艺术性有效提升,促使思维能力的引导过程作为教学模式构建的主体,积极调动学生参与积极性,对教学质量、效果的提升是有力的保障。

二、药物合成反应教学中存在的问题

1.对学生反应机理思维方式培养重视程度不高。药物合成反应教学是以有机化学为根本,对药物合成所产生的反应进行深入的研究,探索出药物合成的具体方法。从当今高校药物合成反应教学的具体现状出发,教学过程中对与学生化学变化所经由的基元反应思维方式的培养相对较少,主要还是停留在理论强化层面,实际反应过程的根本原理以及原理形成的原因并不能进行实际探索,难以形成切实有效的反应机理思维方式。教学应从药物合成反应教学的内在实质角度出发,目标在于使学生反应机理的运用能力不断提升,药物合成的基本原理以及方法能够有效掌握,实际运用能力能够得到充分体现。而传统药物合成反应教学并不能有效培养反应机理思维方式,学生对于药物合成反应掌握过程较为死板,因此实际应用能力很难得到体现。这是由药物合成反应教学思想的侧重点所决定的,因此这一方面是主观因素之一。

2.教学中思维能力的培养缺乏艺术性特征。思维能力的培养并不是靠单纯的硬性规定就能够达到理想的效果,需要在思维引导的基础上逐步形成一种固定而又特有的思维模式,而思维引导则是一种具有艺术色彩的思维探索与发现的过程。在药物合成反应教学过程之中,课堂教师对于学生思维能力的培养往往依靠硬性强化,对学生提出较高的要求,学生则是被动的完成课堂教学任务,思维能力的培养过程往往会变成任务的硬性完成过程,这对学生的思维能力并不能达到有效地引导。在这种背景下,学生思维能力的形成往往具有一定的单一性和刻板性,而思维的灵活性很难得到保障。教学中的思维能力培养的自然艺术性特征不能体现,课堂气氛较为沉闷,对学生思维能力的启发、诱导、形成过程不能形成良好的环境,思维能力培养过程则成为了一种硬性灌输过程。

3.课堂教学模式化,学生参与积极性很难调动。课堂教学模式化在于课堂教学风格具有一定的固定性,对于人才能力的培养方向以及手段较为统一,形成模式化发展格局。而药物合成反应教学特点在于对学生思维运用强度较大,思维灵敏性要求较高,为此,基本模式教学并不能满足药物合成反应教学的内在需求。在药物合成反应教学中,学生思维灵敏性的有效提高,关键在于对教学气氛进行不断地优化,促使学生思维运转速度不断增强,有效激发学生的思维能力,促使教学效果能够达到最佳目标。在现阶段合成反应教学中,教学过程模式化现象较为严重,学生课堂参与中思维的灵敏性以及有效的激发过程并没有充分实现,导致了学生对教学内容并没有强劲的学习兴趣,参与积极性调动难度较大,课堂教学效果并不能良好的体现,不利于药物合成反应教学的未来发展。

4.课堂讨论缺乏针对性,反应机理难以深入探索。在药物合成反应教学中,反应机理讨论环节所具有的广泛性较强,虽然对相关反应进行了具体的讨论过程,但针对主要反应机理的讨论相对较少。这样所导致的结果就是课堂教学主体的研究过程并没有成为重点,学生对反应机理的思维方式培养过程较少,而自身思维观点的交换有效性并不强烈,课堂讨论所具有的内在价值体现程度不高,同时反应机理的纵向研究深度并不能得到有效加强。这是当今药物合成反应教学存在的基本现状之一,而这一现状所体现出的则是药物合成反应教学存在的又一不足,即对于学生思维能力、思考方向、思维探索的培养作用较弱,学生自身思维观点的交换价值较低,课堂教学效果难以达到预期目标。

以上几个方面是药物合成反应教学中存在的重点问题,也是导致学生思维能力、思维意识以及惯性思维难以形成的重要原因,对药物合成反应教学中的反应机理的纵向研究产生消极影响。对此针对上述具体问题进行具体改革,改革总体思路如下。

三、药物合成反应教学改革的几点思考

1.转变传统应试教育思想,提高教学灵活性与适用性。应试教育思想的形成主体并不只是在于教师方面,学生也是药物合成反应教学应试思想形成的第二主体。从教师层面而言,对于教学思想的转变关键在于教学发展方向,而从学生层面而言,应试思想的转变在于自身社会应用能力的有效提高。针对于教师课堂教学而言,需要教师对教学过程进行有机优化,将反应机理思维方式作为教学发展的核心,对学生化学变化所经由的基元反应思维方式进行多样化培养,以思维引导为主体,强调思维方式形成的应用性能,提升学生反应机理思维的灵活性。而对于学生而言,应根据药物合成反应的基本原理,对相关反应机理进行有效探索,使得反应机理之间的内在联系的紧密性不断加强,探究出一条更适合学生本身的反应机理思维。学生和教师的反应机理思维的灵活性与应用性不断提升,将对教学效果以及学生未来发展产生积极、有效的帮助作用。

2.对学生反应机理的思维方式进行积极培养。对于学生反应机理的思维方式培养,关键在于对学生思维方向进行有效的引导和启发,促使学生能够以基本的、固有的思维方式为主体,逐步向教师引导方向有效靠拢,提升反应机理的思维方式的有效性及准确性。从药物合成反应教学特点出发,学生自身的思维构成具有一定的差异性,而在进行学生反应机理的思维方式的引导过程中,需结合学生所具有的具体思维方式差异,对其思维能力进行有针对性的引导,使得不同学生的反应机理思维构成特点能够具有较强的适应性与独特性。针对反应机理思维形成较为持久的学生,教师应结合其他学生力量进行侧面辅助引导,发挥出学生之间所具有的带动作用,使得个别学生能够克服思维形成的障碍。这是药物合成反应教学对学生反应机理思维方式进行积极培养的核心,同时也是有效探索出适合当代学生反应机理思维方式的重要途径,会对药物合成反应教学改革产生积极有效的推动作用。

3.注重课堂教学艺术性色彩,提升思维能力艺术价值。反应机理思维的培养,注重教师对学生思维的引导过程。而在思维引导过程中的沟通过程则是有效的传播途径,应以思想、意识的启发作为必备条件,为此学生反应机理思维的培养应体现出艺术性以及艺术价值。在这样的思维培养环境中,对学生思维的启迪能够产生强烈的推动作用,并且对于学生思维形成的特点能够得到更为有效的了解,引导方式能够实现个性化、具体化,发挥出药物合成反应教学反应机理思维培养的艺术价值及艺术特征。这是对传统药物合成反应教学理念的颠覆,体现出课堂教学的魅力,能够切合学生思维形成的具体特征进行有针对性的思维培养,艺术性以及培养过程的艺术价值油然而生,与传统药物合成反应教学理念形成鲜明地对比。在这一基础上药物合成反应教学改革所具有的先进性能够得到充分体现,同时课程教学发展方向逐步由单一模块化教学向艺术性教学转变,应试教育思想也能够向探究教育培养迈进。

4.结合课堂实际,有效开展课堂专题化讨论。从反应机理思维的培养角度来看,学生思维的引导与启发关键在于课堂讨论教学环节的有效性,使学生之间能够对思维构成的主要因素进行意见的交换,从中促使学生思维的培养过程更为明显化、直接化。而对于教师而言,则可以对课堂讨论的具体环节有效掌握,对学生反应机理思维形成状况也能够及时、有效的了解。根据课堂实际教学,对课堂讨论的中心进行有针对性的明确,这样教师对于不同知识点学生反应机理思维的具体形成过程能够全面掌控,为学生反应机理思维的启发、引导起到外在的支持作用,而课堂专题化讨论所具有的意义、价值也能够得到更为有效地发挥。

以上几个方面作为实现药物合成反应教学改革的重要组成因素,结合当今药物合成反应教学的基本现状进行具体研究,改革总体思路以现状之间形成了相互作用,以此对转变现状产生相应的作用,不断提升药物合成反应教学发展目标。

四、结语

药物合成反应教学改革的重心并不仅仅在于表面的教学模式,更重要的则是教学中心以及教学思想的转变。从思想层面来看,对学生反应机理思维的有效培养,能够促使学生对化学变化所经由的基元反应思维方式得到正确培养,促使学生药物合成的具体原理及途径的认识不断提升,能够对教学效果的有效转变产生积极的影响作用。而对于课堂教学艺术性的有效加深,可以促使反应机理思维培养环境能够得到有效优化,使学生的参与积极性不断提高,充分培养思维方式的灵活性以及敏捷性,对教学效果的提升形成促进作用。

参考文献:

[1]李西安.浅析多媒体技术在有机化学教学中的应用[J].延安大学学报(自然科学版),2004,(03).

[2]陈文华,刘巧云.高职《药物合成反应》“项目化教学”初探[J].常州工程职业技术学院学报,2008,(04).

化学有机合成应用篇6

一、有机物的化学性质和制备

有机化合物的性质与其所含官能团息息相关。具有相同官能团的化合物,在物理和化学性质上具有很大的相似性。结构决定性质,在知道化合物的结构后,就可以据此推测化合物所具有的性质。有机化学中讨论某一类物质的性质时也会涉及物理性质,但重点研究的还是有机化合物的化学性质,所以在此只讨论从物质结构分析化学性质的方法。一是找出具有反应活性的原子、基团或官能团,然后进行讨论。筛选的化学活性部位主要包括两个方面,其一是官能团本身,其二是受官能团影响较大的周围原子或基团。如环烯烃的化学活性部位就是C=C和受C=C影响较大的α-H;二是应用电子效应和空间效应理论分析分子活性部位的结构特点,结合反应的普遍规律,推测该活性部位具有的性质。以1-甲基环戊烯的性质为例,环上C=C结构中π键的弱稳定性和电子云在双键平面的上下分布能推测出C=C易发生亲电加成反应,甲基的作用使C=C上电子云分布不均,进一步导致极性亲电试剂加成时具有不对称性。从结构预测性质,电子效应和空间效应是学生必须掌握的两种理论;三是将抽象化、概念中的物质具体化,比如,亲电试剂包括浓硫酸、卤素、水、氢卤酸等。另外,C=C也容易被氧化剂氧化,生成链端具有相同官能团的开链化合物,根据产物的结构不同进行分析,可知用作氧化剂的物质的氧化性强弱。又如环二烯烃,由于具有共轭双键和环状结构,所以能够发生双烯合成反应,是合成含有六元环的双环化合物的好方法。学生因此从本质上掌握了反应特点,遇到相关结构就能触类旁通。由于有机化合物的化学性质涵盖的内容比较多,若想在短短的四十五分钟内完成教学,不借助于多媒体教学手段是难以有效完成的。知识容量大是多媒体教学的一大特点。互动教学模式的运用体现在随堂练习和复习的时候,即练即将,提高了学生的学习注意力和主动性,增强了学生对知识掌握的效果。进行有机化学教学的目的是通过一定的原料合成目标化合物从而满足日常生产的需要,有机化合物制备包含的内容是:某一化合物可以利用哪些原料和试剂、通过哪些反应得到,有的简单,有的复杂。有机物制备涉及的有机化学基础知识比较丰富,有些用于作原料的物质的性质和反应原理都是在后续章节中进行学习的内容,如制备环烯烃,其中方法之一就是以脂环醇为原料、在脱水剂的作用下加热消去一个水分子得到目标物烯烃,但醇类的性质、消去反应等知识的学习被安排在烯烃章节之后,因此在讲授环烯烃制备时只能从反应事实上讲解。化合物制备的教学内容适宜的教学策略是直接讲授反应事实,无需纠缠反应的原理。

二、有机物的反应机理

有机反应机理的研究是有机化学教学中的难点之一,在工科专业的教学中没有作重点要求,但是仍然需要讲解透彻,因为很多的化学性质中涉及的有机反应在讲明了机理后才更利于学生掌握。有机反应机理的教学过程中,需要强调其重要性,引起学生重视使学生认识反应机理对于有机物化学性质学习的重要性,激发其好奇心和求知欲非常关键。多媒体教学也是一种促进教学直观化的重要教学手段,它将抽象、枯燥的学习内容以图像、文字、动画、声音相结合的直观形式表现出来,使学生通过多种感官刺激,全方位地获取丰富的信息,便于学生理解、记忆,更好地解决知识的重点和难点,起到事半功倍的教学效果。单纯地讲解机理是很枯燥的,学生学习起来也很吃力,在教授反应机理的过程中,充分运用多媒体将带来事半功倍的效果。例如,在介绍烯烃的亲电取代反应历程的时候,采用传统的教学方法很难将抽象的电子转移过程表现出来。而利用多媒体模拟其过程,制作成直观的动画,形成一个动态的过程,使反应中电子的转移和亲电试剂的进攻过程形象地呈现在学生面前,使学生一目了然,学习兴趣得到提高,对知识的掌握会更加准确。此外在课堂教学进度允许的情况下,多给学生随堂练习的时间,练习中遇到的问题及时发现及时解决,消除学生学习新知识时的疑难,使之顺利掌握知识。

化学有机合成应用篇7

关键词:官能团类别;结构;性质

文章编号:1008-0546(2013)07-0086-02 中图分类号:G633.8 文献标识码:B

doi:10.3969/j.issn.1008-0546.2013.07.034

在中学阶段化学可分为无机化学和有机化学两大块。有机化学中主要包括有机化合物之间的相互转化和联系。有机化合物简称有机物,它主要由碳元素、氢元素、氧元素组成。有机物是生命产生的物质基础。大多数有机化合物主要含有碳、氢两种元素,此外也常含有氧、氮、硫、卤素、磷等。部分有机物来自植物界,但绝大多数是以石油、天然气、煤等作为原料,通过人工合成的方法制得。同无机物相比,构成有机物的元素不多,但有机物的种类繁多、数目庞大。要想学好这些有机物光靠死记硬背是不行的,需要从官能团的有关性质入手,主要从以下五个方面入手:

一、借助官能团类别,认识有机物的结构、组成及分类

官能团是决定有机物化学性质的原子或原子团。中学阶段常见的官能团有碳碳双键、碳碳叁键、羟基、羧基、醛基、酯基、羰基、醚键等等;确定了官能团的类别,就可以认识有机物的结构;而结构就决定其性质及组成。例如乙醇的分子式为C2H6O,如何确定乙醇官能团的位置与结构,很多学生只是死记硬背其结构简式。其实在教学过程中,可以先让学生写出其可能有的结构,再让学生动手操作其球棍模型观察其不同的结构模型。让大家先形成一种感性的认识,对于分子式C2H6O有两种不同的结构,一种是CH3CH2OH,另一种是CH3OCH3,到底是哪种结构?可以让学生讨论和交流,学生各抒己见。实验是检验其结构的标准。大家动手做金属钠与无水乙醇的实验,观察到实验现象金属钠沉在无水乙醇的底部,在金属钠的表面有气泡均匀冒出;说明金属钠能与无水乙醇发生化学反应。据此实验可以确定乙醇的结构。对于乙醇的结构可以有两种解释;第一种是根据少量的金属钠保存在煤油中,而煤油是烃类的混合物,只含有C和H两种元素,由此说明金属钠与碳元素上连接的氢元素不反应,无水乙醇与金属钠反应只能与羟基上的氢原子反应。从而证明乙醇分子中含有醇羟基;另一种方法是通过实验验证进行定量计算得出结论,取一定量的金属钠与一定体积的无水乙醇反应。这样通过实验验证定量计算发现2mol乙醇和2mol金属钠反应生成1mol氢气。由此确定出乙醇分子的结构中含有一个醇羟基。

二、根据官能团的特点,确定物质的性质

有机物的种类和数目非常繁多,原因之一就是存在许多的同分异构体,它们属于分子式相同,结构不同的化合物。例如分子式为C5H12O,它的同分异构体的数目就很多。如果根据官能团的种类进行分类,以含有相同的醇羟基的同分异构体有六种,结构决定性质。只要具有相同的官能团,不论醇羟基在任何位置其化学性质相似。例如:凡是醇都可以发生燃烧反应生成二氧化碳和水;凡是有机物中含有醇羟基就能跟金属钠、钾等活泼金属反应置换出氢气,不能跟氢氧化钠、碳酸氢钠反应;凡是有机物中含有醇羟基就能跟氢酸(HX)发生取代反应,生成相应的卤代烃;凡是有机物中含有醇羟基就能羧酸发生酯化反应生成相应的酯等等;凡是有机物中含有醇羟基就可以发生分子间脱水 (取代反应)生成相应的醚。一般醇可以发生氧化反应生成相应的醛或酮,只有少数醇不能被氧化生成相应的醛或酮。这是由于官能团的位置不同,当醇羟基的位置连接在末端碳原子上,就都能被氧化成醛;当醇羟基的位置连接在中间碳原子上,并且此碳原子上还必须连接氢原子,就都能被氧化成酮,反之此碳原子上没有连接氢原子就不能被氧化生成相应的醛或酮;同样大多数醇在浓硫酸作催化剂条件下,可以发生消去反应生成相应的烯烃。凡是连有醇羟基的邻位碳原子连有氢原子,就可以发生消去反应生成相应的烯烃,反之连有醇羟基的邻位碳原子没有连有氢原子,就不能发生消去反应生成相应的烯烃。掌握好官能团的特点,就可以确定有机物的性质,这对学好有机化学非常重要。

三、明确反应条件对官能团的影响,做到举一反三,灵活应用

由于官能团相同而反应条件不同时,造成产物不同。因此要记清条件,灵活应用做到举一反三。例如乙醇与氧气反应,在点燃的条件下生成二氧化碳和水;而在铜丝做催化剂加热条件下生成乙醛和水。有时反应温度不同,产物也不同。还是以乙醇为例,乙醇在浓硫酸做催化剂条件下,温度在140℃度时进行分子间脱水,发生取代反应产物是乙醚和水;而在170℃时进行分子内脱水,发生消去反应产物是乙烯和水。因此做乙醇生成乙烯的实验中温度要快速升至170℃,否则就会有副产物生成。同样酯类的水解,在酸性条件下水解不完全,生成相应的酸和醇;而在碱性条件下水解完全,生成相应的盐和醇;因此油脂在碱性条件下水解完全,被称为皂化反应。反应条件不同,产物不同是有机化学学习的一个重点。

四、注重官能团之间联系,研究物质的合成

有机物之间能够相互转化,都是利用官能团的之间联系。目前中学阶段常见的官能团有碳碳双键、碳碳叁键、羟基、羰基、羧基、醛基、酯基等。以乙醇为例合成乙酸乙酯,其合成路线是乙醇中的醇羟基经催化氧化为乙醛,乙醛进一步氧化为乙酸,乙酸中的羧基与乙醇中的羟基在浓硫酸作用下发生酯化反应生成乙酸乙酯,而乙酸乙酯中的酯基又可以发生水解反应生成相应的醇和羧酸。因此凡有关物质的合成的问题,要学会分析合成的有机物属于何种类型,带有什么官能团,与哪些信息有关;还要综合运用有机反应中官能团的衍变规律及有关的提示信息,掌握正确的思维方法,综合运用顺推或逆推的方法导出最佳的合成路线,这是学好有机化学的有一个诀窍。

五、辨别官能团的特性,准确理解反应机理

有机物中不同的物质,化学性质不同,造成它们不同的原因在官能团上。官能团不同,在化学反应中表现的反应机理不同。例如,乙醇与乙酸在浓硫酸作用下发生酯化反应,它们的反应过程是乙醇中的官能团—羟基去氢,乙酸中的官能团—羧基去羟基;醇与酸发生酯化反应机理是:酸去羟基,醇去羟基氢。

官能团的知识至关重要,只有掌握官能团这一知识点,在学中必须加以灵活运用,才能把知识转化为自己的能力,才能学好有机化学。

有机化学是中学化学的重要组成部分。要想学好有机化学,必须要掌握官能团的性质,深刻领会官能团在有机化学中的重要地位是学好有机化学的金钥匙。

总之通过有机化学的学习发现有机化学的规律性比无机化学更强,一旦掌握规律,就会使很多题目迎刃而解。这就需要同学们在以后的学习中用心去记识、去理解、去掌握。

参考文献

[1] 王祖浩,吴星主编.高中化学教学参考书[M].南京:江苏教育出版社,2007

化学有机合成应用篇8

摘要:本文对高职精细有机合成技术课程教学内容进行了改革与实践,结合传统教学存在的弊端,重点围绕课程的特点,从教学安排、教学方法、考试评价方式、实践教学内容及项目化教学等方面进行了实践和探索,获得了期望的教学效果。

关键词:精细有机合成;教学实践;教学方法

高职精细化工技术类专业承担着为国家培养高素质技术技能型人才,特别是为从事化工/轻化工类企业生产一线岗位培养人才的任务。在高职精细化工技术类专业开设的课程中,“精细有机合成技术”是一门必修的专业主干课之一,其前期课程为无机化学、有机化学、化工原理等,其后期课程一般为药物合成技术、精细化学品复配技术、精细化学品检验技术等课程。可见,开设此课程的目的是在学生掌握有机化学、无机化学等理论的基础上,对硝化反应、磺化反应、烷基化等单元反应的原理及其在工业生产中的实施方法有一个更深入的掌握,熟悉合成机理、制备工艺、合成路线以及分离提纯等相关知识,为今后从事生产操作、合成路线设计、分析测试等岗位打下良好的基础。

精细有机合成技术课程的教学内容丰富、知识面广、实用性强,应用领域广,如:日用化学品、化妆品、原料药、农用化学品、香精香料等,而且该课程不仅要求学生掌握合成的基本理论,还需要掌握合成的操作技能,可见,精细有机合成技术在整个课程体系中十分重要。因此如何更好的开展精细有机合成技术课程教学、增强教学效果、提高教学质量,同时又能调动学生的学习主动性和积极性值得研究和探索。本文以四川工商职业技术学院的精细化工技术专业所开设的精细有机合成技术课程为例,作者紧紧围绕课程的特点,采用“教-学-做”三位一体的教学模式,从教学安排、教学方法、考试评价方式、实践教学内容及项目化教学等方面进行了探究,引导学生深入思考,启发学习兴趣,深化学习内容,提高分析、研究和实践的能力,并对如何有效开展该课程的教学等方面进行了大量教学实践与探索。

1精细有机合成技术课程设置

在我院精细化工技术专业的课程体系中,精细有机合成技术课程安排在第三个学期进行,包含理论教学和实践教学,总课时量为64学时,另外还有综合实训环节16学时,教材以《精细有机合成技术》及配套实验教材《精细化工实验技术》(冷士良主编)为主,包含:颜料、涂料、胶黏剂、表面活性剂及日化用品等产品的制备,通过实验操作让学生了解精细化学品合成的基本反应原理并锻炼实验操作能力。

2传统教学存在的问题在精细有机合成技术课程的传统教学中,理论和实践教学主要存在以下问题。

2.1理论教学方法单一

精细有机合成技术以有机合成基本理论为主线,研究合成路线、合成原理、工业生产过程及实现过程最优化的途径及方法,课程难度大,该课程传统的教学方法主要以讲授为主,穿插一些实验增加理论的理解,对学生来讲这种传统教学模式枯燥乏味,学生被动的学习,积极性差,参与度不足,渐渐地失去学习兴趣,这种单一的教学方法忽视了学生在课堂上的主体地位,教学效果不佳。

2.2实践教学形式单一

精细有机合成技术这门课是典型的理论和实践一体化的课程,不仅帮助学生掌握化学反应的基本理论和知识,还需要培养学生的实践动手能力。在精细有机合成技术课程实践教学中,教学模式一直是先由教师讲实验原理、操作步骤及注意事项,然后学生按照实验教材重复操作,严格依照教材规定的投料量、工艺条件、操作步骤、提纯方法等完成,导致学生对投料比、反应条件、产率影响因素等都不清楚,更无法对工艺进行改进和优化,造成学生不能深入理解工艺路线和合成原理,不能全面培养学生的分析和解决问题的能力。另外,实验的开设需要根据专业培养方向有针对性的选择,不能一律按照同一本配套实验教材开展实验,进而不能突出专业特色。

2.3考核方式单一

精细有机合成技术课程的考核成绩一般由平时成绩和期末考试成绩两部分构成,平时成绩由老师根据上课出勤、作业、实验情况综合评定,占总评成绩的比重一般在20%~40%范围,另外期末考试采取闭卷笔试方式,占总评成绩的比重一般在60%~80%范围,这种考核方式很大程度上只能验证学生对课程表面理论知识的掌握情况,学生通过临时死记硬背来应付考试,缺乏对知识的理解与运用,更谈不上用所学的知识进行创新和解决实际问题了。可见,这种考核方式不能体现该课程的典型理实一体化特点,实验考核比重低,缺少量化指标,忽视实验操作、创新及科研能力方面的考核,因此传统的考核方式存在着诸多弊端,考核方法及方式的改革十分必要。

3课程教学实践与探索学生的发展、学生的成长

成才是高等职业教育质量的核心灵魂,是根本的质量。以学生的发展为目的,为了激发学生潜能,更好的开展精细有机合成技术课程教学、增强教学效果、提高教学质量,为了探究一种以学生为主体、以问题为导向的教学方法,为了激发学生学习兴趣,调动学习的主动性和积极性,作者紧紧围绕人才培养目标,对如何有效开展理论知识讲授、实践教学及考核方法等方面进行了探索。

3.1理论联系实际,激发学生兴趣

精细有机合成技术课程的主要内容是以有机单元反应(如硝化、磺化、卤化、酰基化、烷基化、羟基化等)为主线,系统介绍了精细化学品生产过程中最重要的十几个单元反应的基本原理、反应历程、产物精制与分离、应用范围及实例,而且对有机合成反应的新方法、新工艺、新技术及有机合成路线设计也作了相应的介绍。可见,精细有机合成技术是典型的有机合成理论与生产工业实际相结合的课程,在讲授过程中需要理论联系实际来激发学生兴趣,让学生更好的掌握有机合成单元过程的基本知识和基本理论,比如通过第一章绪论的学习要让学生了解有机合成的任务、内容、发展历史和今后的发展趋势,了解单元反应的类型和特点,使学生明白该课程与毕业后所从事工作的关系以及对国民经济发展的贡献。因此在绪论章节的讲解中,可选用中国科学家屠呦呦荣获2015年诺贝尔奖的案例来激发学生兴趣,通过了解抗疟新药青蒿素创造性地提取、结构表征、人工合成提纯等过程,使学生掌握有机合成的原理、工艺、提纯及结构分析等知识。在学习有机合成的两大任务之“实现有价值的已知化合物的高效生产”时,可以联系维生素C的工业生产方法,先将葡萄糖还原成为山梨醇,经过细菌发酵成为山梨糖,山梨糖加丙酮制成二丙酮山梨糖,然后再用氯及氢氧化钠氧化成为二丙酮古洛酸,再经过酸的催化剂重组得到维生素C,让学生更深刻的理解已知结构化合物通过人工合成提高了生产效率。又如在讲解有机合成的两大任务之“创造新的有价值的物质与材料”时,可以联系化妆品、洗涤用品、药物、高分子聚合物及功能材料等栩栩如生的实例,可明显提高学生的学习兴趣和求知欲,加强学生的感性认识,强化理论实用性,同时提升教学效果。

3.2多种教学方法,提高教学效果

鉴于精细有机合成技术课程的特点,繁杂的单元反应,枯燥的反应历程,众多的合成路线及生产工艺过程等等,如果教师仅是按照教材照本宣科,面面俱到,不但影响教学效果,而且不利于培养学生的实践技能,还会导致学生厌学情绪。这就要求教师能够在现代教学理论的指导下,打破传统教学的弊端,科学合理的选择和有效地运用教学方法,引入启发式教学、项目化教学、类比教学等多种新的教学手段,充分调动学生的兴趣,提高教学质量。在理论讲授环节,教学内容按照单元反应模块进行划分,各个模块之间又相互衔接有共同点,如芳烃的烷基化和酰基化机理均是亲电取代反应,在反应历程、影响因素、催化剂等均有共同点,教学时可采用类比教学法,在比较中使学生触类旁通,加深理解和掌握,另外,教学还要紧密结合专业实验,可采用项目化教学法,以项目为载体、任务为驱动,突出学生主体地位,提高学生综合运用所学知识和分析问题的水平,培养学生解决问题和开发创新的能力,多种教学方法的运用对于提高教学效果十分有益。

3.3设计实验项目,贴近生产实际

精细有机合成技术课程需要学生掌握反应物的化学结构、官能团的性质、反应物的浓度、配比等因素对合成反应的影响,还要熟悉单元反应的实施与应用,分析和解决有机合成中的实际问题。可见,该课程具有典型的职业技术的特点,教学要注重实践技能和实用性培训,做到理论教学融合于实践教学中。作者依据专业人才培养目标和生产实际来设计实验项目,思路是“一模仿二创新三综合”,“一模仿”即典型的单元反应安排相应的实验,如氧化单元反应开设甲苯氧化制备苯甲酸,还原单元反应开设对硝基苯酚还原制备对氨基苯酚,酰化反应开设用乙酸酐酰基化苯胺制乙酰苯胺等等,学生按照实验教材的制备工艺练习操作,理解反应的原理;“二创新”即学生在掌握原理的基础上通过查找资料打通或者优化合成路线及工艺条件,如学生在掌握了用苯胺为原料以乙酸酐为酰基化试剂制备乙酰苯胺的基础上,自己完成对实验的优化改进,可以调整投料比、反应温度、更换酰基化试剂、催化剂等工艺条件,从而提高产品纯度、产率或者减少副产物等等。“三综合”即学生通过查找资料独立完成给定实验项目,如由起始原料水杨酸(邻羟基苯甲酸)制备乙酰水杨酸(阿司匹林)并提纯精制,或者完成以氯苯为原料制备对乙酰氨基苯酚(扑热息痛)的制备并精制。通过以“一模仿二创新三综合”为思路的实践项目锻炼,贴近生产实际,对培养学生独立思考、科研创新能力有很好的效果,特别是创新综合项目中的文献资料查阅、实验方案设计、提纯精制以及数据处理能为学生提供一种有效的技能锻炼途径。

3.4改革评价方法,发挥激励导向功能

考试是教学活动的重要环节,是教学评价的重要手段,并且具有导向、激励、评价等功能。精细有机合成技术课程的成绩评价应采用多元化考核评价模式,既有理论又有实验,既有笔试又有答辩,既有计算推理又有综合论述,多种形式相结合,提高过程评价考核权重,尤其是对创新性、探索性的综合项目给予权重倾斜,总评成绩由平时成绩和期末闭卷考试成绩构成,其中平时成绩权重由传统的30%提高到50%,平时成绩涵盖实验方案、操作过程、实验结果、创新开发、项目讨论、课堂表现及完成作业等内容,科学合理的多元考核有效激发了学生的学习动力,提高了学生的综合素质能力,并充分发挥了考试的导向功能。

4结语

精细有机合成技术是一门重要的专业主干课之一,在教学实践中,基础理论联系生产实际可激发学生的学习兴趣,采用项目化、类比等多种教学方法可提高教学效果,设计贴近实战的项目化实验可充分提升学生技术技能水平,创新多元合理考核评价方法可全面发挥其激励导向功能,我们通过对精细有机合成技术课程的教学实践与探索,不仅出色的完成了该课程的教学任务,而且教学效果得到了学生的广泛好评。实践证明,创新教学方法、优化实践教学内容、工学结合、多元考核评价方法有利于提高职业院校学生的综合能力,有利于培养高素质技术技能型人才。

参考文献

[1]薛叙明.精细有机合成技术[M].2版.北京:化学工业出版社,2013.

[2]蒋涛,陈群,李英利.《精细有机合成技术》项目化教学改革探索[J].职业教育研究,2011(1):102-103.

[3]马树超,郭文富.新时期高职教育质量与院校评估要点分析[J].职教论坛,2016(12):5-9.

[4]陈稀平,张岐,陈泽林.精细有机合成教学内容改革与实践[J].化工高等教育,2012(3):43-45.

[5]安秋凤,郭睿,黄良仙,等.工科精细有机合成化学与工艺教学的实践与探索[J].山东化工,2014,43(12):161-162,166.

上一篇:汽车工业发展现状范文 下一篇:电磁辐射相关知识范文