无机化学反应机理范文

时间:2023-10-25 17:14:26

无机化学反应机理

无机化学反应机理篇1

关键词:Hess定律;标准状态;摩尔反应焓变

中图分类号:0642.11?摇 文献标志码:A 文章编号:1674-9324(2013)01-0190-02

热力学是无机化学课程的重要组成部分,它是以热力学第一定律、热力学第二定律、热力学第三定律为基础,主要解决化学反应中能量转化及化学反应进行的方向和程度问题,其中焓变计算是解决等压情况下反应中能量转化问题、进行吉布斯自由能变变计算进而判断反应进行程度和方向的基础。

在无机化学课程中,通常忽略温度、压力对焓变的影响,同时,对于非标准状态下的反应来说,反应焓变还没有一定的计算公式。本文对无机化学中标准状态下反应焓变的计算方法进行了归纳和总结,便于学生更好地理解和掌握。

一、计算标准摩尔反应焓变的理论基础

计算标准摩尔反应焓变的理论基础是Hess定律,即在恒容或恒压条件下,一个化学反应不论是一步完成或分几步完成,其反应热(即摩尔反应焓变)完全相同。

Hess定律的实质是指出了反应只取决于物质的初、终状态,而与经历的具体途径无关。其重要意义在于能使热化学方程式像代数方程式一样进行加、减运算,从而可以应用已知化学反应的热效应,间接算得未知化学反应的热效应,解决那些难以测量或根本不能测量的反应热效应问题。应用时要注意:将已知的热化学方程式进行线性组合的结果必须与欲求的未知化学反应的状态完全相同,包括温度、压力及各物质的相态,并且这些化学反应都是在等温、等压或等温、等容条件下进行的,都不做其他功能[1]。

焓的绝对值是无法确定的,但可以采用相对焓值。焓是状态函数,状态函数的最主要特点是其变化值只取决于系统的始态和终态,而与系统变化的途径无关。因此,以Hess定律为理论基础,可以求得反应的摩尔焓变。

三、结语

标准摩尔反应焓变的计算是无机化学热力学部分计算的基础,焓的绝对值不可测,只能测其相对值,其概念多、计算公式多,学生掌握起来有一定的难度。通过以上的归纳和总结,使化学反应标准摩尔焓变的计算系统化,有助于大学生对焓变计算的理解和掌握,有助于提高无机化学课程教学的质量。

参考文献:

[1]朱传征,褚莹,许海涵.物理化学[M].北京:科学出版社,2008:48-49.

[2]钟福新,余彩莉,刘峥.大学化学[M].北京:清华大学出版社,2012:39.

[3]金继红.大学化学[M].北京:化学工业出版社,2006:39-40.

[4]南京大学《无机与分析化学》编写组.无机与分析化学[M].北京:高等教育出版社,2006:29.

[5]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2001:36.

无机化学反应机理篇2

【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。

当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。

根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述:

一、无机合成与制备化学研究进展

无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面:

(一) 极端条件合成

在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。

(二) 软化学合成

与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”, 正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。

(三) 缺陷与价态控制

缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。

(四) 计算机辅助合成

计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。 国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、Mon te2Carlo 优化计算等建立有关的合成反应数学模型与能量分布模型, 并进一步建立定向合成的专家决策系统。

(五) 组合化学

组合化学是利用组合论的思想和理论, 将构建单元通过有机/无机合成或化学法修饰, 产生分子多样性的群体(库) , 并进行优化选择的科学。组合化学用于合成肽组合库, 也称组合合成、组合库和自动合成法。组合方法同时用n 个单元与另外一组n′个单元反应, 得到所有组合的混合物, 即n+ n′个构建单元产生n×n′批产物。

(六) 理想合成

理想合成是从易得的起始物开始, 经过一步简单、安全、环境友好、反应快速、100% 产率获得目标产物。趋近理想合成策略之一是开发一步合成反应,如富勒烯及相关高级结构的合成, 从易得的石墨出发, 只需一步反应即得到目标产物, 产率44%。趋近理想合成策略之二为单元操作。相对复杂的分子, 如药物、天然产物的合成, 需要多步反应完成。在自然界里, 生物采取多级合成的策略, 在众多酶的作用下, 用前一步催化反应的产物作为后续反应的起始物, 直至目的产物的生成。

(七) 仿生合成

仿生合成无论从理论还是从应用上都将具有非常诱人的前景。无机合成与制备化学在生物矿化、有机/无机纳米复合、无机分子向生物分子转化等研究领域发挥重要作用。用一般常规方法难于进行的非常复杂的合成如何利用生物合成将其变为高效、有序、自动进行的合成。例如生物体对血红素的合成可以从最简单的酪氨酸经过一系列酶的作用很容易地合成出结构极为复杂的血红素。因此,仿生合成将成为21 世纪合成化学中的前沿领域。

二、我国无机化学研究最新进展

近几年我国无机化学基础研究取得突出进展,成果累累,主要在以下几个方面取得了令人瞩目的成绩:

(1) 中科大钱逸泰、谢毅研究小组在水热合成工作的基础上,在有机体系中设计和实现了新的无机化学反应,在相对低的温度下制备了一序列非氧化物纳米材料。溶剂热合成原理与水热合成类似,以有机溶剂代替水,在密封体系中实现化学反应。他们在苯中280度下将GaCl3和Li3N反应制得纳米GaN的工作发表在Science上。

(2) 吉林大学冯守华、徐如人研究组应用水热合成技术,从简单的反应原料出发成功地合成出具有螺旋结构的无机-有机纳米复合材料,M(4,4'-bipy)2(VO2)2(HPO4)4(M=Co;Ni)。在这两个化合物中,PO4四面体和VO4三角双锥通过共用氧原子交替排列形成新颖的V/P/O无机螺旋链。

(3) 南京大学熊仁根、游效曾等在光学活性类沸石的组装及其手性拆分功能研究方面设计和合成具有手性与催化功能的无机有机杂化多维结构,他们改性了光学活性的天然有机药物(奎宁),以它作为配体同金属离子自组装构成了一个能进行光学拆分消旋 2-丁醇和3-甲基-2-丁醇,拆分率达 98?以上的三维多孔类沸石。

(4) 中国科学院福建物质结构研究所洪茂椿,吴新涛等在纳米材料和无机聚合物方面的工作引起国内外同行的广泛重视。他们成功地合成纳米金属分子笼(nanometer-sized metallomolecular cage),还成功的构筑了一个新型的具有纳米级孔洞的类分子筛[{Zn4(OH)2(bdc)3}.4(dmso)2H2O]n,其中孔洞的大小近一纳米。在金属纳米线和金属-有机纳米板的合成和结构的研究成果斐然。设计合成了一些金属纳米线,金属-非金属纳米线和金属有机纳米板。

(5) 北京大学高松研究小组在磁分子材料的研究方面取得了突出成果。在水溶液中以1:1:1的摩尔比缓慢扩散K3[M(CN)6](M=Fe3+,Co3+),bpym(2,2'-bipyrimidine)和Nd(NO3)3,合成了第一例氰根桥联的4f-3d二维配位高分子[NdM(bpym)(H2O)4(CN)6]。3H2O,24个原子形成的二维拓扑结构。

(6) 清华大学李亚栋研究组在新型一维纳米结构的制备、组装方面取得了突出的进展。李亚栋课题组首次发现了由具有准层状结构特性的金属铋形成的一种新型的单晶多壁金属纳米管,有关研究成果在美国化学会志上(J.Am.Chem.Soc.123(40),9904-9905,2001)报道。这是国际上首例由金属形成的单晶纳米管,铋纳米管的发现为无机纳米管的形成机理和应用研究提供了新的对象和课题。

面对生命科学、材料科学、信息科学等其他学科迅速发展的挑战和人类对认识和改造自然提出的新要求,化学在不断地创造出新的物质和品种来满足人民的物质文化生活,造福国家,造福人类。当前,资源的有效开发利用、环境保护与治理、社会和经济的可持续发展、人口与健康和人类安全、高新材料的开发和应用等向我国的科学工作者提出一系列重大的挑战性难题,迫切需要化学家在更高层次上进行化学的基础研究和应用研究,发现和创造出新的理论、方法和手段,并从学科自身发展和为国家目标服务两个方面不断提出新的思路和战略设想,以适应21世纪科学发展的需求。

参考文献

[1] 徐如人, 庞文琴. 无机合成与制备化学 [M]. 北京:高等教育出版社. 2001.

[2] 冯守华, 徐如人. 无机合成与制备化学研究进展[J]. 化学进展 ,2000(12).

[3] 梁文平, 唐晋, 王夔. 新世纪化学发展战略思考[J]. 中国基础科学,2000(5):34-61.

无机化学反应机理篇3

固体无机化学是跨越无机化学、固体物理、材料科学等学科的交叉领域尤如一个以固无机物的“结构”、“物理性能”、“化学反应性能”及“材料”为顶点的四面体是当前无机化学学科十分活跃的新兴分支学科。

1 固体无机化合物的制备及应用

固体无机化合物材料的制备大多是利用高温固相反应这些反应难以控制能耗大成本高。为此发展了其它各种合成方法如前体法、置换法、共沉淀法、熔化法、水热法、微波法、气相输运法、软化学法、自蔓延法、力化学法、分子固体反应法等。其中近年来提出的软化学合成方法最为突出它力求在中低温或溶液中使起始反应物在分子态尺寸上均匀混合进行可控的一步步反应经过生成前驱物或中间体最后生成具有指定组成、结构和形貌的材料。

1.1光学材料的研究。苏勉曾等用均相沉淀法在水溶液中合成了氟氯化钡铕(ⅱ)经过处理后制得无余辉、发光性能良好的多晶体。用这种多晶体制成的高速增感屏其增感因素是钨酸钙中速屏的4~5倍已被全国2000所医院使用。1983年苏勉曾等在系统研究氟卤化物的x-射线发光及紫外发光现象的过程本文由收集整理中发现了bafx:eu2+晶体经x-射线辐射后着色的现象开始注意到晶体中色心生成并于1984年开始研究晶体的x-射线诱导的光激励发光现象及发光机理用光激励发光材料制成了图像板作为x-射线的面探测器。他们还设计制作了一台由光学精密机械和计算机组成的计算x-射线图像仪已可以获得清晰的x-射线透视图象和粉末晶体衍射图像。

1.2多孔晶体材料的研究。徐如人、庞文琴等在水热法合成各种类型分子筛的基础上发展了溶剂热合成法利用前驱体和模板剂制备了一系列水热技术无法合成的新型磷酸盐及砷酸盐微孔晶体所合成的jdf-20是目前世界上孔口最大的微孔磷酸铝;1989年徐如人、冯守华等首次报道了微孔硼铝酸盐的合成和性质之后又获得了一系列新型微孔硼铝氯氧化物。其中硼的配位数可取4也可取3但不会高于4;铝、镓、铟的配位数大多超过4有的甚至达到6。所有这些都突破了传统分子筛纯粹由四面体结构基元构成的概念为开发新型结构特征的微孔材料提供了丰富的实验依据。

1.3金属氢化物的研究。申泮文等设计了有特殊搅拌设备的固-液-气多相反应釜使“金属还原氢化反应”在400~500℃范围内进行完全;利用此类反应以新方法合成复合金属氢化物;以“共沉淀还原法”“置换扩散法”制备了钛铁系、镍基或镁基合金等储氢材料;创造了钕铁硼等永磁材料合成新工艺。

1.4 c60及其衍生物的研究。1990年底中国科学院化学研究所和北京大学开始c60团簇的合成实验研究尔后国内10余个单位相继开展了c60的研究取得了很好的结果如首先在国际上建立了重结晶分离c60和c70的方法;在国内首次获得了k3c60和rb3c60超导体达到了当时的国际先进水平;发现在阴极中掺杂y2o3可以大大提高阴极沉积物中等碳纳米管的含量;首先报道了直接氧化c60含氮化合物的研究成果等。

2 室温和低热固相化学反应

从固体无机化学的发展过程来看固相反应尤其是高温固相反应一直是人们制备新型固体材料的主要手段之一。但长期以来由于传统的材料主要涉及一些高熔点的无机固体如硅酸盐、氧化物、金属合金等通常合成反应多在高温进行所得的是热力学稳定的产物而那些介稳中间物或动力学控制的化合物往往只能在较低温度下存在它们在高温时分解或重组成热力学稳定产物。为了得到介稳态固相反应产物扩大材料的选择范围有必要降低固相反应温度。

2.1固相反应机理与合成。忻新泉等近10年来对室温或近室温下的固相配位化学反应进行了系统的研究探讨了低。热温度固-固反应的机理提出并用实验证实了固相反应的四个阶段扩散-反应-成核-生长每步都有可能是反应速率的决定步骤;总结了固相反应遵循的特有的规律;利用固相化学反应原理合成了几百个新原子簇化合物、新配合物以及固配化合物。

2.2原子簇与非线性光学材料。非线性光学材料是目前材料科学中的热门课题。近10多年来人们对三阶非线性光学材料的研究主要集中在半导体、有机聚合物、c60以及酞菁类化合物上而对金属簇合物的非线性的研究几乎没有。忻新泉等在低热固相反应合成大量簇合物的基础上开展了探索研究发现mo(wv)-cu(ag)-s(se)簇合物具有比目前已知非线性光学材料更优越的三阶非线性光限制效应使我国在这一前沿领域的创新工作中占有一席之位。

2.3合成纳米材料新方法。纳米材料是当前固体物理、材料化学中的又一活跃领域。制备纳米材料的方法总体上可分为物理方法和化学方法两大类。贾殿赠、忻新泉等发现用低热或室温固相反应法可一步合成各种单组分纳米粉体并进一步开拓了固相反应法制备纳米料这一崭新领域取得了令人耳目一新的成绩如在深入探讨影响固相反应中产物粒子大小的因素的基础上实现了纳米粒子大小的可调变;利用纳米粒子的原位自组装制备了各种复合纳米粒子。该法不仅使合成工艺大为简化降低成本而且减少由中间步骤及高温固相反应引起的诸如产物不纯、粒子团聚、回收困难等不足为纳米材料的制备提供了一种价廉而又简易的新方法亦为低热固相反应在材料化学中找到了极有价值的应用。

无机化学反应机理篇4

关键词:高中化学课程;化学分类结构;基本观念

中图分类号:G632 文献标识码:A 文章编号:1002-7661(2013)09-081-01

“分类”不仅作为科学发展的基础和科学发展的产物,也是学生学习科学、理解科学的重要方式。化学学科的分类结构是化学家对纷繁复杂的化学变化的逻辑化和结构化的总结,是化学课程内容组织的重要线索。化学分类结构的发展也在影响着化学课程的发展。

一、化学学科的分类结构及发展特征

科学是组织化的知识体系,分门别类地划分和组织材料是一切科学的一项必不可少的任务。一个学科的分类结构的微观层面是该学科按类别组织的知识体系,宏观层面是因研究内容差异而形成的分支学科体系。

1、经典化学分类的“树枝式”结构。物质与变化是化学学科的研究对象。目前通行的物质分类法即依据物质的组成和结构先把物质分为单质和化合物,然后再进一步地划分。例如,化合物进而划分为无机化合物和有机化合物,无机化合物又分为氧化物、酸、碱和盐,等等。这种分类方法称为“树枝式”分类法。

依据不同分类角度,对化学反应进行划分和逐级细化,也可以形成“树枝式”的分类结构。例如,依据反应的形式把反应分为分解反应、化合反应、置换反应和复分解反应等;依据反应物的性质分为无机反应、有机反应和生化反应等;依据反应中的电子得失分为氧化还原反应、非氧化还原反应;依据反应中的粒子特征分为分子反应、离子反应和原子反应;依据热力学方法分为焓增减与熵增减相互组合的反应类型。

2、现代化学分类结构的特征。经典的化学学科分类主要是为了教学上的方便和学术组织的管理,学科分类之间的边界既非本质的也非严格的,创造性和进步是经常、甚至说通常发生在这些学科边界上的。现代化学的发展展现出一幅以化学为轴心的跨学科的壮观图景,现代化学高度分化与高度综合交替发生并正在实现更大的汇流整合,必将造成传统化学的分类根基岌岌可危。科学家越来越倾向于抛开传统树枝式分类,探索新的分类方式。

化学是研究从原子、分子片、分子、超分子、生物大分子到分子的各种不同尺度和不同复杂程度的聚集态的合成和反应、分离和分析、结构和形态、物理性能和生物活性及其规律和应用的科学。化学的分支结构和分类线索也体现了研究对象尺度不断丰富和多样化的特点,可根据研究对象的不同划分为八个层次:原子层次的化学、分子片层次的化学、分子层次的化学、超分子层次的化学、生物分子层次的化学、复杂分子体系的化学、介观聚集态的化学、宏观聚集态的化学。

二、化学分类结构的发展在化学课程发展中的体现

1、化学分类作为课程编制的线索。《普通高中化学课程标准(实验)》。(以下简称《课标》)的制定反映了化学学科体系“树枝式”分类结构的特征,这一特征由三个版本的教材进一步物化出来。

首先,元素化合物知识主要划分成无机化学和有机化学两大部分。无机化学部分体现了金属和非金属元素及化合物的分类线索。有机部分以烃及烃的衍生物的分类为结构框架,高分子化学的相关内容由于比较复杂而要求不高,主要放入合成材料专题中讨论。

其次,对基本概念原理内容的组织,反应原理部分体现了物理化学中热力学(能量、方向、限度),动力学(速率),氧化还原与电化学(氧化还原、电池、电解)和水溶液化学(电离、水解、沉淀)的学科分类结构。物质结构部分体现了结构化学中原子结构与周期律,化学键、分子结构与分子间作用力,以及晶体结构的学科分类结构。

于是无机化学、有机化学、高分子化学、物理化学、结构化学和分析化学等化学的二级学科和它们的下级分支,以及关于物质分类和化学反应分类的不同线索在高中课程中得到充分体现。

2、课程对现代化学分类结构的体现。课程内容不仅要保证基础性和稳定性,还要符合时代性的要求,需要将学科发展的新成果融入到课程之中。随着化学科学的迅速发展,化学分类结构也在不断变化,从而也带来了高中化学课程内容组织形式的改变。

无机化学反应机理篇5

关键词:绿色化学;有机化学;教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2015)51-0250-02

一、引言

“绿色化学”又称环境无害化学、环境友好化学、清洁化学,是设计研究没有或尽可能少的环境负作用,并在技术上、经济上可行的化学品和化学过程,包括原料和试剂在反应中的充分利用。它是实现化学污染防治的基本方法和科学手段,是一门从源头上阻止污染的化学。绿色化学适用各种化学领域,是用化学的技术和方法去减少或消灭那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂和产物、副产物等的使用和产生。

有机化学是化学的重要组成部分,有机化学实验是高校化学化工、环境、医学、农学等专业重要的基础课,对学生掌握有机化学知识,培养思维能力有着十分重要的作用。有机合成化学实验中使用的许多试剂、溶剂、催化剂以及排放的废料,都易对环境产生污染,影响实验者的健康,所以在有机化学实验教学中实行绿色化学教育,培养学生的绿色化和环保意识有十分重要的意义,也是高校有机化学实验教学改革的重点,因此,实现有机化学实验绿色化教学势在必行。作为多年从事有机化学实验教学的教师,结合实际教学情况和体会,对有机化学实验的绿色化,提出了一些想法,并进行了初步的实践。现将我们在有机化学实验教学过程中的一些经验总结如下。

二、合理设计实验,体现绿色化学思想

在保证达到实验教学目的和使学生能够掌握基本操作技能的前提下,有机化学实验要尽力遵循绿色化的途径。实验内容应尽量选用毒性小、废弃物少、污染轻的实验。例如:“己二酸的制备”实验,可以采用高锰酸钾替代硝酸做氧化剂,避免实验中产生大量有毒的氮氧化物气体和使用硝酸带来的强腐蚀性。又如:利用液溴制备溴苯的实验,液溴有毒,腐蚀性大,可以选用低毒高活性的溴化剂N-溴代丁二酰亚胺代替。

三、绿色化学理念在实验过程中的渗透

我们在有机化学实验教学中尽可能地实现实验内容的绿色化,注意培养学生的绿色化学意识。结合学校的实际情况,合理选择有机化学实验内容,不选用苯、甲苯、二氯甲烷、硝基苯、苯胺等毒性较大的试剂作为溶剂、原料和产品进行实验。总之,在有机化学实验的操作过程中,要把绿色化学的理念贯穿到整个有机化学实验的教学之中。

(一)试剂的选择

时至今日,人们己形成了一种固定思维模式,习惯地将有机反应放在溶剂中进行。在传统的有机合成中,有机溶剂是最常见的反应介质,因为他们能很好地溶解有机物,保证物料混合均匀和热量交换稳定,但有机溶剂的毒性和难以回收又成为对环境造成污染的主要因素。随着绿色化学的发展,新的绿色合成技术和合成方法不断涌现,这为有机实验的绿色化提供了很多有效途径。近年来无溶剂、绿色溶剂(离子液体、超临界流体、水)在有机合成中的应用得到了空前的发展,这些手段对于加快反应速度、减少能耗、减小污染有很重要的作用。

1.无溶剂的化学合成。在过去的近30年中,无溶剂化学合成得到很大发展。在合成中通常需要使用一些助剂,如催化剂或固体载体,也可能用到光、研磨、微波加热和超声波等方法。例如:苯基环己酮与查尔酮的Michael加成反应,可以使用溴化四丁胺为催化剂,在室温下用研磨的方法合成。又如:2-苯基四氢喹唑啉的合成,可以在无溶剂条件下由2-氨基苯胺与苯甲醛的缩合,转化率很高。

2.选用水为介质的合成。以水为介质的有机反应是“与环境友好的合成反应”的一个重要组成部分。水相中的有机反应具有许多优点:操作简便、安全,没有有机溶剂的易燃、易爆等问题。在有机合成方面,可以省略许多诸如官能团的保护和去保护等的合成步骤。水的资源丰富,成本低廉,不会污染环境,因此是潜在的“与环境友善”的反应介质。

3.选用绿色溶剂的化学合成。绿色溶剂被认为是绿色化学中很有前景的一类反应介质,尤其是离子液体。离子液体的研究是近年来绿色化学领域的研究热点之一,室温离子液体是一类特殊的液体熔融盐,具有优良的物理化学性质及可修饰、调变的阴阳离子结构,且可循环使用,被认为是替代常用挥发性有机溶剂的新型绿色溶剂。近几年来,离子液体作为一种绿色溶剂及催化剂在有机合成中发挥了独特的作用,受到人们越来越多的关注。因此,在离子液体中进行有机反应成为化学研究的一个重要领域。例如:在芳醛与丙烯酸甲醋的不对称Baylis-Hillman合成反应中,用季铵盐型离子液体作为溶剂,产率很高。又如:在离子液体中进行的Suzuki交叉偶合反应与传统方法相比具有诸多优势:少量的催化剂即可使反应活性明显提高;无副产物产生,产物纯净且容易分离;反应可以在空气中进行,产率不降低,催化剂不分解;催化体系可以重复使用。

(二)积极开展微量或半微量实验,减少试剂消耗和污染

传统的常量实验具有现象明显、操作方便的优点,但消耗多、污染大,不利于环境友好。微量或半微量实验推广已有十几年,逐渐引起各国化学教育界的广泛重视,已成为国际趋势,成为化学实验改革的方向之一。目前我国已有数百所大中学校开始在化学教学中采用微型实验,取得了很好的社会与经济效益。微型化学实验主要有以下几方面的特点:节约药品、节省能源、降低实验成本;实验迅速;减少环境污染,避免不安全隐患;能激发学生学习的兴趣,提高学生实验技能。例如:2-甲基-2-己醇的制备、乙酰乙酸乙酯的制备、肉桂酸的制备等实验,按照实验教材药品用量的■进行实验。在同样可以达到实验目的同时,减少了废弃物的排放量,保护了环境。总之,微型化学实验不仅有利于培养学生的创新能力、提高教学质量,也有利于师生的身心健康以及培养环保意识和绿色化学的理念。

(三)绿色催化剂的选择

催化剂在化学合成中起着十分重要的作用,每种新型催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。绿色催化自然是绿色化学研究的另一个重要内容。少量、高效催化剂的加入可以大大加快反应的速率、提高反应的选择性及降低副反应的产生。绿色催化剂还应该具备清洁无毒和可循环使用的特点。目前有机合成中使用的绿色催化剂主要包括固体酸、固体碱、晶格氧选择氧化催化剂等非均相催化剂以及生物催化剂(酶催化剂)。例如:在传统的有机合成中,烷基化、酯化、水合、酰化、烃类异构化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸催化剂,这些催化剂在工艺上难以连续生产,不易分离,对设备腐蚀严重,危害人体健康,产生废液废渣,污染环境。而我们可以选择分子筛、杂多酸、超强酸等新型催化剂。又如异丁烷与丁烯的烷基化反应原来使用氢氰酸或硫酸作催化剂,现在可用新开发的负载型磺酸盐/SiO2催化剂代替。

(四)目标产物的绿色化

绿色产品,应具有合理的使用功能及使用寿命,产品易于回收、利用和再生,在使用过程中和使用后不会危害生态环境和人体健康,报废后易于处置,在环境条件下容易降解。在有机实验中联系实际,如目前大量使用的聚苯乙烯发泡塑料快餐盒,使用以后成为垃圾,在自然条件下,需数百年才能降解,对环境带来严重的影响。为了加速它的自然降解,我们生产时可以在其中加入光敏剂、化学助剂等,使其在使用后几个月内即分解成无害物质。

(五)废弃物的回收利用

有机化学实验过程中使用的有机溶剂,一般毒性较大、难处理,随意倒掉这些有机溶剂,不仅对环境造成严重污染,还会造成药品的浪费。基于绿色化学原则,处理这些有机溶剂,应进行重新蒸馏后利用,或在实验中重复再次使用。对于在实验过程中产生的有毒物质也要积极处理,例如:在制备正溴丁烷的实验中会产生腐蚀性气体溴化氢,要使用氢氧化钠溶液进行吸收处理,对水银温度计破损洒出的汞认真进行收集,并撒硫磺粉进行处理,尽可能减少对学生的危害。对于某些数量较少、浓度较高确实无法回收使用的有机废液,可采用活性炭吸附法、过氧化氢氧化法处理,或在燃烧炉中供给充分的氧气使其完全燃烧。对实验中产生的废酸、废碱,要指导学生倒入相应容器中,经中和至近中性(pH=6-9)时方可排放。通过有机化学实验绿色化实践,有效地做到实验药品循环使用,减少环境污染,使绿色化学教育在实验教学中对学生起到潜移默化的作用,提高了学生的环保意识。

(六)多媒体在有机实验教学中的应用

随着科技的发展和计算机普及,多媒体已成为化学实验教学发展的趋势和必然,将多媒体技术引入实验教学,对提高学生化学实验操作技能和对实验的理解起着重要的作用。例如:像易燃易爆等危险性较大的实验、毒性较大且不易控制的实验,可使用多媒体教学辅助手段来代替此类实验,既保证了学生的安全,保护了环境,又达到了良好的教学效果。例如:在制备亚磷酸二苯酯的实验中,反应出来的粗品需进行减压蒸馏,如反应瓶温度达到250℃,体系中存在微量的氧,亚磷酸将会冒烟,发生爆炸。

四、学生绿色化学意识的加强

我国绿色化学教育还处于起步阶段,但化学实验绿色化已经成为化学教学改革发展的必然趋势,将成为培养学生的绿色化学观念和创新能力的重要途径。有机化学实验教学不仅需要培养学生的基本化学实验技能,同时应把绿色化学思想融于实验教学之中,让学生了解绿色化学,树立起绿色意识。

实践证明,在有机化学实验教学中渗透绿色化学教育是可行的。

参考文献:

[1]徐勇军,杨晓西.有机化学实验教学改革初探[J].东莞理工学院学报,2006,13(1):93-96.

无机化学反应机理篇6

1.从元素周期表角度考虑一切化学反应。

化学反应的问题都是最外电子层是否“饱和”的问题,物态的化合价基本符合元素周期表的分布规律,只有少数多化合价的,才需要抄下牢记。建议大家准备一个专门学化学的笔记本,对一些“非常规”的现象进行认真记录,包括所有反应的特殊颜色、气体、沉淀、变价等值得注意的特殊反应和元素。

通过复习反应方程式(按课本章节逐步复习出现的方程式),并对照周期表进行思考,你就会发现,参照最外电子层分布规律和同主族元素排列顺序,一切氧化还原、水解电离等原本搞不清的概念,在你的面前。都变得清晰明了。你会发现,一张小小的元素周期表,对你学习化学有多么大的帮助。

2.分清、牢记特殊元素。

什么是特殊元素?就是反应能产生特殊气体、沉淀、颜色的元素,还有变价元素、组合元素(酸根)等,这些都高考化学的考点与解题的切入口。

3.判断与推导。

无机化学重在判断,判断反应机理、反应原理,如化合价是否对等,能否参与反应,如何配平,等等,这些都是基于元素周期表规律进行判断和推导的。而有机化学的判断,首先是官能团的判断,接着是碳链的推导。抓住官能团的反应特性,然后根据碳链分布规律(4个键位),就能把知识点吃透,把题目解答出来。

4.圆规复习法。

圆规复习法就是立足于一个中心,然后不断地对外扩圈。无机化学的中心就是化合价,有机化学的中心就是官能团。

无机化学中,无论是氧化还原,还是水解电离,其实都是化合价迁移的过程,所以整个中心点是化合价,而化合价的规律又来自元素周期表。因此学无机化学部分,必须以化合价为中心,认真推敲元素周期表,熟悉特殊现象。

有机化学中,以官能团为主轴,要区分官能团的特性、有机化合物的形成规则(主要是碳链、苯环规则)。所有有机反应和考点都围绕着这个形成规则和官能团特性。所以有机化学部分,要一手抓碳链苯环,一手抓“基”层,两手抓,两手都要硬。

高中化学知识不多,考点相对较少,搞突击是可行的。但是,切记不要等到临考前再突击。突击也要事先有基础、有准备。一定要记住,从现在开始,并持之以恒,那么,这个时候就是你胜利的起点。

无机化学反应机理篇7

无机及分析化学不是无机化学、分析化学两门课程的叠加,教学内容丰富,概念和理论知识较多,各章节之间的独立性较强。因此合理安排教学内容,帮助学生转变学习方法及思维方式无疑是大一第一学期开设这门课的关键。在内容的安排上,前两章首先回顾高中的一些化学基础知识,并介绍了误差及数据处理,稀溶液的依数性和胶体溶液。然后,第三和四章主要介绍化学热力学、化学动力学及化学平衡,让学生掌握反应三要素:反应方向即吉布斯函数变,反应快慢即反应速率常数,反应限度即反应平衡常数。第五章主要介绍物质的结构,离子键及共价键理论和晶体结构。第六、七、八和九章分别介绍酸碱平衡、溶解沉淀平衡、氧化还原平衡和配位平衡及其对应滴定分析法,让学生掌握测试固体或溶液中某种元素含量的分析测定方法。最后,第十、十一和十二章主要介绍一些简单仪器分析法及原理,例如:第十章吸光光度法,不仅要介绍该方法的原理朗伯-比尔定律,还要介绍目视比色法、示差法和标准曲线法三种常用的吸光光度法分析法。内容上总体上是先讲理论原理,再介绍知识点,将理论原理融入生产实践中,使学生较快地掌握化学理论,再通过课堂上的一些练习题,使学生加深教学内容的记忆,知识更加系统。这样不仅可以将无机和分析化学知识点有机的融合,还可以将理论应用到生活实践中。在一学年的学习中,总共80学时,第一学期学习前六章共计48课时,第二学期学习后六章共计32课时。在教学过程中,应该精选教学内容,使学生掌握化学基础理论知识并具备较宽的知识面,为后续课程学习打下了扎实的基础。与此同时,教师要熟悉该课程的教材,根据学生的专业,合理制定教学大纲和教学培养方案,精炼教材的内容,对于中学已经学过的化学知识或者与专业联系较少的理论知识可以简略讲解。比如:第四章的化学反应速率和反应平衡,化学反应速率的定义,影响化学反应速率的因素以及化学平衡的移动;第八章氧化还原反应的定义,配平,得失电子,氧化剂和还原剂等概念知识。这些知识点中学都已经涉及过,教师在授课时只要简单介绍即可。对于能源化学工程专业而言,水煤浆的开发和利用是近年来的一个热点,也是煤炭清洁利用的重点。因此,对于第二章分散系的内容应该详细讲授,再介绍水煤浆分散系。

2激发学生兴趣

兴趣是最好的老师,要学好无机及分析化学,首先要激发学生的兴趣。第一,在无机及分析化学这门课的绪论课上,主要介绍化学的作用及学习方法。第二,阐明化学与人类生活之间密切联系,激发学生的学习。第三,无机及分析化学是化学、化工类相关专业的基础课,其作用无论是对以后的专业课学习还是将来从事工作都具有重要的意义。第四,在平时的课堂教学中,可以多讲一些贴近生活的例子,激发学生学习的兴趣。例如,在介绍影响化学反应速率的因素时,举例说明,夏天食物容易变质,我们可以将食物放进冰箱中保存,以防止变质。这是通过降低温度,达到降低食物变质的速率。汽车尾气CO和NO是严重的环境污染物,从热力学的角度讲,CO+NON2+CO2可以发生,但是遗憾的是,在通常状况下,该反应进行的非常之慢,以致不能有效地去除车道内的CO和NO。因此,有必要对化学反应的速率问题进行研究,必须考虑外界因素对反应速率的影响,由此可引出本节课要学习的内容。第五,在教学过程中,穿插介绍一些与知识点相关的科技发展新动态及前沿知识,以此调动学生学习的积极性。

3综合利用各种教学方法

现阶段的教学方法多种多样,而在实际教学中,各种教学方式应该相互结合、取长补短。根据我校无机及分析化学教学团队多年来教学中的经验,可以概括为以下几点:第一,增加课堂讨论。针对一些在学习过程中遇到的问题,教师应该指导学生搜集资料,进行课堂讨论。在讨论的过程中培养学生分析和解决问题的能力;第二,让学生走上讲台。让学生走上讲台不仅可以体验教师备课的准备过程,还可以锻炼学生的能力;第三,运用多媒体教学,可以使微观概念及理论形象化。例如,在物质结构基础这一章,学生一般较难理解,如果用多媒体课件和化学软件以动画的形式去展现,课程内容会更加形象、生动。这样的教学不仅有利于学生理解、记忆,还可以活跃课堂气氛。第四,对于公式推导,应该板书推理过程引导学生理解。在教学中应避免盲目使用多媒体教学,要将多媒体与其他教学手段结合起来,才会使学生理解公式的推导过程,并能较好的应用公式。

4培养学生能力

为了调动能源化学工程专业学生对无机及分析化学基础课程的兴趣,可以积极组织各类化学竞赛活动。我省有各类化学竞赛,例如:化学视频大赛,化学实验竞赛和趣味化学竞赛等。近年来,教育部门坚持开展部级、省部级大学生创新实验项目,有望培养大学生的创新能力,推动全民创新。此外,为了鼓励和培养大学生创新激情及能力,我们学校也开展了大学生创新实验项目。该项目均是由学生亲自撰写项目申请书,申请答辩ppt,中期考核表,结题报告和结题答辩ppt等资料。这不仅培养了学生创新能力,还为学生日后工作和学习培养科学合理的方法和实践能力提供了基础。

5适应专业要求

能源化学工程专业的技术性和实践性较强,在无机及分析化学的教学中,要把握专业的特殊要求,认真学习我校能源化学工程专业人才培养方案,深入研究教学大纲,充分了解无机及分析化学在整个专业课程体系中的作用,明确教学过程中的内容和重难点。例如,化学热力学和化学动力学章节的内容应该详细讲解。这部分内容对于能源化学工程专业的学生而言,可以更好地理解能源转化及利用过程中的一般规律,为高效、低碳环保使用能源奠定基础。

6结论

本文对我校能源化学工程专业的无极及分析化学课程在优化教学内容、激发学生兴趣、利用各种教学方法、培养学生能力以及适应专业要求方面教学环节进行了总结和探究。该研究将进一步提高无机及分析化学教学在培养学生创新能力的作用,达到改善教学质量及提高学生创新能力的目的,为培养能源化学工程专业创新型人才奠定基础。

无机化学反应机理篇8

目前,我国化学工业项目正在逐渐增多,为人们生产生活带来了极大的便利,食物包装、食用化学添加剂、航空航天等等,化学技术的社会性价值无可取代,但是,其产生的一系列环境问题也值得深思。其中,聚乙烯的应用带来的环境问题较为严重,由于塑料的化学分子非常的稳定,就导致其在地下会长久不腐化,产生了非常严重的白色污染问题。另外,化工工厂的废水废气也会对水体和大气产生非常巨大的影响,甚至会导致一些区域出现无生物死水现象,这些自然环境问题需要相关部门结合实际情况进行深度处理和综合性优化,积极建构更加有效的处理机制和控制体系,确保化学工业持续发展的同时,一定程度上保证环境问题得以有效解决[1]。

2化学反应应用中化工原料重要性

在我国化工工业发展进程中,将实验研究项目作为实际管理机制的基础,因此,要对研究阶段的化工应用结构进行综合分析,而对研究阶段影响最大的因素就是化学反应的基本原料,也就是说,若是想要得到一个化学物质,就要消耗其他的化工原料进行制备和化学处理,这个过程需要得到严格的审核和控制,并且将经济安全作为研究重点,提高实践基础的有效性和系统化处理效果,要从综合性管理机制出发,对相关项目进行统筹分析和综合性整理。第一,化学反应中,纳米材料在化工技术应用过程中具有非常关键的作用和价值。作为新型的高科技原料,纳米技术在微观技术结构应用机制中发挥了非常巨大的作用,纳米材料的应用范围也较为广泛。值得一提的是,纳米材料具有抗辐射作用,能一定程度上推进化工技术复合材料的实效性和应用价值[2]。第二,化学反应中的催化剂也具有非常重要的研究价值,特别是在一些大型化工企业的常规实验中,利用催化剂能有效提升整体化学实验的处理效果,确保处理结构和化学反应应用的稳定性。利用化学反应催化剂,不仅能提高化学反应的实际效率,也能有效升级其产物的应用价值,在实践中,只有保证催化剂的相关参数要求符合国际标准,才能有效提升化学反应的实际效果,并且一定程度上减少化工材料的浪费,规避化工污染的产生。正是基于此,在实际试验项目管理体系中,要结合实际需求和管理策略,高度重视化学反应催化剂的使用前景和使用效果。

3化学反应应用中废物处理反应重要性

近几年,关于化学反应和环境之间平衡关系的探讨持续升温,相关部门要结合实际需求和管理机制,建构更加系统化的处理措施,才能有效升级处理效果,正是基于此,在化工技术中,要对化学反应的废物处理项目进行全面分析和综合控制,提高整体处理效果和技术实效性。也就是说,在化学反应过程中,要对化工企业中技术结构的局限性和加工实效性进行综合性统计分析,确保废物处理效果符合预期,这也是化工企业环保项目中的关键性问题[3]。

3.1科学化综合处理

在化学反应操作过程中,要结合实验研究项目,建立健全更加系统化的综合性处理机制,由于废物环保处理过程较为复杂,需要相关人员结合实际需求对废物中的有害物质进行科学化的处理和整合,这些措施都要按照标准化流程有序推进。也就是说,只有提升科学化处理措施,才能从根本上对废物环保处理过程进行升级,从而减少有害物质的不良侵害。

3.2提高净化意识

在环保机制建立过程中,环保意识非常关键,社会大众对于自身环保意识的建设也缺乏认知,就会导致整体环保理念无法得以有效落实,相关管理控制措施也会受到影响。另外,一些化工企业为了节约成本,对环境污染问题视若无睹,也就导致有害物质和重金属随意的投放,缺乏必要的净化处理,会加深环境污染。因此,相关部门要对化工企业的环境保护意识进行统筹分析,积极建构更加系统化的处理机制,确保处理结构和污染项目符合标准。在对污染物进行综合性科学处理的过程中,提升整体环保效果[4]。值得一提的是,要想从根本上提高环保效果,相关部门也需要建立健全完整的净化处理措施,分析污染物的同时,针对实际问题采取有效措施。

4结语

总而言之,在化学化工技术管理模型中,要积极落实更加有效的处理机制,切实维护管控效果,提高对原料和化学催化剂管理效果的重视程度,寻找最优化发展路径,确保化工技术和化学工业项目的可持续发展。

作者:张伟云 单位:平顶山市工业学校

参考文献:

[1]崔国凯,钱晨阳,李浩然等.离子液体强化有机化学反应的研究进展[J].化学反应工程与工艺,2013,29(03):281-288.

[2]黄顺祥,郝荣章,刘峰等.涂层中伴有化学反应的传质动力学模型及解析解[J].兵工学报,2015,30(06):746-752.

[3]彭川.浅析微化工技术在化学反应中的应用进展[J].当代化工研究,2016,22(02):33-34.

上一篇:颈椎骨折康复训练指导范文 下一篇:现代农业机械化范文