材料科学与工程导论范文

时间:2023-10-24 17:35:17

材料科学与工程导论

材料科学与工程导论篇1

人们通常把材料、信息和能源 人们通常把材料、信息和能源并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

作为重要的现代信息功能材料的磁性材料,其发展具有悠久的历史,在这方面已经有许多专门的文献资料进行了介绍,在此不再赘述。人类很早就开始了磁学的研究,但直到量子力学创立后,才对磁性的起源有了一个较为清晰的认识,也就是说,磁性本质上起源于物质的量子性质。这就说明要研究与磁性相关的现象,就必须具有《量子力学》的学习背景;要研究大量微观粒子聚集体的磁学性质,就必然要用到《热力学统计物理》的知识;要研究固体的磁学性质,也必然要对《固体物理》有深入的了解。所以,在学习《磁学》课程之前,必须要以这三门课程的学习为先导,而在材料科学与工程专业中作为专业基础课,都会专门开设这三门课程,这也就为磁学课程的开设创造了有利条件。我校的探索实践表明,在讲授中应以《磁性材料》课程为主线来进行讲授,并且适当增加一些必要的磁学知识和磁测量知识,以利于学生的理解,也有利于学生对其他相关课程的学习。我校几年来的实践教学都收到了良好的效果。人们对纳米结构体系与新的量子效应器件的研究已经取得了许多新的进展,有许多成果已经产业化,并由此带动了传统产业的技术升级和技术进步,从而掀起了纳米科技热潮。纳米结构由于具有纳米微粒的特性,如量子尺寸效应、小尺寸效应、表面效应等特点,又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等,这些都属于量子力学现象,现代纳米科技研究也多是以这些效应为出发点来进行的,这些内容也是材料科学与工程学科各门主干课程的重点内容。磁学主要研究物质的磁性及其起源,也就是研究与电子的自旋相关的性质及理论。磁学从创立之初就一直在从事与量子效应有关的知识研究。从量子力学创立至今,磁学从理论上对这些问题的探索已经有将近一个世纪的时间,积累了丰富的知识,对磁学相关知识的学习,必然会大大促进学生对材料科学与工程学科的学习和理解。

并列为现代科学技术的三大支柱,并认为他们是现代社会赖以生存和发展的基本条件之一。在这三大支柱中,材料科学显得尤为重要,可以说材料科学是现代科学技术发展的重要支撑,这主要体现在材料是人类社会进步的里程碑,而先进材料是高新技术发展和社会现代化的基础和先导,也因为信息和能源技术的发展都与材料科学的进步和发展密切相关。材料一直是人类赖以生存和发展的物质基础,但材料科学的提出却是20世纪60年代初的事情,也是科学技术发展的必然结果。随着人们对材料的制备、微观结构与宏观性能之间关系等研究的逐步深入,各种材料体系,如金属材料、高分子材料、陶瓷材料等都已相继建立起来。对不同材料的研究可以相互借鉴,也使得不同材料之间的相互替代和补充成为可能,由此也出现了复合材料的概念并得到了广泛应用。随着人们对材料研究的深入,逐渐形成了材料科学与工程这门学科。这门学科除了研究材料的组成、结构与性质的关系等基础研究之外,还研究材料在制备过程中的工艺和工程技术问题。现在一般认为,材料科学与工程主要包括组成与结构、合成与制备、性质及使用效能等四个方面,它是关于材料成份、结构、工艺与它们的性能和用途之间的有关知识的开发和应用的科学。由此可以看出,材料科学与工程科学有多学科交叉、与实际应用密切相关等特点,并且也是一门正在发展中的科学。作为一级学科,材料科学与工程学科下设有材料物理与化学、材料学、材料加工工程三个二级学科。按照我国的专业规划,材料科学与工程学科以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面。更进一步讲,材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作的科学研究与工程技术人才。金属材料领域涉及的金属磁性材料和无机非金属材料领域涉及的陶瓷基铁氧体材料都已经得到了非常广泛的应用。高分子领域的有机磁体,目前正在成为国际上研究的热点,也是软物理研究的一个重要领域。由此可以看出,材料科学与工程领域涉及的各个方面,都可以看到磁性材料的影子。材料一般分成结构材料和功能材料两大类,磁性材料作为具有特定物理功能的材料,在功能材料中占有很大的比重。当前功能材料的研究和开发的热点集中在光电子信息材料、功能陶瓷材料、能源材料、生物医用材料、超导材料、功能高分子材料、先进复合材料、智能材料以及生态环境材料等领域,这几类材料几乎都与磁性材料有直接或间接的关系,各类材料的磁学性质无疑也是当今研究的热点问题。

随着社会的发展,特别是信息功能材料的发展和应用的日益广泛,作为功能材料基础的磁性材料得到了日益广泛的应用。与此相适应的,在材料科学与工程学科的教学体系中,特别是在一些主干课程中都出现了与磁性材料相关的内容也就成为历史的必然。因为磁性材料从材料微观结构上涉及到晶态材料、非晶态材料、纳米晶材料,也涉及到金属材料、陶瓷材料等无机材料,所以在《材料物理导论》中把“材料的传导性和磁性”作为一个章节,《新材料概论》中与磁性有关的有“磁性材料”和“超导材料”两个章节,《金属功能材料》涉及到磁性的章节更多,有“磁性材料”、“金属薄膜材料”、“非晶态金属材料”、“信息材料”、“超导材料”及“智能金属材料”等章节,在涉及到材料物理性能及测试的教材中,都会不可避免地涉及到磁学知识。在国外的教材中,情况也是如此,如《工程材料科学与设计》一书。在无机材料、陶瓷材料等课程中,也都会涉及到磁性材料,在材料物理性能的讲授中,也必然会涉及到电性及磁性的内容。考虑到磁学知识的广泛性及分散性,我校在教学实践中发现,有必要充分利用学校在这方面的优势,把磁学的相关知识单独作为一门学科进行讲授,这样既有利于学生对磁学知识有一个系统的理解,也可以适应社会发展的需要。磁性材料作为一种非常重要的基础功能材料,在社会中已经得到了广泛的应用,作为材料科学与工程专业的学生,非常有必要对磁学及磁性材料的知识有一个专门的了解,这样做会使学生受益终生。因为一方面有利于扩大他们的知识面和视野,也非常有利于他们就业;另一方面有的学生进入研究生阶段后,如果具备一些磁学相关知识,也非常有利于他们的学习和研究工作,《金属材料结构与性能》属于材料科学与工程学科领域的基础教材和国内外材料专业硕士的必修教材,也把“材料的磁性能”作为一个章节进行讲授。

作为重要的现代信息功能材料的磁性材料,其发展具有悠久的历史,在这方面已经有许多专门的文献资料进行了介绍,在此不再赘述。人类很早就开始了磁学的研究,但直到量子力学创立后,才对磁性的起源有了一个较为清晰的认识,也就是说,磁性本质上起源于物质的量子性质。这就说明要研究与磁性相关的现象,就必须具有《量子力学》的学习背景;要研究大量微观粒子聚集体的磁学性质,就必然要用到《热力学统计物理》的知识;要研究固体的磁学性质,也必然要对《固体物理》有深入的了解。所以,在学习《磁学》课程之前,必须要以这三门课程的学习为先导,而在材料科学与工程专业中作为专业基础课,都会专门开设这三门课程,这也就为磁学课程的开设创造了有利条件。我校的探索实践表明,在讲授中应以《磁性材料》课程为主线来进行讲授,并且适当增加一些必要的磁学知识和磁测量知识,以利于学生的理解,也有利于学生对其他相关课程的学习。我校几年来的实践教学都收到了良好的效果。人们对纳米结构体系与新的量子效应器件的研究已经取得了许多新的进展,有许多成果已经产业化,并由此带动了传统产业的技术升级和技术进步,从而掀起了纳米科技热潮。纳米结构由于具有纳米微粒的特性,如量子尺寸效应、小尺寸效应、表面效应等特点,又存在由纳米结构组合引起的新的效应,如量子耦合效应和协同效应等,这些都属于量子力学现象,现代纳米科技研究也多是以这些效应为出发点来进行的,这些内容也是材料科学与工程学科各门主干课程的重点内容。磁学主要研究物质的磁性及其起源,也就是研究与电子的自旋相关的性质及理论。磁学从创立之初就一直在从事与量子效应有关的知识研究。从量子力学创立至今,磁学从理论上对这些问题的探索已经有将近一个世纪的时间,积累了丰富的知识,对磁学相关知识的学习,必然会大大促进学生对材料科学与工程学科的学习和理解。

材料科学与工程导论篇2

一、材料物理专业的特色

材料物理专业是“研究各种材料特别是各种先进结构材料、新型功能材料物理基础、微观结构以及与性能之间关系的基本规律,为各种高新技术材料发展提供科学依据的应用基础学科,是理工融合的学科”[1,2]。材料物理是物理学与材料科学的一个交叉学科,主要通过各种物理技术和效应,实现材料的合成、制备、加工与应用。主要研究范围包括材料的合成、结构、性质与应用;新型材料的设计以及材料的计算机模拟等[3]。材料物理将理科的知识传授与工科的工程能力培养相结合,使传统材料工艺学与以现代物理学为基础的材料科学相融合,具有“亦工亦理,理工相融”的特点。

二、材料物理化学在材料物理专业中的作用和地位

材料物理化学是贵州大学材料物理专业本科生的学位必修课程,这门课程是从物理化学的角度研究材料科学与工程的基础理论问题,从基础的具有共性的原理及方法来论述各种材料的组成与结构、制备与合成、性能与应用的相互关系。该门课程的教学目的在于提高学生的专业知识水平,培养学生科学的思维方式和独立的创新能力,以及综合运用基础理论来解决实际问题的能力。材料物理化学是材料物理专业非常重要的专业基础课,它以高等数学、大学化学、大学物理等理论基础课程为基础。高等数学是学习物理化学的重要手段和工具,物理化学只有通过数学语言的表达才能成其为真正的科学。认识到大学物理和物理化学中热力学内容的衔接,了解大学物理中原子结构知识的介绍,协调好与大学化学中原子结构部分内容的关系,突出重点,避免重复,讲清难点,是材料物理化学教学中值得注意和认真对待的问题[4]。材料物理化学同时也是材料物理专业的后续专业课程(材料腐蚀与防护等)的基础课程。材料腐蚀与防护课程中的金属与合金的高温氧化的热力学部分,就要运用材料物理化学中诸多热力学基本知识,如G-T平衡图和克拉佩龙方程等。材料物理化学如同一座桥梁,将材料物理专业的前期基础课与后续专业课联接起来,以完善专业知识的系统与连贯性。同时,材料物理化学作为一门重要的专业基础课,是许多高等院校研究生入学考试的必考科目。材料物理化学与材料科学与工程各专业相关的生产生活联系紧密。新材料的设计、合成以及产物性能的提高与可控自由基聚合反应中所用的新型催化剂和引发剂息息相关。在材料表面改性过程中,界面效应是起理论指导作用的。电化学在材料领域应用广泛,例如:熔盐电解法制取金属铝、多种稀土金属及其合金,金属在使用过程中的腐蚀及防护等,新型的化学传感器、燃料电池、锂离子电池的研究和生成都要用到电化学理论。而对于发展迅速的前沿材料纳米材料,如何制备具有规定尺寸和组成的纳米颗粒、测量其性质、了解它们的特殊性质与颗粒尺寸的关系等很大程度上依赖于科学测量手段和化学化工技术,这也离不开材料物理化学基本原理的指导。

三、材料物理化学的教学难点

根据在以往的教学过程中的观察与经验,材料物理化学是一门老师难教、学生难学的课程。这首先是因为材料物理化学课程与数学物理联系密切、抽象概念多、数理推导多、公式繁杂等特点。许多学生见到大段连篇的公式推导就会产生畏难心理,丧失学好该课程的信心,然后就逐渐厌学甚至放弃学习。再加上该门课程对于材料物理专业的学生来说,课时相对较少,要在有限的学时中掌握较多的内容,使得以往的教学出现点到为止,认识学习不够深入的现象[5]。该门课程的授课对象是大学二年级上学期的学生,处于这个时期的学生学习兴趣和学习热情处于整个大学的全盛时期,求知欲强,精力充沛。面对这样的学生,如何有效地利用他们的求知欲,激发起学习该课程的兴趣,并针对他们的缺点,制定行之有效的方法及对策,使其通过该门课程的学习,培养起运用物理化学的方法进行科学研究和解决实际问题的能力,是值得我们教学工作者值得思考并认真对待的问题。

四、材料物理化学的教学改革

针对上述问题,为提高材料物理化学的教学质量,激发学生的学习兴趣,培养学生能力,我们对材料物理化学课程教学进行了多方面的改革。

1.教学内容上的改革。(1)教学内容与材料物理专业特色相结合。针对材料物理专业“亦工亦理,理工相融”的特点,材料物理化学的教学思想与内容安排也要做到理工相融。既要把重点放在物理化学的基础理论、基础知识、基础技能的教育上,比如要对基本概念有比较深的理解,对重要公式能够熟练掌握,对课程作业有严格的要求等,以加强学生对理论知识的认识和理解[6]。同时,教师也要认识到工程教育是材料物理专业学生培养中不可缺少的重要组成部分,要彻底改变传统物理化学教学模式下工程教育处于从属地位的状况。我们既要强调物理化学学科的理论性和科学性,又要从工程需求的实际出发进行考虑,不能重科学轻技术、重理论轻实践,不能从理论到理论,而应注重相关结论的物理意义、适用范围,注重科学理论与工程问题的结合。(2)教学内容与科研实践相结合。材料物理化学课程应积极倡导科研与教学资源共享,以科研促进教学,适时地将最前沿的科研成果渗透到教材、教学和实验中。将科研课题和教学相结合,实现科研对教学的带动作用。如能实现教学和科研的互动,这将为本科生完成毕业论文,继续读研深造奠定坚实的基础,并能大大提高学生分析问题解决问题的能力、实验操作能力以及计算机软件的使用能力。同时将教学与教师的科研实践相结合,还有利于调动学生学习和进行实验操作的积极性及兴趣,启发学生的思维,激发其探索精神。例如,可将材料物理系教师的科研课题“稀土氧化物纳米颗粒的制备”与相关化学热力学和界面现象的知识相结合来进行教学,将教师课题“激光熔覆制备生物陶瓷材料”与相关的热力学知识相结合,如反应吉布斯自由能的计算及其作为反应判据的应用,等等。还可以鼓励感兴趣的学生参与到教师的科研实验中来,学以致用,加强知识点理解的同时,拓宽视野,锻炼科研及动手能力。

2.教学方法上的改革。(1)传统与先进教学手段相结合。传统的教学手段板书由于其单调、枯燥的特点已不能完全适应目前的教学要求,而多媒体辅助教学手段是图、文、像、色集于一体的现代化教学手段,它的应用使原本量大、抽象、复杂、枯燥无味的理论知识,通过形象、生动、直观的形式表现出来,调动了学生的积极性和学习兴趣,便于学生对知识的理解和掌握。同时,也为教师节省了大量板书绘图的时间,加快了授课进度也增大了教学信息量[7]。比如相平衡与界面现象这两章,利用多媒体手段能将各种相图、亚稳状态及润湿现象能内容形象直观地表现出来,配上动画效果,更便于学生的认识与理解。但是在整个教学过程当中,多媒体也不是放之四海而皆准的教学手段,在一些公式的推导演示以及课后习题的讲解过程中,配以一定的板书,将会起到解释充分、循循善诱的教学效果,使学生有充足的时间理解消化相关重点及难点。总之,不同形式的教学方法、教学手段须依据教学内容、学生能力、教学需求等灵活应用,才可较好处理有限的理论学时与教学内容多、传授知识与培养能力、主体与主导之间的关系,有效地提高学生学习兴趣、自学能力、综合素质,取得良好的教学效果。(2)教师指导与学生自主学习相结合。传统的材料物理化学的教学模式是填鸭式教学,老师讲,学生听,老师主动教,学生被动学,这样的教学模式使学生的主观能动性得不到体现和发挥,因而造成事倍功半的教学效果。师者,传道、授业、解惑也。教师除了完成传道授业的任务外,也要试图将学生的学习潜能激发出来,对此,我们采用了以下方法:①在教学中采用重点难点教师讲授、简单章节学生自主学习的方法。学生自主学习之后,采用课堂提问的方式以检验学生自主学习的学习成果。前面我们讲到学习材料物理化学的大二学生,具有较强的学习兴趣和能力,我们采用自主学习的方法将其能力激发出来,使学生的学习变被动为主动,从而收到事半功倍的教学效果。②采用模拟教学方式,进行角色互换,促使学生主动学习的同时,培养体恤他人、尊重他人的人文品质。对于某些难度较低易于理解的章节,比如新相生成与亚稳状态,可以让学生提前准备,然后走上讲台,与教师互换角色,完成自主学习的同时,更亲身体会教师备课、授课的整个过程,从中体会不易,进而达到互换立场、尊重他人劳动成果的品质培养效果。③课堂练习和作业讲解时,可采用分组讨论的形式,以培养合作交流、互助学习的精神。在教学过程中除了教书,我们更注重育人。学生完成学业进入社会以后必将经历团队合作的过程,我们通过分组讨论和学习的形式,将教学与育人相结合,以培养学生适应社会所必需的互助与合作交流能力。(3)短期教学与长期辅导相结合。贵州大学材料物理专业的材料物理化学的教学只有80个学时,大二上的一个学期就能完成相关内容的教学。但该门课程是一些学校材料类专业考研的必考科目,为了帮助学生在完成必修的学分之后还能更深入地学习该门课程,我们还为已经完成该门课程学习的学生提供长期的辅导,给学生提供答疑解惑的帮助,以助其完成进一步的深造和学习。

材料科学与工程导论篇3

[关键词]交通土建材料;教学改革;材料物理与化学专业;研究生 

[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2017)10-0019-03 

20世纪末我国大批行业高校转型为行业与地方合作且以地方为主的办学模式,为顺应高校扩招的潮流和服务传统优势学科的需求,很多行业转型院校设立了材料科学与工程专业,新形势客观要求多数本科院校以培养创新型应用型人才为主。如果说本科生是我国大众化本科教育的产物,那么硕士研究生则是我国高等教育着力培养的未来精英,是高等院校发展的核心任务。作为材料科学与工程专业的二级学科材料物理与化学而言,其自身具有较强的理科性质,如何在应用型院校里培养以应用为导向的高素质硕士研究生人才更是一项艰巨的任务。我校原属交通部主管,2000年划转重庆市,实行中央与地方共建, 2010年获材料科学与工程一级学科硕士点,2014年被授予重庆市交通土建特色学科专业群专业,以交通土建工程材料部级、省部级重点实验室为依托,面向土木交通行业培养交通土建材料应用复合型人才。在尊重材料学科类人才培养规律的同时,如何将我们现有的学科特色融入材料物理与化学专业人才培养的过程中,一直是我们长期思考的课题。结合材料物理与化学专业特点和面向交通土建行业应用型人才培养需求,我们尝试从课程体系、教学内容、师资队伍、评价机制等方面开展我校硕士点材料物理与化学专业的教学改革。 

一、材料物理与化学专业研究生人才培养存在的主要问题 

(一)人才培养目标导向性模糊 

现有的材料物理与化学专业研究生培养目标基本照搬国内985重点高校的相似专业的人才培养方案,缺乏突出具体的行业性与目标性导向。我校作为交通类院校有着60多年的办学历史,在西部交通行业人才培养方面具有举足轻重的地位,而现有的人才培养方案和模式过分强调材料学科的经典理论和理科性质,这就造成我校与其他院校专业设置同质化现象越来越严重,学生所学越来越不能适应交通土建行业发展的需要。 

(二)课程设置和教学内容与学科特色联系不紧密 

我校的交通土建材料学科属于多学科新兴的交叉、边缘领域,主要是在化学学科、材料学科、土木工程之间的互相交叉、渗透过程中形成、发展起来的。其涉及的化学知识一般包括物质组成结构、化学热力学、化学动力学、表面物理化学、光谱分析等,涉及的材料知识主要有有机高分子材料、表面活性剂、纳米材料、新型功能材料(含光电磁等材料)、材料结构与表征等;涉及的土木工程领域的知识主要有水泥相关材料(水泥水化、混凝土外加剂、混凝土配合物设计、混凝土耐久性等)、沥青相关材料(沥青混凝土设计及施工、道路沥青材料、沥青路面养护及材料等),这部分更多牵扯到土木工程材料的施工和相关行业规范。所以其课程设置与教学内容要兼顾到三个学科的内容。然而其目前的课程设置基本照搬传统学科专业课程的模式,没有充分考虑授课对象的人才培养需求,理论课程数量和学时偏多,核心实践学时偏少;在教学内容上,基本简单延伸本科教材内容,未能兼顾交通土建材料特色与材料核心课程的交叉融合;在教材选用上,没有根据本学科的优势特色而选用或编制最适合培养目标的教材讲义,所以很难培养出具有自己特色的应用型人才。 

(三)“双师型”师资力量薄弱 

“双师型”教师一般指既具备教师资格又拥有职业资格,这种兼具教学能力和实际工作经验的复合型师资对培养应用型复合人才具有重要意义。在师资力量方面我校存在以下问题:缺乏培养引进机制。目前我校要求校外工程型人才必须和高校普通教师一样具有同等学力同等资质才能进入教师编制,这就阻碍了优秀技能技术型人才进入高校。观念认识不到位,在绩效考评、职称晋升等方面仍偏向学术性科研考核指标,对技能型岗位教师存在偏见。在编制控制、行政审批等方面限制教师合理流动,导致教师向“双师型”转型的积极性不高。现有学位点研究生导师数量充足,但大都为单一学科背景出身、年龄偏大,既懂材料学基本理论又懂交通工程应用的“双师型”师资缺乏。近年引进了一大批具有博士学位的青年教师充实导师队伍,他们往往理论知识充足但缺乏一线工程实践经历,其工程案例教学能力欠缺,这就严重影响了应用型人才培养的质量。 

二、我校材料物理与化学专业研究生人才培养的改革思路 

只有转变思想才有深度改革与创新,专业建设能否深入开展并取得成功的一个至关重要的因素就是专业培养方案的科学统筹性。明确学科特色是有效培养创新型人才的前提条件。改革培养方案既要兼顾宽口径的人才培养基本模式,遵循材料科学的人才培养规律,又要发掘学科特色的切入点,融合并优化课程体系与教学内容。专业培养方案应当具有先进的办学理念(培养应用型人才)、明确的改革思路(融合学科特色)、清晰的建设目标(培养复合型研究生人才),指导思想上应有科学性、创新性和可操作性,兼顾素质、能力、知识协调发展, 突出创新精神、实践能力与创业能力的培养, 使研究生人才培养目标符合经济社会发展的需要。 

首先, 从指导思想上高度明确具有交通土建特色的材料物理与化学专业人才培养目标、素质结构、课程体系、教学模式,并在此基础上构建有学科特色且以培养应用型人才为导向的专业课程設置体系,打造与之相适应的教学模式,努力提高具有交通土建材料特色的高素质复合型人才培养质量,确保实现既定的培养目标。 

其次,在构建课程体系中注重学科特色及其发展趋势,以改革教育教学指导思想为先导, 通盘考察课程体系结构,重点是改革课程设置与教学内容,找准学科特色与课程设置的融合点,并在此基础上加强设置体现学科特色的课程;然后针对这类课程不断地有序地优化教学计划、教学内容和授课教师;促进学科融合重组,增强学科的应用性和社会相融性,在教学计划和教学内容里加入本特色学科的社会服务功能,并补充完善新兴交叉学科发展的内容,不断促进学科优势特色与人才培养的协调发展。 三、我校材料物理与化学专业硕士点教学改革途径 

(一)科学定位办学特色 

高校办学特色是高校在适应社会经济发展需要与教育发展规律,探索有利于自身生存的发展途径,在办学理念、办学定位、人才培养模式、学科专业建设及服务社会等方面表现出的一系列相对持久稳定的特性,是高校赖以生存和发展的生命线。我校材料物理与化学专业硕士点目前已初步形成交通土建材料特色,在人才培养上积极探索和推进交通土建材料领域应用型人才培养模式的改革;争取多方支持,形成有利于产学研合作育人的环境,从特色中找到自己可持续发展的落脚点。 

(二)完善优化课程体系,融入特色化教学内容 

尊重材料学科人才培养规律,兼顾课程设置基础性、宽厚性及实用性的原则,设置好专业主干课程与选修课程及跨学科课程的比例,适当设置融合学科特色的特殊课程,并配备“双师型”教师进行教学。然后通过不断引入具有学科特色的前沿性、综合性和交叉性的内容,有序地提升学生分析、解决问题的能力, 更高层次促进学生创新意识的形成。 

可在材料大类核心课程体系内部增设反映高级土木工程材料类课程,这类课程强调材料学基本理论与交通土建材料具体应用相结合。例如,我校面向本专业开设的材料制备与合成课程以解决具体的工程材料所存在的问题为目标,有针对性地开展融合学科特色的课程教学。结合具体的土建材料,将涉及材料改性这部分内容重点分为四个部分:防水材料、防污材料、自愈合材料、增韧材料。水泥混凝土的耐久性是目前所有混凝土建筑物必须面临的一个挑战,也是目前的一个研究热点,其根本原因就是混凝土内部存在各种孔隙以及毛细管水。从材料学角度来看就是材料致密性与防水问题,这门课程可从材料加工与成型角度引导学生思考如何施工才能使混凝土更加密实,如何从做表面防水层和拌和过程引入防水剂的方式增加混凝土的防渗能力,很自然地引入材料表面改性、表面亲水疏水等相关理论知识。为更好完成该部分内容的教学,可将案例教学法分为案例准备阶段、分析讨论阶段、总结阶段以及报告撰写阶段。第一阶段以授课教师启发为主,第二阶段经大量文献查阅后以3-4人组成的小组讨论为主,第三阶段以讨论后的小组课堂发言为主。经过教学手段改革后,大量学生表示教学效果非常好,印象深刻,特别是部分学生反映课堂教学完成后能马上将课程所学运用到毕业论文写作中。 

此外,我们还选派有丰富专业实践经验的“双师型”导师进行授课,多采取案例教学方式,引导学生运用基本理论去认识、分析、解决交通工程领域涉及材料部分所遇到的典型问题。 

(三)改革课堂教学模式,运用学生参与度高的教学方式 

改革传统教学模式,推进教学手段、教学方法改革。教学方法上, 强调课堂教学以学生为核心,突出学生在教学活动中的主体地位;广泛采用案例教学、问题式教学、情境教学等灵活多样的教学方式,充分调动研究生学习的积极性、主动性及创造性,充分激发他们的参与欲望、表现欲望。在教学手段上, 可尝试运用现代科技手段增强教学科研互动功能,发挥微信、QQ等新一代社交手段的作用,在授课导师与研究生之间搭建即时互动通道。 

可尝试建立以科研项目为依托的课程教学模式,有条件地依托重点和重大科研项目,将可能涉及的本门学科基础课程、前沿课程及其他课程交叉罗列筛选出来,经科学论证选用经验丰富的教师教授,这种以点带面、点面结合,以科研实践促进理论教学,有利于学生更系统全面地掌握本门学科基础与前沿的课程。 

(四)构建反映学科特色的实践课程体系 

材料物理与化学专业是理论与实践高度结合的专业。该专业的教学改革在对理论课程调整和优化的同时,也必须高度重视实践教学课程。我校该专业的实践教学课程有校内和校外两大实践体系,校内可充分利用优势学科所在高水平科研基地如交通土建工程材料国家地方联合工程实验室、山区桥梁结构与材料教育部工程研究中心、山区道路结构与材料重庆市市级重点实验室等省部级平台为实施研究生创新能力培养提供可着陆的硬件实践平台,也可以为建设研究生创新基地等进行科学实验、学术交流、自主研发和实践创新提供场所。校外实践课程主要包括校企合作实践实训基地、产学研合作基地等,也可通过聘请有丰富专业实践经验的企业家、工程师、技术开发人员来校讲学等方式来丰富研究生专业实践知识。 

(五)强化“双师型”师资队伍建设 

现有研究生导师队伍结构中,大多数教师缺乏在生产施工一线工作的经验,对大多交通土木工程材料的实际施工过程没有亲身体验,对行业现状及进展的情况缺乏深入了解,不能对学生的实践活动进行有效指导,可以从研究生导师聘任、观念创新、继续培训等方面来加强应用型“双师型”师资队伍的建设。建议教育管理部门切实采取有效措施,将高校“双师型”教师设置为独立的类别序列,督促本地方普通应用型或工科类普通高等院校制定“双师型”教师队伍建设规划及配套政策;结合学校实际情况,落实“双师型”教师专项经费,从政策上对聘用、晋升、考核、奖励等方面予以倾斜,并健全科学管理机制,促使“双师型”教师健康、稳定、可持续发展。侧重引进有多年一线工作经验的复合型高素质人才,加大聘请大企业、公司、事业型等单位有丰富实践的人员担任兼职导师的力度;制定并实施鼓励学术型、技能型导师团队聯合指导制度;建立多方密切合作的“双师型”教师培养机制,完善鼓励企业、政府、高校三方密切合作机制,实现“双师型”教师培养的无缝对接;重视教师培训基地建设,引导学术型教师向应用型教师或“双师型”教师转变,鼓励和支持任课教师与校外企业合作开展科技开发和科研立项,激励学术型教师深入到企业一线进行挂职锻炼,促进“双师型”教师队伍的建设。定期开展“双师型”教师教学基本功和技能竞赛,对成绩突出的学校和教师进行表彰奖励等;可尝试建立技能实践与职业资格晋升的关联机制,改革创新“双师型”教师职称与职业资格证书相互认证机制等,打通高校和行业企业人才流通渠道。 (六)构建以能力为主体的课程考核评价机制 

逐步建立“考核形式多样化、考核内容综合化、考核过程全程化”的多元化課程考核模式,以考核方式改革促进教学模式改革。现有的考核基本上是在学校相对封闭的环境中围绕理论知识来设计考核指标,且存在着标准单一化、体系不规范等问题。培养高层次应用型研究生人才必须建立以知识、技能、能力为主的综合质量考核与评价体系。 

完善研究生学位论文的开题报告制度, 建立有相近工程专业的导师参与的开题报告制度。对研究生论文工作实行多元化动态管理与监控,并建立起有效的创新激励制度。再次,严格审查研究生参加论文答辩的资格,可采取随机抽取、导师回避、双盲送审、公开答辩等方式, 严格把关学位论文质量,实行末位淘汰制度。建立论文评审专家库, 采用同行推荐本校或外校的相关学科和其他学科教师作为专家库成员。在强调论文的创造性、开拓性和学术规范性的前提下,确立具体、明确的论文创新指标体系。 

四、结语 

本研究紧密结合交通土建材料学科背景,评估了我校硕士学位点物理与化学专业存在的问题,反映了突出办学特色、重构特色课程体系与教学内容、改革课程教学模式、构建特色实践课程、强化“双师型”导师队伍、优化评估考核机制等几个环节的教学改革,及其在实施过程中所取得的有效成果,有助于推动应用型高素质研究生人才培养工作向前发展。 

[ 参 考 文 献 ] 

[1] 李慧泉,崔玉民,苗慧,等.依托省级科研平台构建应用型人才培养的新模式[J].广东化工,2016(4):166-167. 

[2] 陈宇刚.转型背景下高校服装应用型人才培养模式研究[J].纺织科技进展,2016(2):61-62+64. 

[3] 袁小亚,王晓天.简析研究生创新教育的困境及对策思考[J]. 教育教学论坛,2015(42):90-91. 

[4] 吴芳,杨长辉. 土木工程材料课程教学改革研究[J].高等建筑教育,2006(4):79-81. 

[5] 孙南屏,祁玲.关于建筑材料课改为土木工程材料课后教学方法改变的思考[J].高等建筑教育,2001(1):27-28. 

[6] 史文霞,张建军.优化教育环境与实施研究生创新教育刍议——对当前研究生创新教育不足的原因探析[J].研究生教育研究,2011(5):11-16. 

材料科学与工程导论篇4

化学工程与材料学科相互支撑发展的这种态势导致了新兴交叉学科——“材料化学工程”的诞生。它是将传统化学工程与材料学科交叉融合,以化学工程为基础和手段,面向生物材料、高分子材料和无机材料制备及应用的一个新兴学科。它既是化学工程学科内涵的拓展和应用领域的外延,也是学科间的交叉渗透,符合当今社会的需求和学科发展的必然规律。材料化学工程学科的内涵主要表现在两个方面:一是应用化学工程的理论与方法对材料生产与加工过程进行系统的研究,其目的在于在材料高性能化的同时,最大限度地降低材料生产对于资源、能源的消耗和环境污染,实现材料制备的高质量、低成本、环境友好和可循环再生利用;二是利用新材料,如新型催化材料、分离材料等发展新型高效的化工技术与理论,形成新的流程工艺和集成技术。

2材料化学工程二级学科发展现状

近十年来,材料化学工程学科作为化学工程和材料科学与工程领域的新增长点,发展迅速。目前,国内外一些大学的化工学院或材料学院均出现了材料化工的研究领域,有的大学(如大连理工大学化工学院)甚至出现了专门的“材料化工”系等人才培养和科研机构。材料化工的交叉研究已经展示出了良好的发展前景,近年来我国在该领域取得了包括国家技术发明一等奖在内的一系列重大研究成果。2005年7月,南京工业大学经国家教育部批准,成立“省部共建材料化学工程教育部重点实验室”;2006年5月在南京召开了第一届材料化学工程大会,大会总结了国内外材料化学工程的研究进展,明确了我国材料化学工程进一步发展的方向和重点。2007年10月国家科技部正式批准建设“材料化学工程国家重点实验室”。基于化学工程和材料学科的交叉融合,国内多所重点院校开始在“化学工程与技术”及“材料科学与工程”一级学科下设置“材料化学工程”二级学科。2002年,南京工业大学首先在化学工程与技术一级学科下设立“材料化学工程”二级学科。随后,天津大学、华东理工大学等知名高校开始设立“材料化学工程”二级学科。据初步调研,已经有11所重点大学设立材料化学工程,如表1所示。该学科的设置,有力地促进了“化学工程与技术”与“材料科学与工程”一级学科的交叉和融合,有利于材料化工领域交叉型人才的培养和学科建设。

3材料化学工程二级学科的建设对策

3.1重新定位“材料化工”学术硕士培养目标的定位

“材料化工”学术硕士的培养定位以工程为主,理工结合,既要考虑到与化学、化工、材料学的学科交叉以及与生物、环境等学科的渗透,又结合地方经济和社会产业发展的需求,培养符合现代科技发展趋势和地方产业要求的素质高、专业宽、基础厚、能力强、具有创新精神和实践能力、工程和工艺结合、理工结合的高素质复合型专业人才。

3.2构建“材料化工”学术硕士学位课程体系

在“材料化工”学术硕士人才培养的课程体系中强化两个方面,一是开发新材料为基础的化工单元技术与理论,二是用化学工程的理论与方法指导开发材料制备技术,因此,设立与之相适应的学位基础课和学位必修课程体系,而学位选修课紧密结合地方产业发展,突出特色。在理论课程的教学中,逐步借鉴或采用国际一流大学的教材、教学内容和教学手段,努力提高教学质量。

3.3打造“材料化工”学术硕士点的师资队伍

引进具有企业背景的高级工程技术人员和国外学习进修经历的教师,发挥他们丰富的企业工作经验和国外人才培养经历。聘请相关企业具有工程师以上职称的人员担任兼职教师,给学生讲授理论联系实际内容较多的工程设计类课程,突出应用型人才的培养,丰富课堂教学内容。另外,有计划、有目的地选派高学历、高职称的教师到企业挂职锻炼或国外进修,进一步提高他们的企业工作经验和国外学习经历。

3.4建立“材料化工”学术硕士的教学管理体制

一是围绕研究生课题的研究方向,理论教学不再单独突出“化学工程与技术”和“材料科学与工程”,而是强化交叉性和相互渗透性,再结合科学研究,既满足了“材料”“化工”交叉与渗透的理论教学的要求,又可让理论来支撑科研的深入开展;二是科学研究中强化理论基础,构建解决科学问题的理论体系。研究生采用化学工程的理论与方法开发材料制备技术,同时也运用在开发新材料为基础的化工单元技术与理论解决相应的科学研究的关键技术问题。这种体制强化了“材料”“化工”交叉与渗透性的理论教学,同时也促进了科学研究,建立了既增强研究生理论学历,又培养了学生科研能力的教学管理模式。

4结论

目前,材料化学工程二级学科的人才培养定位不太明确,理论课程缺乏特色,师资队伍对产业了解不够,还存在重科学研究轻理论教学等问题。基于上述问题,提出相应的对策和建议,强化“材料”“化工”交叉性与渗透性,结合地方产业发展需求,贯彻教学与科研相互促进、特色鲜明、求实创新、交叉与融合、集成与带动的发展原则,进一步调整学科结构,构建并形成特色的交叉学科“材料化学工程”研究生的人才培养体系,不仅是顺应社会发展的需要,更是促进研究生教育有序发展的前提。

材料科学与工程导论篇5

关键词:电子科学与技术 光电子材料与器件 理论教学 实验教学

中图分类号:G423 文献标识码:A 文章编号:1674-098X(2014)09(b)-0154-02

电子科学与技术(以下简称“电科”)专业是以培养具备微电子、光电子、集成电路等领域宽厚理论基础、实验能力和专业知识,能在电子科学与技术及相关领域从事各种电子材料、元器件、集成电路、电子系统、光电子系统的设计、制造、科技开发,以及科学研究、教学和生产管理工作的复合型专业人才为目标的工程专业。作为电科专业教育中重要内容的光电子技术,不仅是当代信息技术两大支柱之一,而且随着现代科学技术的发展持续焕发着生命活力。而让光电子技术保持如此强劲发展势头的主要原因之一,正是光电子材料与器件的广泛应用,例如激光器与新型光电探测器的应用的人你还。另外,诸如纳米光电材料与器件、光子晶体及相关器件、超材料及相关器件与表面等离子体激元及器件等新型光电子材料与器件的研究与应用,是目前国际上光学与光电子学研究领域的前沿热门方向。由此可见,学习光电子材料与器件的相关知识,不仅对电科学生知识体系的构建与就业方向的确定具有积极的影响,也为那些将来希望从事新型光电子材料与器件科研工作的学生,提供了坚实的理论基础与知识储备。然而,根据笔者的调研,虽然国内许多重点大学的电科专业都开设了光电子技术课程,但很少有大学专门开设光电子材料与器件这门课程。而由于光电子技术的内容多、涉及知识面广,教学课时又往往有限(一般为32或48个学时),因此在光电子技术的实际教学过程中,讲授教师往往重视光电子技术基本概念与理论知识的教学,而轻视光电子材料与器件的教学。该文从光电子材料与器件的研究内容、应用及发展等方面说明其在电科专业教育中的重要性,并结合自身光电子材料与器件课程的教学经验,研讨电科专业中光电子材料与器件的教学方法。

1 光电子材料与器件简介

光电子材料是指能产生、转换、传输、处理、存储光电子信号的材料。光电子器件是指能实现光辐射能量与信号之间转换功能或光电信号传输、处理和存储等功能的器件。自1960年美国科学家梅曼发明世界上第一台红宝石激光器以来,光电子材料与器件如雨后春笋般发展迅速。在短短的50多年里,光电子材料与器件经历了从红宝石激光器的发明,到半导体激光器、CCD器件及低损耗光纤的相继问世;从各种光无源器件、光调制器件、探测与显示器件的小规模应用到系统级集成制造实用化阶段;从大功率量子阱阵列激光器的出现再到光纤激光器、光纤放大器和光纤传感器的诞生。光电子材料与器件从未停止过发展的脚步,并正在不断深刻影响着人类社会的方方面面。在实际需求的引导下,各种新型光电子材料与器件层出不穷,性能也不断提高。尤其是近年来,随着微米及纳米级加工技术的成熟,新型的微纳光电子材料与器件的研究异常活跃。纳米光电材料、光子晶体、超材料、表面等离子体器件等领域的研究成果丰硕,为未来光电子器件的微型化、集成化发展奠定了坚实的基础。

综上所述,光电子材料与器件在当代信息产业与科学技术中具有极其重要的地位,因此,光电子材料与器件这门课程不仅应当单独作为一门课程独立教学,而且应该作为重视工程教育的电科专业的核心课程。

2 光电子材料与器件课程教学研究

2.1 光电子材料与器件课程的教学形式、课时安排与教材选择

光电子材料与器件课程不仅包含丰富的理论知识,例如光电子材料的物理特性以及光电子器件的工作原理等,而且与实际应用结合精密,因此,本课程宜采取理论教学与实验教学相结合的教学形式。

在课时安排方面,作为电科专业的一门核心专业课程,光电子材料与器件课程的总课时应不低于32学时(2学分),理论课学时不低于26学时,实验课不低于6学时。

另外,在教材选择方面,由于光电子材料与器件是光电子技术中的一部分内容,而目前国内关于光电子技术方向的参考书籍很多,其中亦不乏一些光电子技术课程的经典教材,例如西安电子科技大学安毓英主编的《光电子技术》[1],西安交通大学朱京平主编的《光电子技术基础》[2]等。虽然这些光电子技术参考书中或多或少都会介绍与光电子技术相关的材料与器件,但是,目前专门介绍光电子材料与器件方向的教科书却是少之又少,市面上仅有国防工业出版社2012年出版的侯宏录主编的《光电子材料与器件》[3]一书。加之,该书中所涉及的理论知识较深,基础浅薄的本科生很难驾驭。由此可见,对于光电子材料与器件这门新兴课程而言,设立统一的教材并不合适。因此,笔者建议该课程的讲授教师根据理论教学与实验教学的内容,自行编写该课程的讲义与课件。

2.2 光电子材料与器件课程的理论教学

按照电科专业的专业定位以及培养目标,光电子材料与器件课程的理论教学也应该突出“工程”内容。传统的光电子技术教学中所重视的原理、定律与规律等内容,在光电子材料与器件教学中要弱化;而传统光电子技术教学中往往被弱化乃至忽视的光电子材料与光电子器件的相关知识,要在光电子材料与器件课程教学中占主体地位。如此才能保证在有限理论课时的前提下,让学生对光电子材料与器件有一个全面的认识。

在教学内容的设置方面,由于光电子材料与器件主要应用于光电子技术之中,因此,为了便于学生的理解与知识体系的构建,笔者建议光电子材料与器件课程理论教学的章节设置按照光电子技术的章节设置进行。以笔者讲授光电子材料与器件理论课程(共26学时)为例,该理论课程共被分成了绪论(2学时)、激光原理与典型激光器(5学时)、太阳能电池(4学时)、光通信器件与材料(5学时)、光探测器件(5学时)、光电显示器件(3学时)与光存储器件(2学时)等七个章节,这七章内容基本囊括了光电子技术中光产生、光转化、光传输、光探测、光显示以及光存储等各个重要环节中最为典型的器件以及所用到的材料。另外,在每章内容的设置上,也尽可能突出“工程”内容,弱化“理论”知识。下面,笔者将详细介绍笔者在光电子材料与器件教学中各章的教学内容。

第一章绪论主要包括光电子材料与器件课程简介以及光电子技术的基本知识简介。在光电子材料与器件课程简介中,向学生介绍课程设置的目的和意义、课程的主要内容、教学与考试方式与参考资料等。通过这部分内容的介绍,让学生对本课程的意义、内容、侧重点有一定的认识。在光电子技术基础知识简介中,重点向学生介绍光电子材料与器件与光电子技术的关系,并通过对光电子技术的概念、特征、发展等方面的介绍,让学生对光电子技术以及光电子材料与器件有一个整体的认识。

第二章激光原理与激光器重点介绍几种典型激光器的材料、结构与工作特性,其主要内容包括三个部分:激光原理简述、典型激光器与激光器的应用。在激光原理简述部分,由于多数电科专业在学习光电子材料与器件课程之前已经修过激光原理等类似课程,所以该部分内容为简略介绍的内容,主要帮助学生回顾激光的特征、历史与光辐射理论等知识点。而第二部分内容典型激光器是本章内容的重中之重,在该部分内容中,将依次向学生介绍固体、气体、液体与半导体这四大类激光器中的典型激光器的结构、特征与工作特性等知识。由于发光二极管与半导体激光器结构与工作原理上的相似,在介绍完半导体激光器后,可以顺理成章地介绍发光二极管的结构与特征。另外,本章最后还简单介绍了激光器的几种常见应用。

太阳能电池虽然是光电探测器中光伏效应的一种特殊应用,但是由于它在现如今光电子技术产业以及光电子器件中的重要地位以及良好的发展趋势,该部分内容被独立成一章。在第三章太阳能电池中,主要分两小节给学生介绍,第一小节介绍当今能源与环境问题以及太阳能的开发和利用,让学生了解当今能源资源的现状以及新能源研究与应用的迫切需求,然后介绍太阳能利用的历史以及发展趋势;第二小节正式介绍太阳能电池的工作原理、结构以及特性等知识。

第四章光通信器件与材料主要介绍的是光通信系统中所用到的有源与无源光器件。本章内容共分为两小节:第一小节介绍光纤通信的基础知识,包括光纤通信的定义,光纤的结构、导光原理、发展历史,以及光纤通信系统的组成与特点。第二小节正式介绍光纤通信系统中所用到的各类光电子器件以及构成这些器件的核心材料。在光纤通信中,最重要的器件当属光纤,所以,本节开始就着重介绍光纤的相关知识,包括它的结构、原理、分类、特征参数与传输特性。然后,又将光纤通信系统中的其它光电子器件分为有源与无源器件两类,并分别介绍了这两类光器件中的代表器件:掺铒光纤放大器与波分复用与解复用器。最后,在本章结尾还介绍了光纤通信系统中其它几种常用光器件,例如光耦合器、光衰减器、光环行器等。

第五章光探测器首先介绍了光电探测器的物理效应、性能参数、噪声;其次,按照光电探测器物理效应的不同一一介绍了几种典型的外光电效应探测器(光电管与光电倍增管)与内光电效应探测器(光电导、光电池与光电二极管)。教学的重心仍然放在对探测器结构、工作原理以及特性等方面。

第六章光显示器件重点介绍四种光显示器:阴极射线管、液晶显示器、等离子显示器与电致发光显示器。

第七章光存储器件主要介绍了现如今最常用的一种光存储系统―― 光盘系统以及其中最总要的器件光盘。

2.3 光电子材料与器件课程的实验教学

光电子材料与器件实验课程的教学要与理论教学紧密相连,并重点介绍理论课上讲解过的光电子材料与器件,实验课程的学时应不低于6学时,开设的时间最好在理论教学完成之后,以保证学生在实验前已对实验器件与实验原理有一定的了解。在实验项目的设定方面,既要保证与理论课程内容的相辅相成,又要尽量避免与其它课程实验项目的重复,造成资源的浪费。例如,许多大学的电科专业都已经将激光原理一课作为该专业的核心专业课程,并配备了相应的激光器实验。在这种情况下,如果在光电子材料与器件实验教学中再次引入激光器的实验内容,不仅消耗了宝贵的实验时间,实验效果也会大大降低。

下面跟大家简单介绍笔者在光电子材料与器件实验教学(6学时)中的实验安排。

(1)实验内容:共包含六个实验项目,它们分别是:光控开关实验、光照度计实验、红外遥控实验、PSD位移测试实验、太阳能充电实验与光纤位移测量系统实验(每个实验1学时)。各实验中都应用到了一个或几个核心光电子器件,这些光电子器件基本涵盖了学生在理论课程中所学到的最为重要的几类器件,例如光控开关实验应用到了光电探测器中的光敏电阻作为核心元器件;而红外遥控实验中用到了发光二极管光源与红外探测器等光电子器件。

(2)实验要求:以往的光电子技术实验往往重视现象的观察与定性分析,但经笔者调研,这种实验方法很难最大限度激发学生的求知欲与动手能力,因此,在对原有的实验指导书进行改良后,笔者自行编写了实验的指导书,并在每个实验项目中加入了一些测量与定量分析的实验内容。例如太阳能充电实验,原来的实验指导书只是观察太阳能充电的效果,但是,在新改良的实验指导书中,要求同学测量不同光源照射下太阳能电池的输出电压与输出电流,并要求学生分析比较其差别。通过这种方式,充分调动学生的实验积极性,在具体的实验教学中也取得了很好的效果。

(3)实验方式:分组实验,共同撰写实验报告。这样,不仅提高实验效率,还能够锻炼学生的团队协作意识。

(4)考核方式:根据每位学生实验完成的情况与实验报告撰写的情况综合评分。

3 结语

光电子材料与器件在信息产业的发展与现代科学的研究中都具有举足轻重的地位。它不仅是电科专业知识体系中的重要环节,也为电科专业学生提供着良好的就业竞争力与科研基础。本文通过对电子科学与技术专业特点与光电子材料与器件课程内容的分析,讨论了光电子材料与器件在电科专业教育中的重要性,并根据笔者自身的授课经验,提出了光电子材料与器件在电科专业中的教学形式、课时安排、教材选择以及理论与实验课程内容设置的一些意见与建议。

参考文献

[1] 安毓英,刘继芳,李庆辉.光电子技术[M].3版.北京:电子工业出版社,2013.

[2] 朱京平.光电子技术基础[M].2版.北京:科学出版社,2003.

材料科学与工程导论篇6

关键词: 材料科学基础 教学优化 教学质量 实践能力培养

材料科学基础作为材料科学与工程专业中一门基础性的理论课程[1],系统而全面地阐述了材料的基本理论,包括材料的微观结构与缺陷、材料的凝固与塑性变形、材料的组织与状态等方面[2]。考虑到应用型技术人才的培养目标,结合其他非金属材料和复合材料等系统理论,阐述材料的共性与个性。在此全面深厚的专业公共知识的基础上,着重说明金属材料的基本理论,诸如与其相关的基本现象、概念、规律和基本方法。通过明确课程学习的目的、选择针对性的教学内容、改革和优化教学方法及理论联系生产实际等多个方面,对材料科学基础课程进行改革与优化,提高教学质量,充分发挥理论基础课的指导性作用。

1.明确课程学习目的

材料科学基础课程教学为材料加工成型、材料测试等后续课程提供专业理论基础。明确本课程学习目的,打下扎实的专业理论基础,将对本课程及其他相关专业课程的学习效果产生积极的促进作用。

教学效率直接影响课程教学效果。在强调课程重要性的基础上,还应该增强课程教学的生动性与丰富性,提高学生深入学习研究的主动性与积极性,促进学生专业素养与认知情趣的有益结合,从而发挥学习热情与主观能动性,提高课程教学效率。

2.选择针对性的教学内容

材料科学基础通过研究材料成分、结构、组织与性能之间的内在联系和相互变化的规律,为材料科学与工程领域提供相应的理论基础与生产实际指导,因此,本课程教学围绕材料四要素这条主线展开。面对材料领域的广泛应用和繁杂的概念理论,有针对性地选择教材和教学内容显得尤为重要。根据专业特点教学分清主次,教学内容有所侧重。例如专业是金属材料科学方向,教学中应该着重介绍金属学部分,比较深入地介绍金属材料的晶体结构[3]、凝固结晶、塑性变形等方面的知识。通过查阅资料并结合本专业人才培养目标,精心选择教材,满足了本专业应用型技术人才的培养需要。

科技发展与材料理论更新相辅相成,在基础理论框架中,应加强学科前沿知识[4]的引入。新材料的研究、新工艺的发展等教学内容的引入,不但能保持理论的科学性,而且能极大地丰富教学内容。例如纳米材料、3D打印技术等前沿科技的发展与应用,可以让学生逐步了解专业领域的最新进展,更能激发学生求知探索的兴趣,寓学于乐,提高教学质量和专业素养。

3.优化教学方法

材料科学基础课程内容繁多,理论性强,学习内容包括基本概念的记忆、基础理论的理解、基本工艺方法及其应用等各个方面,教学工作有一定的难度。通过优化教学方法,建立逐层递进的专业知识体系,由浅入深、形象生动地叙述概念理论,培养学生积极探索和实践应用的能力,取得令人满意的教学效果。

3.1构筑逐层递进的知识体系

课程教学内容围绕材料、结构、组织与性能之间的相互关系及变化规律这条主线展开。在教学过程中构筑以材料成分归属(金属或非金属)为起点的基本框架,介绍其由来、特点、性能等背景知识,将学生带入到专业领域的视野中。有意识地结合实物(如手机或笔记本外壳等)引导学生注意和思考诸如产品是什么材料的、有什么特性等问题,慢慢培养专业思维和素养。

不同种类(或者种类相同但成分不同)的材料具有不同的结构,还能形成不同的组织,使得材料性能大不相同。讨论材料的特性需要逐层递进地研究和分析从理论条件下材料的晶体结构到实际条件下材料的结构和组织变化,再结合生产加工条件,一步步研究其性能的变化规律。在这个知识架构中,既要培养学生逐层理解剖析的能力,又要强调各层知识的关联性,使其思考问题较为全面而又深刻。

3.2生动地叙述概念理论

作为一门专业基础课,繁杂抽象的概念理论成为教学工作中的一个难点。因此,在教学过程中要避免平铺直叙,多用图文结合、多媒体演示、视频录像等手段,形象而生动地讲解基本概念理论,强化教学效果。

在教学内容中,晶体结构部分知识抽象,可以通过书写板书写下概念加深学生的记忆,绘制模型示意图帮助学生理解结构,采用多媒体动画演示形象展示晶体结构及缺陷,让学生深刻记忆和理解这些内容。在合金相图中的曲线和组织变化中的金相组织照片都能帮助学生建立微观结构的立体描述[5],并形象地理解材料结构和组织状态的改变,总结性能的变化规律。

形象生动的教学方法使学生克服学习障碍,激发学习兴趣,引导学生主动发现问题,积极思考,让教与学都变成一件有意义的事。

4.理论联系实际

材料科学基础课程教学内容很大一部分来自生产实际的规律总结及试验现象整理和数据分析,实践性强。抽象的理论教学离不开实际,可以从实物产品的材料、外观和特性入手,结合生产工艺过程的图片或视频录像,让学生慢慢熟悉各类加工工艺、热处理工艺和表面处理工艺,引导学生将基本理论知识理解运用到生产实践中。在总结生产规律的基础上进行试验分析(如研究状态、温度等现象变化,强度、硬度等变化曲线,以及金相试验观察到的组织转变照片等),从宏观到微观充分反映材料四要素的基础理论及内在联系。在教学过程中可以设立开放式课堂,分组讨论试验现象,让学生测量性能数据并绘制表格曲线,要求学生认真完成金相试样制备并进行金相组织观察和记录。结合理论基础进行分析和总结,完成试验报告。强调实验教学的重要性,将其作为成绩考核的重要方面,强化教学效果。

科技在不断进步,新材料、新工艺不断涌现,生产设备和工艺不断改进更新,科学发展需要理论指导实践和应用创新发展。教学过程中联系实际,插入先进制造设备的图片和先进生产工艺的视频录像,多与学生探讨前沿科学的热点问题。比如可以让学生分组完成拟定题目的资料搜集整理并按组作报告完成工作介绍,还可以在此基础上设计研究性课题或实践创新项目,要求学生自由查阅资料和设计方案,整理分析后完成设计,纳入成绩评定或者奖励考核。这样不仅可以调动学生了解专业动向的积极性,学习更加认真,还可以开阔学生的视野,提高学生的应用和创新能力。

5.结语

材料科学基础课程内容丰富,专业性强,需要耐心记忆和理解材料的基本概念理论,认真分析总结材料的组织转变与性能变化规律。材料科学理论不断丰富,应用不断深入,需要积极关注前沿科技,不断补充和完善基础理论知识。因此,材料科学基础课程改革是一项长期而艰巨的工程,必须不断改革优化,与时俱进,勇于实践,在理论和实践教学效果上不断获得突破。只有这样才能达到培养理论基础扎实、实践能力强和创新能力高的应用型技术人才的培养目的。

参考文献:

[1]胡庚祥,蔡,戎咏华.材料科学基础,第2版[M].上海:上海交通大学出版社,2000:8-10.

[2]石德珂.材料科学基础,第2版[M].北京:机械工业出版社,2007:7-10.

[3]崔忠圻,覃耀春.金属学与热处理,第2版[M].北京:机械工业出版社,2007:4-13.

[4]孙青竹,王海波.材料科学基础课程教学改革与实践[J].中国冶金教育,2012,05:21-23.

材料科学与工程导论篇7

关键词:金属材料工程;应用型本科;培养方案

高等院校是培养服务于国民经济和社会发展所需的专业人才,而人才的培养质量很大程度上受培养方案设计科学性、合理性、质量及培养过程监控的影响。如何提高专业人才培养方案设计的质量,就摆在从事高等教育工作者面前,这需要我们去思考、分析、探索并付诸实践。

结合我校“以学生为本,为产业服务”的办学理念,如何让金属材料工程专业人才培养方案的设计有质量,有科学性、合理性呢?为此,我们在国内外相近专业培养方案概况、课程设置与教学内容、市场对人才素质需求等方面调研的基础上,深入分析、探讨并得出了有益的思考。

一、国外大学培养方案分析

国外专业设置与我国的专业设置情况有所不同,与我国金属材料工程专业相近专业名称为材料科学与工程专业,相当于我国的一级学科专业,而金属材料工程专业属于三级学科专业。首先以被调研的美国威斯康星大学、伊利诺伊大学以及英国伦敦帝国大学等部分国外大学材料科学与工程专业培养方案为对象,深入分析专业培养目标、课程设置结构、内容、学分要求等特点,从而探索并改革我校金属材料工程专业应用型人才培养方案。

所调研的学科专业具有范围大的特点,未被细化,该专业包括材料化学、冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、复合材料与工程等三级学科专业。因学科专业没有设置具体方向,所以其课程内容范围宽广,涉及专业知识面宽。

威斯康星大学材料科学与工程专业课程结构体系如表一所示,通过该表主要分析其课程之间、知识与能力之间的关联。

材料科学与工程专业学科基础课包括数学、物理学、化学。它们之间关联度较大,有不分家之说,是学科基础的基础,更是专业基础的基础。

材料科学与工程专业课程包括专业基础类课程,是专业课程的理论模块,注重材料的结构、组织与性能间关系的原理或理论知识。材料性能取决于其组成结构,如原子、分子、离子等。材料的研发设计、生产或制备影响材料性能,只有了解其内部组成结构,才知道应用数理化相关知识分析结构与性能之间的规律,才懂得用材料科学与工程相关方法手段对材料改进结构、改变性能、加工、成形和应用。这类专业基础课包括材料科学(固体中材料的结构和属性关系、材料科学)、固体相变学、材料相变学、材料力学。专业课程包括材料设计类、材料加工类、材料性能学类。材料设计类包括高分子材料、陶瓷材料导论、材料体系、设计项目规划学。材料加工类包括宏处理材料、材料微加工、固体(塑性)变形。材料性能学包括材料的电学、光学和磁学性能。材料选修课包括材料体系设计、各类材料学,这类课程根据学生自身的兴趣爱好与个人发展而选修,主要培养个人专业特长、创造性以及研究能力。工程类课程包括工程导论、工程应用统计学、工程基础等,主要培养具有材料工程理念或观念,强调材料工程设计、组织、管理、经营、质量控制等。

通过培养方案中各学期课程安排,可以分析可以得出如下结论:

(1)各学期学分分布比较均衡,各学期负担不重,学习压力不大,这有利于学生可持续学习,不会打疲劳战。

(2)反映了知识、能力培养过程,其特点是课程安排与其间的衔接先后有序且紧密,课程内容复杂程度由低到高,内容由浅入深。先学基础课,接着是专业基础课、专业课、专业限选课,最后材料体系设计与材料工程项目设计综合。

(3)注重个性发展,依学生兴趣选修课程,激发其创新能力,这主要通过选修课程实现,包括科学类选修课,如化学类、物理类、土壤、生物类,自由选修课。

(4)注重人文社会素质的培养,主要依据文学研究类选修课程。

(5)注重交际能力培养,主要依据基础交际、专业技术写作课程。

(6)注重工程观念或理念培养,通过工程导论、工程应用统计学、工程基础选修课的学习。

(7)注重培养学生国际视野,通过走进跨国工厂或国际学校锻炼或实习环节来实现。

二、国内大学培养方案分析

国内大学金属材料工程专业人才培养方案因学校定位不同会导致各高校在人才培养侧重点不同。现以吉林大学、上海大学、

常州大学等三所高校的金属材料工程专业培养方案为例分析其

特点。

通过高校培养方案可以分析出各课程之间、知识与能力之间的关系。

课程依据其性质可分为通识教育课程(公共基础课、普通教育课)、学科(专业)基础课程、专业(专业教育)课程等三类。通识教育课程包括数学、物理、化学、英语、思想政治、大学计算机基础、大学英语、体育、军事理论。学科(专业)基础课程含工程图学等机械设计制造类课、电工电子类课、计算机软硬件类课及材料科学类课。专业(专业教育)课程包括表面工程、复合材料、凝固和组织控制、功能材料、粉末冶金、热处理、腐蚀与保护、焊接等方向的金属材料工程专业课。

如同国外的材料科学与工程专业一样,金属材料工程专业同样也要注重各类及各门课程之间的知识联系。因此,各门课程的安排要符合学生认识规律,也要符合科学理论与实践之间的辩证关系,首先掌握科学基础知识,并应用之学习与掌握专业(学科)基础理论,从而为发现金属材料工程中某一领域的科学技术问题、分析问题与解决问题服务。

三、分析与思考

通过分析归纳与总结,可以将国内外的近金属材料工程专业的课程归类并将其所占理论总学分的比重进行统计,结果如表二所示。

从表二中可以分析得出以下思考:

(1)理论总学分与国外相比,国内大学理论总学分因大学定位不同而差异较大,常州大学的与国外的相近,而985、211类的大学达200学分甚至300学分。理论总学分不同,对应学时数量也会不同,总学分多,则总课时量也多。然而总学分多,则表现为各学期学分平均量也多(国外每学期平均约16学分,国内三所大学每学期

平均约为25、38.9、18学分),周课时量也多。学生学习负担及压力大,致使学生疲劳应对修满学分,难以充分调动学生的学习积极性及个性发展,也不利于充分培养课余时间思考与创造性思维。

(2)科学类课程包括数学、物理、化学等三类课,国外三所大学这类课所占比重约为23.4%~26.6%,国内三所大学这类课程所占比重约为18.8%~15.9%,但是数学与化学两类课程所占比重差异非常大。

(3)工程基础与专业(学科)基础类课程,国外三所大学这类课所占比重约为36.%~32.9%,而国内三所大学这类课的比重约为37.8%~34.3%,由此说明这类课程的差异不明显。

(4)专业类课程,国外三所大学此类课程所占比重约为3%~18.8%,而国内三所大学这类课的比重约为9.9%~12%,这表明专业方向或特色课程因设置情况而发生变化,专业方向或特色越明显,则专业课所占比重越少,如威斯康星大学的专业课主要限定在专业特定某方向。

(5)交际类课包括写作、交流等课程,国外比较重视此类课,所占比重约3.1%~3.9%,国内三所大学这类课程体现得不多。由此表明,学生的写作与交流交际能力及各种表达能力在培养过程中也不能忽视,应该在这方面促进与提高。

(6)人文学类课程,国外此类课所占比重约为11.7%~12.5%,而国内这方面课比较欠缺,文学修养类素质培养在国内三所大学的培养方案中表现不足。然而思想政治类课程是我们非常重视的,约占8%~11.1%,培养思想政治素质,是学生应具备的素质之一。这两种素质如何有机结合,值得我们好好思量。

(7)英语、计算机、体育、军事等类的课程,国内大学优势较明显,约占16.4%~22.8%,尤其是体育、计算机、英语三门课程所占学分比重较大。英语是美英等国的母语,也是国际交流的必备素质之一,课程安排非常重要。如何有效提高英语学习,如何有效提高英语利用,如何发挥英语工具的作用等等一些课题,值得我们深思。

(8)其他类

包括个性发展或兴趣类型课程,是大纲规定专业课程外的一类课程。国外所占比重约为3.9%~4.7%,国内所占比重约为4.2%~9.3%,在个性发展或兴趣类课程相差不大,国内某些方面有优势。但是,国内在国际视野培养方面存在不足,我们仍要加大与国际高校或跨国工厂间合作交流,以有利于培养学生这方面的能力。(注:伦敦帝国大学培养方案只有总学分要求,课程学分情况不详)

四、结论

综合上述调研分析与思考,可以得出以下结论:

(1)对高等院校培养的人才所具备的知识、素质与能力等要全盘考量,使其具有数学、化学、物理、工程基础、专业基础、专业特色、国际视野、交际、人文、思想政治、英语、身体素质等方面素质与能力。

(2)培养方案中总学分要求可适当减少,以促使各学期学分分布均衡且学习负担不太重。

(3)课程类型设置方面可适当增加,使学生知识、素质、能力等方面得到加强,促使其综合素质的提高。课程知识间关联性强,要突出重点知识、能力等的培养,以达到各种素质的养成。

(4)课程体系方面,国内培养方案存在一些不足或有待改进之处:有待加强学分比重的课程包括数学与化学类、工程基础类、交际类、人文类课程;继续保持(最好能优化)英语、计算机、思想政治、体育、自由选修等方面课程所占学分;适当精减学分或突出专业特色学分的课程,应当在办学过程中凝练专业优势,进而突出各校的专业特色。

专业人才培养方案是高校纲领性文件,所有教学、监督、管理等围绕它开展活动,高等院校在制订该方案时充分结合专业特点与人才应具备的知识体系、能力体系、素质体系斟酌知识要素、组成及其关系,通过上述分析与思考,以便我们在金属材料工程专业培养方案改革与实践中借鉴,在人才培养道路上少走弯路。上述结论有不妥之处,还请读者不吝赐教。

基金项目:厦门理工学院教育教学改革与建设项目(JG201013)。

作者简介:章文献(1974- ),男,湖南湘潭人,博士,厦门理工学院材料科学与工程学院(361024)。

材料科学与工程导论篇8

关键词 本科教育 课程改革 实验能力 创新意识

中图分类号:G642 文献标识码:A

高分子材料以其质轻、耐蚀、易加工等性能,正处于迅速发展时期,随着新技术、新工艺、新设备不断涌现,越来越多的企业迫切需要大量创新能力强、综合素质高的高分子材料专业人才。建立面向市场和企业,适应现代高分子材料发展要求,培养具有创新精神和竞争能力强的复合型专业人才,已成为现有高校高分子材料与工程专业所面临的重要问题。①②③④本文结合我校高分子材料与工程近年来的教学实践,提出构建新的实验实践教学体系,实验教学分层次、按模块进行,加强了实验教学的基础性、系统性、综合性和创新性,增加实践教学比重,改变实践教学模式,加强学科平台建设,强化对学生创新性实验能力的培养。

1 创新性实验教学改革的必要性

实验和实践教学不同于理论教学,在很长时间里,实验和实践教学得不到应有的重视,实验和实践教学附属于理论教学,在实际教学过程中多是验证性和认知性实验,启发式、设计性以及综合性实验偏少,不利于学生创新能力和工程化能力的培养。高分子材料与工程专业是一门应用性较强的专业,以塑料、橡胶、胶黏剂、纤维、涂料为代表的高分子材料已在国民经济建设中发挥越来越重要的作用,因此培养更多创新能力的从事高分子材料的合成、改性、共混复合、加工成型等方面的高素质人才是社会发展的必然要求。

以高分子材料与工程专业实验课程建设为核心,深化实验教学改革,通过按模块教学,强化学生实验技能,增加以新产品设计开发为导向的创新性实验,兼顾趣味性和挑战性,通过老师的引导,在实验过程中培养学生如何分析问题和解决问题,提高学生工程创新能力。我校高分子材料与工程专业成立于1994年,2005年被批准为湖北省立项建设本科品牌专业,并于2010年通过合格验收,同年被批准为国家特色专业建设点,2012年被批准为湖北省普通高等学校战略性新兴(支柱)产业人才培养计划项目,是我校首批在一本进行招生的专业。高分子材料与工程专业是与湖北省国民经济和社会发展联系紧密的应用型本科专业,在湖北省内乃至中南地区具有较大影响,为地方经济建设培养了大批高层次应用人才,并提供了大量实用型科技成果。

2 创新性实验教学的具体措施

2.1 构建创新性人才实验培养方案,改革实验课程体系

制定创新性人才实验培养方案。高分子材料与工程专业是培养高分子材料及相关学科的基础理论知识,通过理论学习及实验、实践教学训练,掌握材料的制备、加工、分析测试等基本方法,能从事高分子材料成型加工和改性以及聚合物合成与相关产品的生产设计、研究、开发和技术管理等工作的创新型高级工程技术人才。⑤坚持“夯实理论基础、拓宽专业口径、增强工程和创新能力、提高科学素质”的人才培养思路。⑥注重理论和实践相统一,重视工程创新能力的培养,加强对新材料相关产业和领域发展趋势和人才需求研究,吸纳相关产业、行业和用人部门共同研究课程计划,制定与生产实践、社会发展需要相结合的培养方案。

改革实验课程体系。结合现代高分子材料发展状况,及时完善高分子材料与工程专业实验课程内容,补充高分子材料新技术、新工艺,参考国外知名大学的具体措施,我们在实验课程体系与教学内容等方面进行全面的改革,建立有利于学生实验创新能力培养的教学体系。根据学生认知能力的不同阶段和理论课程进度计划,按模块化设计优化实验教学内容。形成了由“化学基础实验”、“高分子化学与物理基础实验”、 “高分子工程实验” 和“高分子综合设计实验” 四个实验模块组成的高分子材料与工程专业实验教学新体系。其中化学基础实验模块不仅包括无机化学、有机化学、分析化学和物理化学四大基础化学实验,而且还涵盖仪器分析和化工原理实验,在编制新的实验课程体系时,结合高分子材料与工程专业的特点,对传统实验进行有目的的筛选、分类、整合和更新,突出学生基本技能的培养和训练。高分子化学与物理基础实验包含高分子物理和高分子化学实验内容,不仅巩固学生所学的高分子科学实验的基本理论,而且培养学生制备高分子材料、测试材料物理性能及高分子的结构表征和测试等技能。高分子工程实验模块包括橡胶、塑料、胶粘剂、涂料四大实验,从材料加工、成型、性能测试以及应用,独立设计实验内容,旨在培养学生的实际操作能力,分析和解决实际问题的能力。高分子综合设计实验模块是教学的最高层次,结合学生实际情况,有针对性选取实验内容,应体现实验的知识性、综合性和创新性。

2.2 加强实践教学建设与改革,强化学生实践创新能力

高分子材料与工程专业是一个实践性很强的工科专业,学生的工程实践和创新能力是评价培养学生水平和能力高低的重要标准。我校高分子材料与工程专业按照专业特点和材料人才的培养要求,增加实践教学比重,确保实践教学改革内容到位,创新实践教学模式落实。完善理论教学与毕业实践双支撑的教学模式,强调实践教学的理论性与实践性的完整统一。以省级精品课程“高分子化学与物理”为核心的课程体系,构建高分子材料与工程专业实践教学的理论平台。创建和完善具有工程特色的实践教学体系,按照实践―理论―实践的辨证思想,要进一步完善和发展高分子材料与工程专业工程素质和能力培养的实践教学体系:实践性教学(认识实习、生产实习)―理论教学(聚合物加工原理、聚合物合成工艺等专业课)―专业课程设计(高分子材料工厂设计、塑料模具设计)―实践性教学(毕业实习与设计)。

上一篇:通信专业技术人员培训范文 下一篇:文化交流的意义范文