嵌入式课程体系范文

时间:2023-09-24 02:25:46

嵌入式课程体系

嵌入式课程体系篇1

关键词:嵌入式系统 课程体系 课程设置

20世纪末,随着计算机技术、集成电路技术和智能控制技术的发展,单片级嵌入式系统迅速发展,企业对嵌入式开发人员的需求量极大,因此嵌入式系统课程在高校设置势在必行。同时,由于近年来物联网产业的发展,嵌入式系统更是备受关注。而嵌入式系统良好的发展潜力和发展机遇也预示着对相关技术人才的巨大需求。但由于嵌入式系统涉及的相关知识多、硬件和软件结合紧密等特点,嵌入式系统的开发难度很大,培养这样的人才对高校也是个挑战。

嵌入式系统以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。本文针对学校的教学现状,总结目前通信工程专业的嵌入式系统课程教学的变化特点,依据课程培养方案,从课程的预备课程体系、教学内容规划和设置等方面入手,讨论课程的整体系统建设的内容。

一、我院嵌入式课程教学的特点

2007年电子、通信工程专业在全院率先开设了嵌入式系统课程,并将其定为电子信息类专业的一门重要的专业技术课程,同年引进了适合教学使用的英蓓特 Embest EDUKIT-III多核嵌入式实验开发平台(基于ARM7架构的Samsung 3C44B0x和ARM9架构Samsung3C2410x嵌入式芯片,实时、开放源码的多操作系统μC/OS-II、μCLinux和Linux)。经过几年的教学实践,课程的培养计划也随着课程的教学要求和学校“技术立校,应用为本”的办学指导方针做了一定的调整,以培养21世纪电子信息类高水平技术人才为目的,将嵌入式开发与应用课程建设成为我院具有特色的专业课程。在教学实践中发现存在一定的问题。

(1)课程的体系规划不断变化

自嵌入式系统课程开课以来,课程的培养计划也在不断的变化中,以适应专业的培养目标和学校人才培养的需求。几经调整之后,课程的设置基本稳定。因为典型的软硬件结合的特点,课程的设置主要从理论和实践两方面考虑,理论内容安排48课时3学分的内容,实践内容安排了32课时1学分的实验,这些是必修的嵌入式教学内容。此外,还可以在学生科创项目和毕业设计中加入相应的选修实践内容。课程具体内容规划如图1所示。

图1 课程体系规划

教学课时调整的同时,教学内容和教学方法也在不断的变化和改进,以适应教学目标的实现。

(2)课程实践内容设置不合理

开发与应用课程典型的特点就是实践性强,如何让学生在掌握理论的基础上形成实践能力,是该类课程的教学难点,并且要做到和专业培养结合。主要考虑的就是实验教学内容如何设置,才能和理论有机结合,达到培养目标。

二、课程系统的建设内容

1.建立合理的预备课程体系

嵌入式系统课程内容涉及广泛,系统性和综合性强,嵌入式系统本身就是一个包含软件和硬件的完整微型计算机系统。因此,嵌入式系统的原理和应用技术不是一两门课程就能讲授的,首先需要建立一个合理的嵌入式系统课程预备知识体系的教学来支撑嵌入式系统教学。

结合嵌入式系统的教学要求,需要有两部分的预备知识储备。一是硬件部分需要模拟电路、数字电路、计算机系统结构和微机原理课程的支持;二是软件部分需要C语言、汇编语言、数据结构和操作系统的课程支持。这些课程不是为了嵌入式系统而重复开设的,而是结合嵌入式系统重新调整和优化,以便于嵌入式系统的课程学习。

2.根据专业培养目标设置课程教学内容

嵌入式系统课程目前已经是各大工科高校必不可少的课程。课程教学的培养目标有两方面:一是学生通过课程的学习能够了解嵌入式系统的基本原理,熟悉嵌入式系统开发的整体概貌,掌握某种嵌入式系统开发环境的搭建方法,熟悉嵌入式系统开发的完整流程。这一部分是嵌入式教学的基本要求目标。二是在专业知识背景下能够完成一个相对完整的小型应用系统的开发,为毕业后求职或创业提供一定的基础。

针对专业培养目标与课程的性质,教学内容的设置主要分为两部分:理论和实践,这两部分应该相辅相成,实践内容帮助理论内容的理解,并且理论可在实践中得到验证和发展。如何设置两者的内容就成了教学过程中的关键问题。

(1)理论教学环节

嵌入式系统内容多而泛,需要理论教学内容与实践环境一致,才能使教学达到目标要求。依据实验环境的配备以及与嵌入式主流技术一致的原则,确定理论教学环节一是掌握ARM嵌入式处理器的体系结构,汇编指令集以及在ARM体系下的嵌入式编程,使学生掌握基于ARM7和ARM9典型嵌入式处理器的硬件开发平台,硬件接口开发;二是Linux嵌入式操作系统,嵌入式软件设计,以及Linux嵌入式系统开发举例;三、系统设计过程中电磁兼容特性的影响和改善的措施。

(2)实践教学环节

实践教学的内容设置不仅要做到对理论教学的支持,还需要能够调动学生的主动意识,更好的帮助教学目标的实现,同时兼顾学生的特点和专业方向,达到“由浅入深,由简单到复杂”的多层次实践教学内容。

首先是实验课程教学,内容依照对比验证、设计扩展和综合应用三个层次来设置,这是实践课程的必修环节。对比验证实践内容主要根据实验室的标准配置,掌握嵌入式系统的基本结构、编程方法和开发环境的使用等内容。设计扩展实践内容和项目指实验环境有扩展的空间,给学生发挥的空间。锻炼学生独立思考,独立解决问题的能力。综合应用实践内容随着理论知识的积累和基础实践的锻炼,实践内容应该以综合性、系统级的为主,目的是锻炼学生综合运用知识的能力。

其次是可以通过科创、竞赛或毕业设计等实践环节,此为选修环节,针对基础好的同学可以在通信专业方向上设置实践内容,在这个阶段,应该在工程和企业层面来要求学生,要引入设计说明书、设计流程图、开发进度表、软件工程控制文档和测试报告等概念。

嵌入式系统课程体系的建立要从专业的培养目标出发,结合学校资源,建立符合相关专业培养方向的课程体系,以及适当的应用环境,体现课程的综合性,经过几届学生的教学活动,该课程体系可以基本达到培养目标的要求。但由于师资和实验设备等的局限,我们的课程体系还存在很多的不足,今后需要在师资培养和实验环境上加大重视,将课程体系不断完善,培养出有开发能力的嵌入式人才。

基金项目:嵌入式开发与应用课程建设(2012KCJS-11);上海电机学院校级重点课程建设项目。

参考文献:

[1]宋军,王一雄,徐锋.面向物联网的嵌入式系统实验教学改革.实验室科学,2011,14(1):20~22

嵌入式课程体系篇2

关键词: 项目驱动 嵌入式系统 教学改革

1.引言

嵌入式系统是以微控制器为核心,将其嵌入到产品或设备中以实现功能数字化和智能化的系统。应用领域十分广泛,覆盖了消费类电子、智能家电、工业控制、仪器仪表、汽车电子等行业。嵌入式系统已经成为后PC时代研究和应用的热点,国家及企业对嵌入式人才的需求巨大。嵌入式系统已经成为电子信息学科的一个新的重要分支,国内许多高校已经开设了相关课程。

在本科阶段如何培养具有专业工程意识,较强实践能力的大学生是当前二十一世纪高等教育人才培养中的一个重要研究课题[1]。嵌入式系统课程体系所涉及的知识具有综合性强、实践性强两大特点。传统教学模式采用的还是一些重理论、轻实践的授课方式,工程背景不强,综合训练程度不够,无法培养学生学习的兴趣,实践动手能力普遍较弱,使得学生在课程结束后面对一个实际的嵌入式系统开发问题,仍然无从下手。针对上述问题,本文结合嵌入式系统课程体系的特点,从激发学生学习兴趣,培养学生自主学习能力,提高学生实践能力、创新能力的角度,提出采用项目驱动法对嵌入式系统课程体系进行实践教学改革[2]。

2.嵌入式课程体系内容

将本专业或跨专业培养方案中若干门在知识、方法、问题等方面有逻辑联系的课程加以整合而形成的课程体系,因而课程体系所含的各门课程应具有相关性和整合性[2]。本科阶段的课程体系既要重视基础理论的学习,又要重视实践性[3]。嵌入式系统课程体系包括专业基础课、核心课及实践课,其中基础课程包括《电路》、《模拟电路》、《数字电路》、《C语言基础》、《传感器技术》、《电子线路CAD-PROTEL》等;核心课程包括《单片机原理及应用》、《ARM嵌入式系统原理》、《微机原理》等;实践课包括核心课程的实验和课程设计等。可见,嵌入式系统课程体系综合性强,涉及的知识面广,实践性强,因此在实践教学的时候必须将这些课程有机地组合在一起,综合应用,从而融会贯通[4]。

3.项目驱动法的特点

项目驱动教学是一种建立在教学理论基础上的实践教学新方法,它是以学生为中心,在整个教学过程中由教师充当导师的角色,利用老师科研课题、各类创新课题或竞赛项目同时具有嵌入式系统代表性的题目对学生进行实践训练,充分发挥学生的主动性、积极性和创造性,最终达到使学生有效地实现对所学知识进行巩固的目的[5]。在这种模式中,学生是知识的主动建构者;教师是教学过程的组织者、指导者。与传统的教学方法相比,“项目驱动法”能更大地激发学生的学习兴趣和求知欲望,促使学生主动学习,充分发掘学生的创造潜能,提高学生的工程思维能力、实践动手能力及团队协作能力。

4.单片机课程项目驱动法教学的实施

4.1实施方法

项目实施时,一般由3人组成1个团队,由教师下达统一的任务书,每人分工各有侧重,如分别负责机械设计及制造、控制系统硬件设计、软件设计、系统搭建与调试等部分。实施过程中,要求团队成员通力协作,最终形成一套完整的装置。项目选题是项目驱动法教学重要的研究内容之一,应满足应用性、趣味性和启发性的要求,精选适合学生实践训练的若干具体实际工程项目,例如2011年的实践训练项目为:激光自动循迹智能车、锅炉自动给水系统、智能超声波测距系统、智能门窗防盗应用系统、火车站台警戒线警示应用系统、滚动电梯节能控制系统、商场客流量导购系统、单片机MP3系统。

通过解决具体工作任务,经历嵌入式系统开发必需的几个典型工作过程:设计要求分析、解决方案、硬件电路设计、软件设计、仿真调试、PCB设计、软硬件联调、撰写设计任务书、项目验收答辩等。

4.2项目驱动法案例

在实践教学中,选择“激光自动循迹智能车”作为训练项目是切实可行的。智能车的组成包括:机械和控制两大组成部分。其中机械部分包括激光传感器的支架设计、电路板的支架设计、舵机的转向机构设计等;控制部分包括转向控制、驱动控制、无线通信等,跑道有直线、直角弯、蛇形弯,智能车可通过安装在车身上的激光组自动识别跑道上的黑线,确定自身位置,然后调整转向和速度,不偏离跑道以最快速度跑完全程。该项目的控制系统以MC9S12G单片机为核心[6],[7],设计将涉及“电子技术”、“传感与测试技术”、“自动控制基础”、“微机原理与应用”、“计算机接口技术”等课程知识。该项目强调多门课程知识的有机融合,可以给学生提供较大的发挥空间。

智能车系统结构如图1所示,硬件设计主要包括:①主控板;②用于识别跑道的激光传感器模块;③控制智能车转向的舵机模块;④控制智能车速度的电机控制模块;⑤键盘和液晶显示器的人机交互模块;⑥智能车与计算机通信的无线发射模块。

图1 智能车系统结构

总控软件采用模块化设计思想,如图2所示。主程序系统初始化后,执行一次键盘扫描程序,然后反复运行液晶显示程序,当2ms、4ms、6ms定时程序到时,则进入各自的中断服务程序。

图2 软件设计原理框图

经过学生和老师的共同努力,该项目已在09级学生中完成车模机械制作、电路板设计及制作、软件开发、顺利调试通过。图3为已调试成功的实物装置。

图3 智能车实物图

5.教学效果

“兴趣激发、项目驱动、实践教学”,让学生亲自动手完成工程领域的具体项目,最终完成产品开发的全过程,使学生通过项目实施促进对理论知识的掌握,并融会贯通,提高工程实践能力和创新能力是项目驱动法最大的优势。经过近年来的研究与实践,我校测控专业学生在嵌入式系统课程实践环节取得了较好的教学效果,学生的综合素质得到大幅度提高,表现在学习主动性、积极性、动手能力、创新能力、团队协作精神和协调能力等的全方面提高。测控专业的学生从2011年起组队参加“飞思卡尔全国智能车竞赛”以来取得了二等奖两项,三等奖三项的好成绩。

6.结语

通过项目驱动法实施嵌入式系统实践教学改革,可全面培养学生在科学技术、个人与专业素质、人际能力等各个方面的能力,从而培养出本科层次的具备终身学习能力的高素质测控及机电专业应用和开发人才。

参考文献:

[1]教育部.教育部等部门关于进一步加强高校实践育人工作的若干意见,教思政[2012]1号.

[2]唐炜.基于“项目驱动”的单片机类课程实践教学改革[J].北京:实验室研究与探索,2010,29(5):130.

[3]姚遥,耿文波,徐坤,等.以市场为导向的嵌入式系统课程群建设.电子设计工程,2011,19(17):137.

[4]梁宜勇,王晓萍,赵文义,等.“嵌入式系统”课程教学与实践探讨[J].北京:中国大学教学,2009(5):36.

[5]葛芬.项目驱动的嵌入式系统教学探讨[J].北京:科技信息,2011,33:38.

[6]王威.HCS12微控制器原理及应用[M].北京:北京航空航天大学出版社,2007,10.

[7]邵贝贝.单片机嵌入式应用的在线开发方法[M].北京.清华大学出版社,2004.

嵌入式课程体系篇3

摘要:嵌入式系统是目前应用非常广泛,发展非常迅速的一个技术领域,做好“嵌入式系统”课程的教学工作也是诸多高校追求的目标。本文系统分析了“嵌入式系统”课程的教学特点,提出了“三点一线”的教学方法,并阐述了“三点一线”教学方法在湖南大学“嵌入式系统”教学中的应用及效果。

关键词:嵌入式系统;教学方法;实验教学

中图分类号:G642

文献标识码:B

当前,嵌入式系统已经得到了非常广泛的应用,工业制造、过程控制、通信、仪表、仪器、汽车、船舶、航空、航天、军事装备、电子产品等方面均是嵌入式系统的应用领域,可以说,嵌入式系统和嵌入式技术无处不在。在这种情况下,许多高校的计算机、电子、软件等专业针对市场需求开设了“嵌入式系统”相关课程。湖南大学软件学院于2005年开始开设了“嵌入式系统基础”课程,在课程的教学过程中,特别重视“三点一线”教学方法的应用,即突出三个教学重点:以课程体系建设为重点;以实验教学为重点;以“学”“用”结合为重点;抓住一条教学主线:以嵌入式发展趋势为导向,以嵌入式项目为驱动,以“教、学、练”三层递阶为手段,以网络教学平台为支撑进行课程教学,取得了良好的效果。

1 “嵌入式系统”课程的教学重点

1.1 “嵌入式系统”课程的教学特点

“嵌入式系统”的教学有如下几个特点:

(1) 基础性强。嵌入式技术涉及的领域非常广泛,如计算机工程、软件工程、工业自动控制、机械电子工程、精密仪器、电子工程和电力系统等。随着嵌入式技术与其他专业领域的广泛渗透融合,逐渐形成了新的学科研究方向,“嵌入式系统”课程是嵌入式技术的基础性课程。

(2) 综合性强。“嵌入式系统”是软件和硬件设计的完美结合,它涉及电子信息、计算机、自动控制等诸多专业相关课程的内容,如操作系统、微机原理、汇编语言、编程语言、程序设计、计算机算法、计算机网络和z单片机技术等多门课程, 有很强的综合性,对学生的综合能力培养有着较高要求。

(3) 实践性强。“嵌入式系统”是理论与实践相结合的课程,必须通过大量的实验和实践环节来系统提升嵌入式系统的专业知识和实际设计能力,可以说,如果缺乏了实验的“嵌入式系统”课程学习就是纸上谈兵。

(4) 潮流性强。嵌入式系统学科发展非常迅速,随着嵌入式技术发展的日新月异,必然要持续跟踪嵌入式技术的新发展,不断修正教学计划,才能适应社会对嵌入式人才培养的需求。

1.2突出课程体系建设重点

嵌入式系统作为嵌入式处理器和嵌入式操作系统为核心组成的专用计算机系统,其本身就是由硬件和软件紧密捆绑在一起实现的,这个特点就决定了“嵌入式系统”的教学体系必须是软件和硬件两条线并行。在具体专业培养计划设计过程中,依据培养目标要求,我们确定了嵌入式专业的知识架构,并以此为线索对整个课程体系进行设计,开设了支撑“嵌入式系统”的基础课程有:“数字/模拟电子技术”、“数字逻辑”、“数据结构与C语言程序设计”、“单片机原理”、“计算机组成与结构”、“操作系统原理”、“软件工程”、“计算机网络”、“数据库原理”等。同时开设了“嵌入式系统”的预备课程“嵌入式Linux程序开发”、“嵌入式系统基础”、“嵌入式处理器”等,真正做到了使各门课程之间相互衔接,有较强的系统性和连贯性,在强调基础理论的同时,课程内容与技术发展和社会应用需求相适应,较好地满足了嵌入式专业教学需要。嵌入式课程体系示意图如图1所示。

1.3突出实验教学重点

“嵌入式系统”课程作为软硬件并重的课程,学习过程中实践经验是最重要的环节,但大多数高校没有足够的条件让学生自己独立构建复杂的硬件平台来学习硬件知识,只能为学生提供一个现有的硬件测量和评价平台,实验教学工作基础较为薄弱。

在我校“嵌入式系统”课程教学安排中,为了能够使得学生更好地了解掌握嵌入式技术知识,本着了解技术发展状况,紧跟技术发展潮流,适应社会发展需要的原则,重点突出实验教学,建立了以武汉创维特公司JXARM9- 2410实验箱为平台的实验环境,通过实验使得学生接触目标开发板,了解掌握集成开发环境的构建方式和工作模式、嵌入式系统的硬件和软件、JTAG调试方法等知识内容,进一步深入理解嵌入式系统理论,积累嵌入式系统开发流程、开发方法和开发技巧的经验。在课时的设置上,加大实验教学的课时,实验教学的课时设置为32个课时,与课堂教学的课时相等。同时,在实验教学的建设上重点抓好三个方面的内容:一是大力投入资金,创建专用的嵌入式实验室。我院先后投入400万元资金,购买了40套教学实验设备,设立了面积达1500平方米的专用教学实验室。二是做到“教”“练”一体,自行编写切合学生实际需要的实验教材。在实验课程的设计上,不仅要求课堂授课老师同时要担负实验室的教学指导工作,同时还要求授课老师根据课堂教学的内容自行编写符合学生实际需要的实验教材,做到“教”“练”统一。三是举一反三,精心准备实验项目。在实验项目的设置上,不仅仅是使用实验设备配套厂家提供的试验项目,而是根据教学需要,结合实验设备的实际特点进行扩展,设置更加有代表性的实验项目,做到理论教学与实验教学相结合。

1.4突出“学”“用”结合重点

嵌入式系统设计作为面向产品设计的应用性课程,不仅仅是建立理论概念,传授基础知识,更重要的是培养学生的工程素养,建立面向工程的思维方式,掌握解决实际工程问题的科学方法,更加贴近社会实践需要。为此,在课程的设计上,更加注重了解把握嵌入式方向的新技术、新知识,并且将这些新技术、新知识融入到课程教学中,具体做好三个方面的工作:一是选好、配强教师队伍。负责“嵌入式系统”课程的主讲教师都具有一定的嵌入式系统研究和开发经验,部分教师还是从事嵌入式系统开发的一线科研人员。具有实战经验的教师队伍保证了课程课堂讲述与实践工程相结合,更加突出各部分知识内容的具体应用,在课堂教学中,更加注重工程思维的培养,变灌输式学习为启发式学习。二是完善增强教学方案。紧密结合企业的核心技术,以实用性和前沿性为建设目标,深入分析嵌入式系统开发的技术需求,着眼于企业界普遍关心的核心技术,动态调整设置课程内容,使课程内容较大程度地体现嵌入式领域的特点,紧跟技术发展的需要,课堂实例更加贴近实际项目,为培养出业界更为需要的人才打牢基础。三是放开眼界谋求发展。及时跟踪分析国内外一些著名大学,如普林斯顿大学、浙江大学、北京航天航空大学相关课程的开设情况,参照调整我们的课程安排。

2 “嵌入式系统”课程的教学主线

2.1以嵌入式发展趋势为导向

在“嵌入式系统”课程的教学中,我们着眼嵌入式发展的总体趋势,根据实际嵌入式系统产品的项目开发流程安排教学内容讲授的先后顺序,课程内容的安排具有软硬件系统的综合性、软硬件技术的基础性和主流软硬件平台的前沿实用性,具体教学内容共10章,划分为四大部分,主要内容包括:

(1) 概论。介绍嵌入式系统的基本概念,包括嵌入式系统的定义、组成、特点、发展概况、应用领域等;

(2) 嵌入式硬件系统。阐述各种典型的嵌入式处理器和嵌入式设备的特点与工作原理,并且,作为嵌入式处理器的一个实例,分析ARM内核体系结构及ARM处理器的选型和调试方法;

(3) 嵌入式操作系统。介绍常见的嵌入式实时操作系统和嵌入式软实时操作系统的种类及选用标准,进一步以目前市场占有率排名第一的VxWorks实时嵌入式操作系统为例,详细讲解嵌入式操作系统的组成、多任务环境的工作原理及其交叉开发环境的使用;

(4) 嵌入式系统的设计编程。从软件工程角度给出了嵌入式系统的一般设计方法、开发流程步骤、调试手段与测试工具,详细介绍了嵌入式软件相对通用计算机系统一些独特的编程技术和优化方法。

2.2以嵌入式项目为驱动

在“嵌入式系统”的教学过程中,我们从课堂讲解演示实验项目和学生实践训练项目两个方面,精心进行了实验教学的设计。其中课堂讲解演示实验项目是嵌入式WEB服务器的设计与实现,安排在每章节知识点讲述之后,该实验项目划分较细,目的在于巩固课堂讲述的知识内容;学生实践训练项目是移动手持IP电话的设计与实现,安排在教学内容的四大部分讲述完成之后,该实验项目划分较粗,目的在于综合检验学生对于知识的掌握理解程度。这两个嵌入式系统产品开发实际项目贯穿整个课程的始终,更好地对课程教学活动起到驱动作用。

2.3以“教、学、练”三层递阶为手段

传统的教学活动中,最重要的知识信息传递手段是教师教授、学生学习,知识信息的巩固主要靠作业来实现。在嵌入式系统的教学活动中,我们对传统的“教、学、练”体系进行了革新,摒弃了传统的“老师教、学生学”的教学方式,探索建立了教师课堂讲解演示、学生个人单元实验和团队合作实践训练的三层递阶式教学方式,培养学生“边学边做”,进而提升至“做中学”的创新能力,具体的教学方式是:

(1) 根据实际嵌入式系统产品的项目开发流程安排教学内容四大部分讲授的先后顺序,即首先是嵌入式处理器的选型、硬件电路的设计,接着进行嵌入式操作系统的选型和移植裁减以及驱动程序的开发,最后是嵌入式应用程序的编写、调试和优化。每一部分教学内容的若干知识点都以“嵌入式WEB服务器”实际项目作为案例进行讲解和演示,以给学生一个完整的嵌入式系统产品开发的范例,做到“教有所指”。

(2) 为了帮助学生真正理解掌握每一部分教学内容的若干知识点,不再以作业作为主要的知识掌握辅助手段,而是设置了与课堂讲授同步的多个单元实验,并且要求实验以个人为单位进行,以实验的完成情况来检查学生对知识的理解程度,做到“学有所得”。

(3) 在每一部分教学内容结束后,设计组织学生以团队合作方式进行实际项目“移动手持IP电话”相应内容的实战训练,并且项目实战训练内容与四部分教学内容紧密结合,课程结束时,每个团队也随之完成项目的开发实现,做到“练有所成”。

2.4以网络教学平台为支撑

目前,各大高校都建立了校园网络,网络以其跨越时间、空间的特点,能够快速便捷地实现信息共享和知识更新,网络的出现也正深刻地影响着学习方式的改进。在嵌入式系统的教学过程中,我们高度重视网络手段对传统教学方式的补充作用,通过校园网的学院自主学习系统和“嵌入式系统”课程教学网站等网络平台,公布课程的教学大纲、教学日历,上载教学讲稿、授课课件和演示案例,开设问题讨论空间和教师答疑信箱,实现了传统教学的课堂讲授、问题讨论、辅导、答疑等教学环节,为学生的自学、复习提供了丰富的资源,为师生之间、学生之间的交流沟通建立了实时和非实时的通道,更好地实现了教师为主、学生参与的教学结构,利用网络教学平台对“嵌入式系统”的教学提供强有力的支撑。

3效果体现

几年以来,在“嵌入式系统”课程的教学改革和实践中,我们始终坚持“三点一线”教学理念的应用,目前,我校嵌入式系统专业基础课程特色更加突出、教学效果更加明显,选用自主编写的教材作为课程教材,且在学科领域中具有较高的权威性和广泛性;中青年学术梯队培养进一步强化,教学队伍结构更趋合理;课程改革理论与实际结合更加紧密,教学资源库建设进一步完善;网络资源与课件的建设不断加强,教学手段得到进一步改革与提升;学生的基础知识更加扎实,自学能力不断提高,动手能力大大增强。2007年,嵌入式系统获教育部-IBM精品课程。2007年,由仲向远、熊必扬、林闽琦、严坤四名同学组成的Showpa团队,在我院的组织指导下,以“基于RFID的便携式指纹识别防伪设备”为参赛项目参加“第二届IBM大中华区Power构架设计大赛”,跻身决赛。2008年9月,《教育部精品课程(嵌入式系统原理)三层递阶教学体系的系统化研究与实践》课题获得湖南大学教学成果二等奖。

4结论

随着嵌入式技术的迅猛发展,嵌入式技术方面的发展和研究也越来越受到重视,各大高校都在不断探索“嵌入式系统”课程的教学与实践方法,我们几年来的教学实践证明,“三点一线”教学方法在我校嵌入式系统课程教学中的应用,有效地解决了课程体系建设不完善,实验效果不明显,学生掌握知识程度不深等问题,在探索培养面向市场、面向技术发展前沿人才工作中取得了一些成绩。当然,“嵌入式系统”课程教学还有其他许多值得深入探讨和研究的内容,我们也仅仅是就“嵌入式系统”课程的基础建设提出了一些建议和意见,一家之言,希望对同行起到抛砖引玉的作用,也欢迎同行批评指正。

参考文献:

[1] 金敏,周翔,金梁. 嵌入式系统――组成、原理与设计编程[M]. 北京:人民邮电出版社,2006.

[2] 李曦,周亦男,周学海.“嵌入式系统设计”系列课程建设[J]. 教育与现代化,2004(4):48-51.

[3] 尚利宏. 北京航空航天大学“嵌入式系统设计”精品课程建设[J]. 计算机教育,2006(8):7-9.

[4] 韩德强,孙燕英. 北京工业大学“嵌入式系统”精品课程建设[J]. 计算机教育,2006(8):12-14.

[5] 俞建新. 略论嵌入式系统的实验教学[J]. 实验室研究与探索,2006(07):741-745,757.

嵌入式课程体系篇4

关键词:卓越计划;嵌入式系统;CDIO;教学改革

作者简介:但永平(1976-),男,江西都昌人,中原工学院电子信息学院,讲师;张五一(1955-),男,河南洛阳人,中原工学院电子信息学院,教授。(河南 郑州 450007)

基金项目:本文系河南省重点教改项目“基于CDIO工程教学模式的大纺织类卓越工程师人才培养的研究与实践”(项目编号:2012SJGLX02)、2012年度河南省高等学校(中原工学院自动化专业)“专业综合改革试点”项目的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)26-0060-03

为了促进我国由工程教育大国迈向工程教育强国,我国提出了“卓越工程师教育培养计划”(以下简称“卓越计划”)。为了响应这一计划很多学校提出了许多教改方法,CDIO[1,2]教学模式和我国的卓越计划具有很多相同的思想。CDIO 是构思 (Conceive)、设计(Design)、实现(Implement)、运作 (Operate)四个英文单词的缩写,它是“做中学”和“基于项目教育和学习”[3] (Project Based Education and Learning)的集中概括和抽象表达。

嵌入式被广泛地应用到工业控制系统、汽车电子、医疗仪器、信息家电、通信设备等众多领域中,是典型的工程应用课程。业界对嵌入式系统的人才需求日益增加,因此,为了适应业界对人才培养的要求,越来越多的高校相关专业开始在本科、硕士培养计划中开设嵌入式系统[4-6]方面的课程,并进行了有益的探索。但是由于嵌入式系统这个概念的提出及发展也是最近几年的事,大家对嵌入式系统的认识还不统一,因此在具体的教学和实践中各个学校的做法相差很大,没有一个统一的标准。作为一个新兴的课程,关于“嵌入式系统”课程体系、教材建设、教学方法、教学内容(包括硬件平台与软件平台) 的选择、实验教学与实践环节组织等问题依然处于争论和探索阶段。本文将在“嵌入式系统”课程的建设和基于该课程的CDIO教学模式的改革进行有益的探索与讨论。

一、“嵌入式系统”的概念与课程特点

IEEE对嵌入式系统的定义:用于控制、监视或者辅助操作机器和设备的装置。原文为:Devices Used to Control,Monitor or Assist the Operation of Equipment,Machinery or Plants。国内普遍认同的嵌入式系统定义为:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。从该定义上来理解,上世纪70年代,英特尔研制出了4004微处理器开始,就应该有嵌入式系统应用了,后来又出现了单片机系统,DSP系统、ARM系统都是嵌入式系统。相比最近单片机系统,ARM系统可以被称之为新一代的嵌入式系统。新嵌入式系统硬件上主要是性能上更先进,CPU从8位变成了32位系统,体系结构更优化,集成度更高,软件商的区别在于有无操作系统支持。这两个方面的发展,使新一代嵌入式系统的应用大大拓展了。

最近的智能手机、智能家电快速发展和ARM公司的宣传和战略使得ARM就使嵌入式系统深入人心,使得嵌入式系统好像就是ARM。由于单片机、DSP等嵌入式系统都有相对应的课程,因此本文的嵌入式系统主要是以ARM系统来讨论。“嵌入式系统”课程是一门综合性课程,教学既涉及计算机结构、微机原理等硬件知识,又涉及操作系统、应用程序开发等软件知识。该课程的教学覆盖面大,从学科上涉及到电子科学与技术、计算机科学与技术、微电子学等众多领域;在系统上涉及数字电路、模拟电路、嵌入式微处理器、嵌入式操作系统、底层驱动等技术。“嵌入式系统”课程是一门理论与实践相结合的课程,特别注重学生工程实践能力的培养。

二、目前的“嵌入式系统”课程教学现状与存在的问题

目前很多高校的“嵌入式系统”课程设置和教学中存在很多问题,使得“嵌入式系统”课程的教学很难适应工程师的培养要求,主要表现:对该课程认识不够,很多学校为了招生的需要只是在原来的课程中增加一门嵌入式课程,有的都没有相应的试验设备和实验室支撑;没有相应的教师队伍,老教师不愿再教新的课程,新进教师研究理论的多,做实际工程的少,也很难进行有效的教学组织;学时设置不够,大部分学校设置的是30学时,有限的课内学时,无法满足实践教学,尤其是综合性、设计性实践的需要;由于管理体制的原因,很多院校的实验室并未完全开放,教师指导学生课外实践的积极性没有完全调动起来,课内安排的实验更多的是为了配合课内理论教学的内容,一个实验一个模块,缺乏系统性,学生无法建立完整的系统概念;没有合适的教材,虽然相关的书不少,但很难作为适用的教材;传统的教学方法难以适应嵌入式课程教学的需要,嵌入式课程要求动手较多,综合知识较多,传统的教学使得学生根本无法掌握嵌入式系统的开发;课程群设置不合理,没有很好的支撑课程体系;课程名字虽然是嵌入式系统,但上课内容各不相同,有的是单片机系统,有的是ARM7系统,有的是AM9系统,有的是ARM11系统,有的是MSP430系统,有的是CortexM3系统,没有统一的标准。

三、“嵌入式系统”课程与CDIO教学改革探讨

由于“嵌入式系统”课程是一门新的综合性课程,业界对相关人才的需求又很迫切,因此“嵌入式系统”课程的建设和基于CDIO教学模式对卓越工程师计划中的该课程教学改革就十分必要,下面从该课程相关的多个方面展开讨论。

1.CDIO教学模式的师资队伍建设

嵌入式是最近几年才逐渐发展起来的新课程,教师的教学经验普遍不足,师资队伍的建设是CDIO教学模式的改革关键,是重中之重,有了符合CDIO模式的师资,就能顺利展开基于该模式的教学改革和实际。没有适应该模式的师资,一切改革都是空中楼阁,最后都会失败。因此卓越计划中“嵌入式系统”课程的CDIO教学模式的改革首先就是师资队伍的建设,工科的许多教师没有做过工程师没有工程经验,而在培养卓越工程师计划中要求其培养出卓越工程师显得十分可笑,由此可见毕业生满足不了产业界要求的原因。师资队伍的建设又包括三个部分:

(1)思想改革。首先教师要认识到CDIO教学模式的迫切性,抛弃多年传统的教学模式与资料,对教师是严峻的挑战。这将使教师重新学习,重新认识新的教学模式。没有改革思想和对教育的新认识,也很难保证教学改革的进行,学校要认识工程教育的重要性,并进行支持。

(2)管理体制的改革。这需要相关的管理体制来保证从事教学改革教师的利益,包括考核体系、职称评定体系。因为目前高校存在的普遍问题是过度考核科研,不重视教学,而科研又重视理论的科研,工程实践的科研定位太低。如果没有相应的管理体制来保证从事工程研究和工程教学相关的改革,进行改革的教师积极性得不到保证和肯定,最后一切的改革都会是流于形式,达不到目的,人才培养和卓越工程师计划就是一纸空文。

(3)CDIO技能建设。“嵌入式系统”课程的CDIO教学过程中,教师工程能力达标是实施CDIO教学改革成败的关键。既然教师应当担任起帮助学生全面掌握知识、提升通用工程能力的责任,教师自身就要在这些能力方面率先垂范。目前大部分的教师技能难以适应CDIO教学模式的要求,而这只有通过学校与产业界的合作才能实现。不仅要派教师到产业界接受工程训练和取得实际经验,同时也要邀请产业界有经验和熟悉理论的工程师到校兼职任教,使学生真正接触到当代工程师的榜样,也从他们那里学习真刀真枪的工程经验和能力。

2.“嵌入式系统”课程群体系建设

“嵌入式系统”教学首先应从整体上认识与其他相关课程的密切关系,让学生知道“嵌入式系统”课程是本专业课程群的一部分,是相关专业课的延续。孤立地讲“嵌入式系统”课程,很容易给人造成嵌入式系统是新技术的错觉,实际上它只是以前技术的延伸。“嵌入式系统”其实是一个课程群体系,仅孤立地讨论“嵌入式系统”课程没有意义,嵌入式系统技术是一个典型的多学科交叉产物,是电类专业技术的载体和核心基础技术,其核心课程不但包括电路分析、模拟电路、数字电路、数字信号处理、微机原理、汇编语言、C语言等理论基础课程,还包括单片机原理与应用、嵌入式系统原理与应用设计、数字信号处理器应用、新型微处理器(Cortex M3原理及应用)、操作系统与Linux原理等大嵌入式概念下课程群体系。这些“嵌入式系统”课程群体系内的课程既相互关联,又有区别。有了这些课程群的建设,将复杂的“嵌入式系统”基础知识分解,即将“嵌入式系统”基础课程内容分成几个教学部分,循序渐进地讲授,最后到讲“嵌入式系统”课程的时候就水到渠成了。这样经过课程群的建设,“嵌入式系统”课程就具体为以ARM应用为中心的课程。

3.“嵌入式系统”课程教学内容与CDIO教学模式

(1)“嵌入式系统”课程教学内容的选择。目前很多高校的“嵌入式系统”课程的教学内容各不相同,根据上面“嵌入式系统”课程群体系的建设,“嵌入式系统”课程其实就是以ARM应用为中心的课程。那么嵌入式课程到底该教什么内容呢?根据ARM公司产品最新的三大系列产品:Cortex-A高级应用系统、Cortex-R实时应用系列、Cortex-M微控制器系列,在工业界ARM公司使用最多的就是Cortex-A高级应用系统和Cortex-M微控制器系列。其实Cortex-M微控制器系列可以作为单片机系统的补充,设置新型微处理器比较合适,这样高级应用系统就成了嵌入式课程的主要内容。那么是否就把Cortex-A的应用作为教学内容呢?通过教学实践发现ARM9系列作为嵌入式课程的内容最为合适,因为从体系结构和开发模式来看和Cortex-A开发模式完全一致。因此大部分学校都选择三星的ARM9芯片2410或2440作为嵌入式系统的学习实验平台。

这样“嵌入式系统”课程教学内容可以概括为:硬件系统;体系结构;硬件系统的设计;开发环境的建立;BOOTloader的移植;linux操作系统的基本操作;linux操作系统的移植;linux驱动程序设计;linux应用程序设计;QT图像界面的设计。从这些教学内容来看,30个学时完全不够。根据教学实践来看,最少60学时较为合适,并且分为两个学期:第一学期,在学完单片机系统的基础上学习ARM9系统的硬件系统,着重比较32位的ARM和8位CPU的不同、体系结构的区别和构成应用系统的区别。先不上操作系统,把它当做32位的单片机来学,理解硬件系统的组成,培养该体系结构下系统的启动模式,理解硬件开发的环境,掌握内部硬件资源的基本原理和开发过程。第二学期,在硬件系统的基础上着重基于linux操作系统的开发,包括linux开发和交叉编译器环境的搭建、Bootloader的移植、linux操作系统的移植、linux驱动程序的开发、linux应用程序的开发、基于QT图形界面的开发等。掌握了这些知识后,就会很容易地掌握新的芯片与操作系统。知道本质的东西后,无论以后再出现什么新的芯片与操作系统,都不难驾驭。

(2)“嵌入式系统”课程CDIO教学模式。教学内容确定后,那么这些内容该怎么教呢?该课程的特点是以工程应用为主,因此为了达到卓越工程师的培养目标,必须改变传统的教学模式,改变教与学、教与做、做与学的脱节,把课堂搬进实验室,不分别设置理论教学与实践教学,边讲边练,边练边学。对于“嵌入式系统”课程的教学采用CDIO的教学模式,以项目进行教学,将试卷考核的方式改为对项目的功能进行考核和对自己的项目进行答辩的方式。下面以中原工学院(以下简称“我校”)的CDIO教学模式为例说明。

对于第一学期的教学来说,首先以一个小项目为案例讲明白项目的流程和设计方法,教会学生学习的方法,包括怎样看数据手册,怎样搜索相关资源和理解这些系统,怎样去开发这些资源,知道项目知识和其他课程知识的关联。讲完该案例后,设置不同的项目,该项目设计本课程的大部分知识点。如:采用S3C2410完成采集交流电的电压和电流,通过LCD显示,同时通过无线传输给另一个模块。教师要讲明白设计思路,采用ARM和单片机设计方案的不同和有什么优点。信号采集与传输是通用的知识,教师应对相关的知识进行梳理和讲解。后阶段教师主要是和大家讨论并给予具体的指导,对中间出现的问题进行讲解和分析,分析知识点之间的关联以及这些知识点和其他相关学科知识的联系。这样学生就可以在做中学,学中做,最后完成并理解做项目的思想与方法,达到触类旁通的学习效果。这一学期其实是一个承上启下的过程,在经过CDIO模式的单片机教学后,主要是理解S3C2410的开发过程和内部资源的使用。

对于第二学期的教学来说,在硬件基础上再设计几个具体的项目,分组进行。例如:能够具有QT图形界面的温度显示,超过设定的温度会启动报警。理论讲授时讲明白该项目设计知识之间的联系以及项目的知识点和其他知识的内在联系:如完成该课题需要QT的图形界面设计、linux下温度传感器的驱动程序的设计、linux的移植、bootloader的移植、linux开发环境的搭建、硬件系统的理解、温度传感器的选择、温度传感器接口电路的设计、报警电路的设计、报警驱动程序的设计、操作系统的调度。然后就在老师指导下,讨论—设计—实现,最后答辩,教师参与讨论与指导,学生是主角,学中做,做中学,通过项目的完成不仅学习了这些知识点,还学会了这些知识之间的联系及其设计方法。

实践证明,经过两个学期的学习与实践,学生完全可以明白一个项目设计与实现的流程,并理解项目的设计与思路。为了加强实践,曾经有人讨论该课程要不要课程设计,其实从CDIO教学模式来看整个学习过程都是课程设计,根本没必要设置专门的课程设计。

四、结论

“嵌入式系统”课程是近年来的一门热门课程,在卓越计划的教学中,应以CDIO 工程教育模式为指导,针对目前存在的问题,对师资建设和课程群建设教学模式进行了讨论,最后以我校的嵌入式CDIO教学模式为例进行说明,实践证明该课程的CDIO教学模式改革比传统的教学更能锻炼学生的工程实践能力。

参考文献:

[1]陈春林,朱张青.基于CDIO教育理念的工程学科教育改革与实践[J].教育与现代化,2010,94(1):30-33.

[2]姜大志,孙浩军.基于CDIO的主动式项目驱动学习方法研究——以java类课程教学改革为例[J].高等工程教育研究,2012,(4):159-164.

[3]王硕旺,洪成文.美国麻省理工学院工程教育的经典模式——基于对CDIO课程大纲的解读[J].理工高教研究,2O09,28(4):116-119.

[4]张雯雾,高守平,陆武魁.应用型本科嵌入式系统课程教学改革与实践[J].中国教育技术装备,2010,204(18):39-40.

[5]李坚强,王志强,薛丽萍.基于CDIO 模式的嵌入式系统教学研究与探讨[J].计算机教育,2010,(12):122-123.

嵌入式课程体系篇5

基础课程改革 教学体系 教学方法 教师培养

一、引言

嵌入式系统的应用日益广泛,可以说无所不在、无处不在,嵌入式系统的快速发展也极大地丰富、延伸了嵌入式系统的概念。嵌入式系统是嵌入到对象体系中的专用计算机系统。以嵌入式计算机为核心的嵌入式系统是继IT网络技术后,又一个新的技术发展方向。IEEE(国际电气和电子工程师协会)对嵌入式系统的定义为:嵌入式系统是“用于控制、监视或者辅助操作机器和设备的装置”。嵌入式系统已广泛应用于工业控制系统、信息家电、通信设备、医疗仪器、智能仪器仪表等众多领域,可以说嵌入式技术无处不在。由于社会对掌握嵌入式技术人才的大量需求,使嵌入式软硬件工程师成为未来几年最为热门的职业之一。

二、嵌入式系统教学特点

嵌入式系统开发与应用的内容繁杂,涉及基本的硬件知识(如嵌入式微处理器及其基本的接口知识、扩展的人机接口、网络通信接口等)、操作系统(应该至少了解一种操作系统的中断、优先级、任务间通信、同步等知识)、程序设计知识(C、C++、汇编语言程序设计,至少熟悉C语言);同时,还涉及一定的数字电路知识以及使用示波器、逻辑分析仪等基本技能。因此,在系统学习本门课程之前,必须先修微机原理与接口、C语言程序设计课程,有一些计算机操作系统原理、体系结构和系统结构的基本概念,同时对于网络协议有一定的了解。在IEEE计算机协会2004年6月的Computing Curricula Computer Engineering Report,Ironman Draft报告中,把嵌入式系统课程列为计算机工程学科的领域之一,把软硬件协同设计列为高层次的选修课程。美国科罗拉多州立大学“嵌入式系统认证”课程目录包括实时嵌入式系统导论、嵌入式系统设计和嵌入式系统工程训练课程。美国华盛顿大学嵌入式系统课程名称是嵌入式系统设计导论,它基本包括了前面三门课程的内容。

三、嵌入式系统教学现状

从2002年起,全国许多高校的计算机系、电子系、自动化系和软件学院陆续开设了嵌入式系统课程,据估计大约有200多所院校开设了这门课程,有的院校甚至还开设了嵌入式技术专业和嵌入式技术系,本校也在计算机、自动化等专业开设了这门课程。但由于受传统教学体系的影响以及实验条件的限制,目前本校的嵌入式系统课程在教学内容设置、教学方法手段、实验实习等方面都与这门课程以实际应用为主的基本特征严重脱节。学生完成这门课程后,只能进行一般的、基于指令基础上的简单编程,而不能进行基本的应用系统设计,而要想进行较大规模的应用系统设计则需要更长的时间。经过仔细分析,存在的问题主要有以下几个方面:

(1)教学内容不够合理。各个专业的教学内容基本一样,重点不突出,无法发挥学生所学专业的特长。通常嵌入式开发人员由两部分人组成,一部分是电子工程、通信工程等偏硬件专业出身的人,另一部分是学软件编程的计算机专业出身的人。电子工程、通信工程等专业的学生在硬件设计方面比较突出,而计算机专业的学生则比较善于软件的设计。

(2)教学方法手段不合理。课程的授课方式以理论课为主,实验学时较少,一般理论课时都会占了全部课时的80%左右,而实验课时一般只占了20%。实验的内容也不够合理,实验的深度不够,学生的动手能力得不到充分的锻炼。

(3)本校目前的嵌入式实验教学,仍停留在20世纪80年代初发展起来的以8位51单片机为核心的教学水平上。在面向实际的工程应用中,以32位ARM为核心的嵌入式技术日益成为高性能嵌入式技术应用的基础,所以建立一个全面的、新的、基于ARM技术的嵌入式实验教学体系十分必要和紧迫。

(4)没有安排专门的嵌入式系统课程设计,使学生无法把所学的知识联贯起来运用,系统开发的能力得不到提高。

(5)师资力量匮乏,熟悉嵌入式技术的教师数量不多,教师的实践能力不强,造成只能照本宣科,无法实际指导学生。

四、嵌入式系统课程教学改革措施

针对这些问题,应从基础课程改革、新教学体系建立、教学方法、教师培养等方面入手,对嵌入式系统课程进行不断探索和改革。

(一)对基础课程改造

将单片机课程改造为嵌入式系统应用,完成从定式设计到实时设计的转变;将计算机原理课程改造为嵌入式系统原理,着重介绍嵌入式系统原理和体系结构,将电路课程改造为集成电路工程应用,由模拟电路、数字电路通过HDL/EDA/CPLD向IP设计、SoC设计发展;开设“嵌入式系统工程设计方法学”课程,介绍知识平台的观念与方法、计算机工程方法、系统工程作业方法、企业项目管理方法等。

(二)建立基于ARM的嵌入式系统课程教学体系

1.理论教学

理论教学的教学内容设置如下:

(1)嵌入式概述

主要介绍嵌入式开发的基本知识。

(2)硬件环境

这部分应对ARM技术进行论述,包括ARM指令集、Thumb指令集、存储控制器、I/O端口、DMA功能、UART接口、中断控制器、时钟电源管理器、PWM定时器、LCD控制器、A/D转换器、RTC功能、IIS总线等。

(3)嵌入式操作系统

现在大部分院校都开设了Linux操作系统的课程,而且国家也大力提倡使用Linux操作系统,所以建议选用嵌入式Linux。这部分应主要介绍操作系统概念、操作系统内核、Linux和μCLinux、任务和任务调度、实时OS(RTLinux)、GUI、API、文件系统等。

(4)软件开发环境

主要介绍软件开发环境、软件开发过程、交叉编译、链接调试、下载、板级支持包(BSP)、MiniGUI图形应用程序设计、Linux内核移植与编译等。

(5)驱动程序

主要介绍设备驱动机制、键盘鼠标驱动、触摸屏驱动、网口驱动、红外、USB驱动等。

2.实验教学

实验硬件平台可选择基于ARM9内核的微处理器芯片,如S3C2410(基于ARM920T),软件平台可选择ARM-Linux。实验内容包括基础实验和综合实验。

(1)基础实验。

基础实验内容可包括熟悉Linux开发环境、多线程应用程序设计、串行端口实验、A/D接口实验、D/A接口实验、CAN总线通信实验等。

(2)综合实验

综合实验内容可包括Linux内核移植实验、触摸屏驱动实验、系统中断实验、键盘鼠标驱动实验、SD驱动使用实验、基于PCMCIA的CF卡读写和无线局域网通信实验等。

3.课程实习

在整个课程完成后,还应该安排专门的嵌入式课程实习。课程设计的任务是完成一个应用程序的开发,课程设计题目每年不断更新,学生可以根据自身掌握的程度选择不同难度的题目,分值依据题目难易程度而定。学生也可以自拟题目,为保证题目的难度和规模能达到教学要求须经任课教师认可。题目有:在Linux环境下的闹钟提醒程序、串口调试程序、文本编辑器、计算器、画图、贪吃蛇等。

实习的过程可以模仿企业嵌入式系统开发过程进行,如厂商新推的嵌入式微控制器(MCU),模拟开发MCU评估板。因为嵌入式系统的开发一般包括硬件设计和软件开发两部分,所以可以安排不同专业的同学混合编组,共同实习,这样即贴近开发实际,又培养了组员之间的合作精神。

如果有条件的话,还可以与企业合作,建设与产业水平同步的工程实践环境。另外,可以鼓励学生积极参与国家和地区举办的各种电子设计大赛。在实践中强化知识,锻炼综合能力与检验学习效果。

(三)合理的教学方法

应多采用多媒体教学,制作符合教学内容和教学实验的CAI课件。教学时注重启发式教学,引导学生思维,充分发挥学生的主体地位,培养学生的思维能力与自学能力,提高书面表达能力。

嵌入式系统是一门实践性很强的学科,它的教学目的是为了让学生学到一种嵌入式平台开发和设计的方法,所以实验教学在整个教学体系中占了很重要的地位,所以在课时分配上,理论课可以占总课时的1/3,基础性实验课可占总课时的1/3,综合性实验课可占总课时的1/3。授课地点可以设在实验室,实现“边做边学,先学后做,现做现学”等灵活的教学手段,提高学生的学习效率。

采用合理的考核方式,由应试教育向素质教育的转变,考核方式的改革是一个重要因素。本课程学生的综合成绩的评定,由期末考试成绩(60分) +实验成绩(20分) +实习成绩(20分)构成。这样更能全面和客观地反映学生的学习情况。

(四)嵌入式教师培养

由于“嵌入式系统”作为一门新兴的学科,需提供更多的研讨学习交流机会,鼓励青年教师多参加相关的科研项目,以建立一批既具有嵌入式理论知识和实践经验、又有较高教学水平的教师队伍。

五、结束语

本文针对嵌入式系统课程存在教学效果不理想的实际情况,分析了问题存在的原因,针对信息类学科特点和学生学习的特点提出了一些改革建议,以此努力构建融课堂教学和包括实践教学在内的多样化教学形式相结合的新型教学模式。希望对于广大教师能够具有一定的参考价值,进一步促进该门课程教学水平的提高和教学效果的增强。

参考文献:

[1]孙士明,刘新平,郑秋梅,纪友芳.计算机专业嵌入式系统实践教学体系探索[J].实验室研究与探索,2009,25(8):122-125.

[2]杨刚,白锋,石光明,刘应南,周佳社,孙江敏.新形势下以项目为中心的嵌入式教学与人才培养新模式探索[J].实验室研究与探索,2008, 27(7):8-10.

[3]李静,乔峰.浅谈嵌入式系统实验对学生创新能力培养[J].微计算机信息,2009,(1):22-24.

[4]韩德强,张丽艳,邵温.计算机工程专业方向嵌入式系统实践教学的探讨[J].实验技术与管理,2010,27(3):191-193.

[5]李岩,王小玉,孙永春.嵌入式系统教学研究[J].电气电子教学学报,2006,28(3):45-48.

嵌入式课程体系篇6

(大连交通大学 软件学院,辽宁 大连116028)

摘 要:分析嵌入式系统教学相关课程和嵌入式系统课程群教学的基本内涵,提出以嵌入式Linux操作系统为核心课程来建设嵌入式系统课程群,整合优化嵌入式系统课程群教学体系。

关键词 :嵌入式;课程群;优化融合;教学体系

基金项目:2013年大连交通大学教学改革研究项目(DJDJG201345);2014年辽宁省普通高等学校本科教育教学改革研究项目(UPRP20140299)。

第一作者简介:郑广海,男,副教授,研究方向为计算机应用、Agent技术,zhmos@163.com。

0 引 言

随着计算机技术、微电子技术、传感器技术及通信技术的不断发展和创新,嵌入式系统技术如今成了焦点的应用技术之一。嵌入式无处不在,随着嵌入式系统广泛应用,国内外机构投入大量资金对嵌入式系统进行研发,引发了对嵌入式系统技术人才需求的增长。嵌入式系统本身需要软硬件技术的紧密结合,开发难度较大,面临着重大的变革,这是嵌入式系统相关教学面临的新机遇、新挑战。

1 嵌入式系统课程群教学体系

嵌入式系统课程群建设目标是共享优质教学资源,以使更广泛的群体受益,坚持创新教育理念,坚持以学生为本,依托软件工程学科特色,改革嵌入式系统课程群教学内容、教学方法和教学手段,促使学生主动构建知识结构。

1.1 嵌入式系统教学的特点

嵌入式系统具有嵌入性、专用性和计算机系统三个基本要素[1]。它涉及微处理器、操作系统、系统设计方法以及高性能计算等基本原理和关键技术,涉及嵌入式系统的高可靠性、低功耗以及安全性、性能优化等基础知识。嵌入式系统实践性强,不仅要求学生有扎实的理论基础,更要求他们有很强的工程实践能力。嵌入式系统教学具有如下特点:①嵌入式系统课程具有多学科交叉性,融合了计算机、通信以及微电子技术等多项技术及应用;②嵌入式系统课程具有综合性,是集软硬件技术为一体的综合体,需要协同设计软硬件课程;③嵌入式系统课程实践性极强,需要通过大量的实验、实习实训、学科竞赛、科研项目等实践教学环节来进一步加深学生对理论知识的理解。

1.2 课程群教学体系构建

课程群建设是一组课程的整体建设,各课程所面对的教育对象是一样的,因此,课程群的课程内容具有相关性,课程群建设考虑课程集合整体的系统性建设,而不是考虑每门课程的个体特征[2]。课程群的课程集合具有强关联性和可整合性,课程内容相辅相成,有课程之间的衔接,也有课程内容的交叉。课程群整体建设是以单独每门课程建设为基础,通过对课程群课程集合的优化,以及课程的整合与重组,优化资源配置,充分发挥课程群每门课程的特有作用,综合考虑课程之间的内在逻辑性,构建知识、能力和素质一体化的人才培养模式。在选择课程群建设的课程时,要充分考虑培养方案中在知识点、技术原理和实现方法等方面存在逻辑联系的课程,通过优化整合,形成课程群的课程体系。

嵌入式系统课程群经历了几年的建设和优化,逐步完成由初期启动阶段到基础建设阶段的过渡,最终迈进创新提高阶段。在课程群的建设过程中,我们始终坚持以稳定为主旋律,在一定时期保持课程群教学内容的相对稳定,从深度和广度上对教学内容进行创新改革,不断将反映学科发展的新趋势、研究成果等新的知识点加入到教学中;采用“理论+实践+应用”的全新教学思路,以课程群理论教学为建设基础,依托课程群创新实践教学,以培养学生创新思维和创新能力为目标,形成嵌入式课程群全新的教学体系[3]。嵌入式系统课程群教学体系结构示意图如图1所示,包括理论教学体系、实践教学体系和教学评价体系3部分。

1.2.1 课程群理论教学

嵌入式系统所涉及的知识面非常广泛,应用领域众多,因此课程群建设在选择课程时,应该从嵌入式系统的底层硬件知识,考虑到顶层应用开发,根据嵌入式系统人才培养目标要求,保证嵌入式专业的主体规格,增强课程群理论课程的优化融合。通过精心选择、重组课程群的相关知识点,充实新知识点到课程群中,完成课程群教学内容整体优化整合。

在课程群体系框架下,我们要设计学生应掌握的知识点和创新能力发展要求,按照最优选择原则,对课程群的课程集完成裁剪、归并、整合优化、内容更新,构建完整的、系列化的课程群理论教学体系结构。

我们以“教育部—Intel”精品课嵌入式Linux操作系统课程为核心,围绕精品课建设,示范引导,建立嵌入式系统课程群教学体系结构。课程群理论课程包括C/C++程序设计、计算机组织与体系结构、微机原理与接口技术、嵌入式Linux操作系统、嵌入式系统设计与开发、ARM体系结构与编程等6门课程。

C/C++程序设计是程序设计的基础课程。C++由C语言发展而来,可用于结构化程序设计,也可用于面向对象的程序设计,是嵌入式系统常用的开发语言,是嵌入式系统开发的最佳选择。计算机组织与体系结构课程深入剖析计算机体系结构和内部工作机制,是掌握计算机内部世界的重要课程。微机原理与接口技术系统地阐述了微处理器的基本原理、体系结构以及指令系统等知识。嵌入式Linux操作系统是课程群的核心课程之一,讲述CPU调度、内存管理以及外设管理等理论知识。嵌入式系统设计与开发也是课程群的核心课程之一,它综合了多门课程的教学内容,讲授嵌入式软硬件环境及开发流程。ARM体系结构与编程课程重点讲解微处理器ARM内部寄存器结构、指令系统、中断管理、常用的接口等嵌入式硬件平台设计的有关知识和技术。

课程群建设要有整体全局观念,对课程群进行整体统筹优化,整合课程群理论知识体系,融合不同课程的知识点,要确保课程之间的无缝衔接,形成完整的课程群理论课程教学体系结构。课程群整体优化整合,要充分发挥嵌入式系统课程群的特色和整体优势。

1.2.2 课程群实践教学

嵌入式系统实践教学是课程群教学体系的重要组成部分,是提升学生综合素质的重要教学环节[4-7],经过多年的实践探索,嵌入式系统课程群的实践教学体系由1个中心、3个教学层次和4个教学环节组成[3],体系结构示意图如图2所示。

3个层次的实践教学包括:

(1)基础实践层,是课程群理论课程的课内相关实验,主要以验证性实验为主,通过这层教学环节,学生可以加深领会和掌握所学理论知识。

(2)综合实践层,是课程群的综合性和设计性实验,主要是培养学生的实践操作能力,引导学生综合理解嵌入式系统的实现机理,提高综合运用课程群知识的能力。

(3)创新实践层,以创新为目的,通过项目实训、学科竞赛和科学研究项目等创新实践教学活动,培养学生综合应用知识的能力、工程素养和创新能力。

3个实践教学层需要通过如下4个具体的实践教学环节来完成:

(1)课内实验环节,是与理论教学相配合的必要环节,通过课内实验强化重点内容和知识点,进一步巩固课堂讲授的理论知识,将理论与实践紧密结合,提高学生处理问题的能力。

(2)实习实训环节,是与企业合作,根据企业岗位技能要求,按照企业对员工的知识、技能和综合素质等方面的要求,构建基于企业标准的项目开发流程的实习实训工作环境,在企业项目经理团队指导下,学生在企业化情境中开发项目。

(3)毕业设计环节,是实践教学的重要环节,通过毕业设计将所学知识进行整合运用,具有综合性和总结性,是培养学生工程实践能力和创业精神的重要环节。

(4)学科竞赛及科学研究环节,可以培养学生的工程实践能力、创新能力及团队协作精神,是创新型人才培养的最有效途径。

2 课程群教学内容的融合

2.1 课程群建设

课程群是一类相关课程的集合,以现代教育理念和理论为指导,选取培养方案中相互有影响、课程内容联系密切、课程之间互动有序的相关课程,重新规划并整合成一个整体,构成课程群[8]。课程群建设是对课程集的再设计,对课程集中课程的知识点进行分解与融合,有效结合了课程体系的开发和课程建设的实施过程[9]。

采用结构化系统设计原则,实施嵌入式系统课程群建设,将课程群作为一个整体进行优化融合,课程群的融合充分反映课程教学特色和优势。我们将嵌入式系统相关的这6门课程统一进行优化整合,不再考虑每门课程内容的系统性,超越系统性约束,调整6门课程的内部结构,对这6门课程内容进行优化重组,删除在不同课程中重复出现的内容,紧随嵌入式学科发展,淘汰陈旧过时的知识,适当增加新技术和新知识。同样,课程群的实践教学内容也进行了优化整合,针对实践教学内容交叉重叠,多重视验证性实验,而忽略综合性和设计性实验等问题。在大量教学改革研究与实践的基础上,我们对6门课程实践教学的内容、知识点及培养计划等进行优化整合,增加综合性、设计性和创新性的实践教学内容。培养方案、教学计划及教学大纲等的再设计,实现了课程群知识体系的优化与重构。

2.2 理论课程的融合

课程群建设以群为单位,其教学过程具有整体性要求,教学内容模块化,课程群内课程之间相互渗透,经过优化整合,更能发挥群体课程的优势。

嵌入式课程群以精品课嵌入式Linux操作系统为核心,选择属于同一能力培养范畴的课程,整合了C/C++程序设计、计算机组织与体系结构等6门相关课程构成课程群,这些课程具有一定的相对独立性,而课程内容纵向具有前导和后继关系,横向存在知识结构上的内在联系,各门课程合理分工,构成一个系统化的有机整体。

我们理清课程群课程之间的关系,确定课程群的理论和实践教学内容,构建课程群体系架构。如嵌入式系统设计与开发课程需要软硬件的紧密结合,涉及硬件设计、操作系统、系统开发等相关课程的内容,对课程群的课程内容进行优化融合,课程群以ARM为硬件平台, Linux作为嵌入式操作系统,将Linux内核移植到ARM硬件平台上,在这样的软硬件平台上,使用C/C++开发嵌入式系统。

课程融合突破了课程之间的壁垒,没有了学科、课程的界限,是实现了课程群共融的教学活动。课程群整合,优化配置了教学资源,促进多课程间交叉、渗透、融合与创新,加强课程群内涵建设,改革创新,实现课程群跨越式发展。

2.3 实践课程的融合

嵌入式系统课程实践性强,根据嵌入式专业发展要求以及人才培养的需求,密切联系理论教学,并紧跟嵌入式学科的发展,重构课程群实践教学体系结构。整合嵌入式系统课程群实践教学课程,实现课程群实践课程合理分工,保证课程群实践课程之间的紧密衔接,优化整合实践教学内容,减少验证性实验,增加综合性、设计性实践教学内容,增加具有创新性的实践教学内容,开展多层次递进式的嵌入式课程群实践教学,以培养学生工程实践和创新实践能力为主线,优化整合课程群的实践教学资源和实践教学过程,形成多层次、多环节的实践教学体系结构。

整合课程群实践教学资源,优化了实践教学过程,实现了对传统实践教学的改造与创新。融合构建嵌入式实践教学体系结构,融合就是裁剪重复性实践教学内容,整合相关实践教学内容,增加设计性实践和创新性实践,实现嵌入式实践教学项目的重构与再造。我们按照嵌入式系统培养方案中对实践技能的要求,梳理和整合实践教学需要的实践技术,形成“1个中心,3个层次和4个环节”的实践教学体系;按照教育教学规律,遵循个性特点,促进理论知识与实践能力的转化,逐步将科研新成果以及最新实践技能和应用引入到实践教学中。如“C/C++程序设计”课程的实验内容在其他课程都有体现,我们将程序设计的实验融合到课程群的其他5门课程的实验中,根据电子大赛等学科竞赛设置创新实践教学内容,将教师的科学研究过程引入到课堂。通过这些改革措施,实践教学体系中融合了创新教学内容,学生学到了实践技术,也了解了科研成果的创新实践过程,更激发了学生探索科学事实的激情。

3 课程群教学改革探索

3.1 课程改革紧随学科发展

课程群理论课程主要讲解嵌入式相关知识的基本概念、原理和方法。随着计算机技术及微电子技术的发展,课程群建设密切结合嵌入式系统新技术发展的趋势和方向,以基础共性的新方法与新技术为切入点,将嵌入式新方法与新技术的前瞻性知识引入课程群理论教学中。我们在理论课程中先后引入微控制器、可编程计算、多核和虚拟化等知识;通过案例分析和应用系统设计,将Intel处理器技术融入现有软硬件课程体系中;嵌入式Linux操作系统课程内容增加Android知识等。

要保证专业知识与技术发展及应用同步,就要与时俱进地将学科研究的新成果引入课程群,及时更新课程群的教学内容。我们高度重视课程群实践教学环节,改革实践教学的内容和形式,逐步增加综合性、设计性和创新性实践,创造条件让学生参与科研活动,以提高学生的创新实践能力。

及时修订和调整培养方案,使课程群教学内容始终保持其先进性和适应性,能够反映嵌入式系统领域的最新研究成果和发展趋势,借鉴国内外嵌入式系统教学的先进理念和教学成果,改革创新,提高教学质量。

3.2 强化能力培养,优化教学方法及手段

嵌入式系统课程教学如果继续采用传统教学方式,已不能适应现代教学要求。嵌入式系统课程群改革围绕创新教学理念,课程群教学团队尝试采用多元化教学手段,注重使用先进的教学方法和手段,不断提高教学质量,坚持学科优势,强化特色教学,保持并改进具有特色的教学模式、教学方法及教学手段,结合素质教育和人文教育,探索适合嵌入式课程群的创新教学模式。我们采用启发式教学,充分开发学生智力,启迪学生智慧,激发学生的创新思维;采用任务驱动教学,可以提高学生工程实践能力和应用能力;依托学科竞赛和科学研究,促进课程群教学改革。通过产、学、研合作培养创新型人才,广泛开展学科竞赛活动、学生科研训练和科技活动,积极引导学生参加研究实践活动,促进教学与实践的紧密结合。

3.3 改革评价方式,考核教学效果

课程考核是检查和评价教与学效果的主要手段,是对学生的知识掌握程度、综合能力和创新能力培养等方面进行的综合评定。我们通过课程考核,及时反馈评价结果,跟踪分析教学中存在的问题,通过创新课程群教学模式,改进、调整课程群教学方式,更好地提高教学效果。课程考核的另外一个作用是在一定程度上引导了课程群教学改革。

课程群评价体系设计遵循多元化考核、考核办法全程化、考核方式多样化、考核内容综合化、考核成绩合理化、考核反馈经常化、建立考核反馈机制等原则。

课程群的考核评价体系包括3个方面的评价:

(1)教师教学过程评价(40%):包括以下考核内容:出勤占10%,网上自主学习记录、课堂讨论、课外书面作业、随堂测试和学期小组活动5项,每项占6%。

(2)实践教学考核(30%):实践教学划分为3层次,包括基础实践层、综合实践层和创新实践层,每层次实践教学的评定占10%。

(3)期末试卷测试(30%):期末测试采取定量评价和教师评价的方式,具有较强的操作性和实用性,占30%。

3.4 注重队伍建设,提高育人水平

课程群建设的主体是教师,教师是教学活动的组织者,学校的教学质量主要取决于教师的教学水平和科研水平。师资队伍是课程群建设的基本保证,师资队伍应该具有对课程群内容进行融合的能力,这要求教师要掌握课程群的多门课程内容,这样才能做好课程群内容的融合,参加课程群建设的教师需要通过各种方式提高素质,从而加强师资队伍的整体建设,促进课程群的建设。

教学团队的建设应围绕课程群进行,通过引进、进修培养等手段,构建年龄、职称、学缘等结构合理,具有较高的理论素养和科研能力的课程群教学团队。课程群建设需要不断调整优化教学队伍,逐步形成教学与科研的良性互动局面。

4 结 语

经过多年的改革创新与实践,从单一课程到课程群建设的发展,课程群知识结构从广度到深度上都有创新,课程间的教学内容衔接趋向合理,去除冗余知识,增加新的知识;通过强化课程之间的联系,完成课程内容的融合与分解、整合优化,构建基于精品课嵌入式Linux操作系统的嵌入式课程群教学体系结构。

参考文献:

[1] 何立民. 嵌入式系统的定义与发展历史[J].单片机与嵌入式系统应用, 2004(1): 6-8.

[2] 范守信. 试析高校课程群建设[J].扬州大学学报, 2003(9): 25-27.

[3] 郑广海, 曲英伟.“嵌入式Linux操作系统及实践”课程改革[J]. 计算机教育, 2012(4): 37-40.

[4] 宋跃, 谭爱群.构建三位一体的教学体系, 提高学生的实践创新能力[J]. 实验技术与管理, 2010, 27(3): 15-18.

[5] 肖利, 曹丽华, 刘梅. 创建新型实验室, 培养创新人才[J]. 实验技术与管理, 2007, 20(10): 13-14.

[6] 贾晓辉. 软件工程专业实训基地的建设与实践[J]. 计算机教育, 2009(8): 116-117.

[7] 韩玉民. 高职软件类学生校外毕业实训管理的探索与实践[J]. 计算机教育, 2010(1): 83-85.

[8] 陆为群. 高师院校课程群建设的原则和策略[J]. 黑龙江高教研究, 2007(11) : 110-112.

[9] 郭必裕. 对高校课程群建设中课程内容融合与分解的探讨[J]. 现代教育科学, 2005(2): 66-68.

嵌入式课程体系篇7

【论文摘要】介绍嵌入式系统的概念和发展状况,以及目前国内外嵌入式系统在独立学院教育的现状,根据多年的教学实践,结合目前本校开展嵌入式系统教学的教学经验,总结出适合我国独立学院开展嵌入式系统课程的教学模式。

1.引言

目前,国内开设有关嵌入式系统课程的独立学院极少,培养出的基于linux平台上的嵌入式软件开发人员更是凤毛麟角。所以,注重应用能力培养的独立院校,特别是有计算机、电子技术等相关专业的工科独立院校,应该尽早引入嵌入式系统的教育,结合自己专业特点,大力开展嵌入式系统的教学工作。

2.嵌入式系统简介

嵌入式系统一般指非pc系统,而是指小型、专用的计算机系统。它包括硬件和软件两部分。硬件包括处理器/微处理器、存储器及外设器件和i/o端口、图形控制器等。软件部分包括操作系统软件(要求实时和多任务操作)和应用程序编程。有时设计人员把这两种软件组合在一起,应用程序控制着系统的运作和行为;操作系统控制着应用程序编程与硬件的交互作用。

3.国内嵌入式系统教学的现状

国内教育界将嵌入式系统的教学大致分为三类:软件学院专业嵌入式教学;计算机专业嵌入式教学;电子、自动化等相关专业嵌入式教学,对于嵌入式系统的教学研讨从嵌入式课程体系的设置、嵌入式理论教学的开展、嵌入式实验教学的开展、嵌入式综合设计与学生工程实训等几方面展开。

4.嵌入式系统教学模式的探讨

综观国内外,长期以来都没有专门针对嵌入式系统专业的学科设置,从事该领域的研发人员都来自不同专业背景,例如自控、电子工程、通信工程、计算机应用等专业。由于知识结构不能完全满足嵌入式系统工程的要求,需要经过较长的再培训才能胜任嵌入式系统工程师的工作。嵌入式系统教育给传统计算机、电子信息工程教育带来了巨大的冲击和挑战,也带来了历史的发展机遇。嵌入式系统工程(ese)是一个全新的专业,需要企业和社会的认知过程,课程体系需要经历设计、发展、完善的过程。

通过与国内其他高校的专家的探讨与学习,结合西部高校普遍存在的资金非常缺乏,实验条件的局限,以及电子信息工程专业学生的特点,我们积累和总结出关于嵌入式系统教育教学模式的一些想法,列举如下:

4.1 建立一套适合学校特点的课程体系

嵌入式课程是近几年来建立的一门新课程,有它自身的特点、规律。嵌入式的课牵扯面很广,包括研究生的课程、本科生的课程、技能课程的培训等。由于该课程与实际结合得非常紧密,容易教成短期培训,而作为一门课程要有自己的规律,不要把这个课程做成嵌入式系统教学的技能培训,要结合独立学院的自身培养目标特点制定出相应的教学计划以及实施方案。例如在我校,针对电子信息工程专业,目前师资力量等都不能满足直接建立一个嵌入式系统的专业,设想把嵌入式系统设定为电子信息工程专业本科主修方向,在低年级时开设相关的专业选修课,让有意于此方向的学生打好基础,在本科高年级进一步学习。作为电子信息工程专业,在教学中一定不能光注重应用,也要将清楚计算机本身的规律在什么地方,为什么发展嵌入式,有什么原理进行探讨,从而建立一套适合我们特点的课程体系。

4.2 课程应该分层次

嵌入式系统教学的层面应不同,有研究生、本科生高年级、重点大学、普通大学、独立学院等的分别,在授课时有所区别。在本学院推行这门课,考虑到针对的是电子信息工程专业,和其他学院的侧重点是不同的,但作为电子信息专业中的一个主修方向,在教学中应该突出原理与应用的紧密结合且能体现出理论和实践并重的特点,在教材的选定上应该包括有关嵌入式处理器、操作系统(linux或ubantu)、开发平台和应用,重点学习原理及相关应用。

4.3 主动去获得更多的支持

由于学校在技术、经验、资金等方面有很多的困难,所以应该主动寻求以获得更多的帮助,例如主动跟国内外相关公司索取资料、设备,要求一些技术支持等,积极组织教师参加全国范围的各种嵌入式系统教学研讨会、及到各知名企业进修,让教师深入了解技术发展。

4.4 可利用仿真软件、书籍内容辅助实验教学

如果让理论知识能让学生达到所见即所得是本课程教学的重点和难点,由于资金的缺乏,现成的实验板很昂贵,应采用仿真和实验相结合的方法,一部分学生在skyeye、microwindows仿真环境下做实验,一部分学生在实验板上面做实验,在实验之后再一起互相讨论。

4.5 利用互联网进行教学交流

由于教师对嵌入式系统课程不熟悉,在教学中要自己一边学习一边讲课,应该充分利用极其丰富的网络资源,例如教学课件及背景资料都可以从网站上下载,教师和学生均可通过论坛交流。

4.6 全国高校大学生电子竞赛及行业相关竞赛

通过组织学生参加全国高校大学生电子竞赛来深入了解和学习嵌入式系统。虽现在的电子竞赛还没有直接用到嵌入式系统,但是我们必须现在开始在思想上有所改变,主要是使学生多搞创新想法,而不仅仅是产品创新。

5.结语

嵌入式系统工程是一个全新的专业,目前的关键是怎样与现有专业学科融合,以及怎样进行现有课程体系的改革和调整。我国在嵌入式系统教育方面起步较早的是北京大学软件与微电子学院的嵌入式系统系,他们已经形成了较为完善的课程体系、专业水平较高的师资队伍和与国际技术接轨的嵌入式系统工程实践环境,目前,嵌入式系统系在我院本科生达到480人。独立学院由于很多因素的制约在教育上也比较落后,但已经积极行动起来,投身到嵌入式系统教育中去,为我国嵌入式系统的发展输送更多的优秀人才。

参考文献

[1]马忠梅.嵌入式系统教学模式探讨[j].单片机与嵌入式系统应用,2008(11):5-37.

[2]徐敏,林瑞金.关健生嵌入式系统教学改革与实践[j].电气电子教学学报,2009(3):13-22.

嵌入式课程体系篇8

【关键词】计算机专业;嵌入式系统;教学;CDIO模式

2004年,ACM(美国计算机协会)和IEEE联合制订了新版的计算机学科的课程体系(2004版),其中一个主要改革就是将“Embedded System”课程列为本科生的专业基础课,并且给出了基本课程体系。同时,美国卡内基梅隆大学、伯克利大学等国外高校也不断在完备他们的嵌入式教育体系。欧盟也推出了面向欧盟高校和企业的嵌入式研究计划。目前业界对嵌入式技术人才的需求十分巨大,尤其在迅速发展的TMT领域,这种需求更为显著。另外,企业对嵌入式系统开发从业者的工程实践能力、经验要求也越来越重视,因此目前国内外很多专业协会和高校都在致力于嵌入式相关课程体系的建设,结合嵌入式系统的特点,在课程内容设计、师资队伍建设、教学方法探索、教学条件和实验体系建设等方面取得了较好成效。

CDIO模式是一种先进的高校工程教育理念和实施体系。CDIO由考量(Conceive)、设计(Design)、实施(Implement)、操作(Operate)四个环节组成。CDIO 模式是主要通过“做中学”的方式全面地提升学生的综合素质和创新精神。CDIO模式的这种特质十分契合“嵌入式系统”课程的发展趋势。

在高等教育提出朝着“宽口径、厚基础、重能力”的方向发展趋势下,研究如何将先进的工程教育理念和实施体系CDIO模式成功引入到“嵌入式系统”课程教学改革中,同时深入地开展基于CDIO模式下的“嵌入式系统”理论和实验教学体系、内容和方法等多方面的研究与实践,探索一条满足社会人才需求、符合高校自身规律的“嵌入式系统设计与应用”课程的教学模式和方法,对于培养学生在嵌入式系统系统设计方向上的基本技能、工程能力和创新精神具有十分重要的意义。

“嵌入式系统设计与应用”课程教学内容十分丰富,如图1所示。该课程涉及到计算机系统最基础的硬件、软件等多方面多层次的知识,这就要求学生系统性的学习完整的嵌入式系统知识体系。

因此,“嵌入式系统设计与应用”课程与CDIO模式有效融合主要进行的工作内容应该包括:通过大量调研,反复讨论和研究,根据CDIO模式的特点编写和修订符合计算机学科发展的“嵌入式系统设计与应用”课程的理论教学大纲和实验教学大纲。在此大纲的指导下,编写了“嵌入式系统设计与应用”主教材和实验教程,该教材以Cortex A8处理器和Linux操作系统作为主要研究对象,与时俱进,贴近主流。通过上述活动,重建学生的嵌入式系统的知识脉络。

根据互联网+的实际需求,建设“嵌入式系统”教学网站。该网站包括的主要功能有:学生可以浏览教学视频、下载课件、浏览网站公告等。教师可以开设课程、上传教程课件、作业、回复问题等。管理员则在后成对课件信息的管理、教程信息的管理、学生信息的管理及教师信息的管理等功能。开发“嵌入式系统学习网站”,积极引入网络教学模式,在教师和学生之间架起一座沟通的桥梁。

有效应用实例化教学模式,使学生在消除嵌入式系统设计神秘感的同时,提高学好这门课的自信心。

综上所述,“嵌入式系统设计与应用”主要任务就是要培养学生分析与设计嵌入式系统的基本能力;培养自学、分析问题和解决问题的能力,以及认真负责的工作态度和严谨细致的工作作风。在此前提下,有效融合CDIO模式具有十分重要的意义。

【参考文献】

[1]王硕旺,洪成文.美国麻省理工学院工程教育的经典模式――基于对CDIO课程大纲的解读[J].理工高教研究,2009,28(4):116-119.

[2]春林,朱张青.基于CDIO教育理念的工程学科教育改革与实践[J].教育与现代化,2010,94(1):30-33.

[3]黄智伟,邓月明,等.ARM9 嵌入式系统设计基础教程[M].北京航空航天大学出版社,2008:1-4.

上一篇:作风建设考核方案范文 下一篇:教育学的主要课程范文