放大器电路范文

时间:2023-10-18 00:51:37

放大器电路

放大器电路篇1

【关键词】功率放大器;偏置电路;静态电流;温度补偿

随着我国对北斗卫星通信产业的进一步投入和推广,北斗用户机作为北斗导航系统的重要组成部分引起了广泛关注[1]。功率放大器是北斗用户机中必不可少的一部分,其性能的好坏直接影响到北斗用户机的性能,因此其电路结构和芯片的选型非常重要。LDMOS功放管具有增益大、输出功率高、线性度良好、低成本、高可靠性等优点[2],因此成为功率放大器设计的首选器件。然而LDMOS的静态电流会随着温度变化而变化,这对功率放大器的增益、饱和输出功率等参数都有很大影响,在高温环境下,这些参数的变化甚至会导致功率放大芯片损坏,因此设计一种针对LDMOS的温度补偿电路对功率放大器的性能至关重要。

1功率放大器设计

在北斗用户机的功率放大器的应用中,功率放大芯片的选取非常重要,除了要求功放芯片在北斗频率上能够达到要求的功率外,还有考虑最大容许工作电流、最大耗散功率、芯片的结温度等因素[3],并且要留有足够的余量。本设计在北斗频率上要求最大输出功率在10W以上,工作温度大于75℃,经过比较,最终选取HMC308和HMC454为驱动芯片,以英飞凌公司的LDMOSFETPTFA220121M作为功率放大芯片设计一款北斗用户机功率放大器。合适的静态工作点不仅能保证芯片的正常工作,还会影响功率放大器的最佳匹配负载、效率等参数[3],因此选择正确的静态工作点是设计电路的第一步。由datasheet可知,PTFA220121M的偏置电路中栅极电压为2.5V左右,漏极经过一个四分之一波长线接+28V,常温下功率放大器工作的静态电流为150mA。为了向负载传输最大功率,需要在电路中加入匹配网络,使得负载阻抗等于信号源阻抗的共轭,此外,匹配网络还决定着放大器的驻波比、功率增益、1dB压缩点等指标是否满足设计要求。在PTFA220121Mdatasheet中读取出在1616MHz处的输入输出阻抗,利用ADS软件对芯片做输入输出匹配电路,使得功率放大器的功放管工作在趋近饱和区[4]。由于在北斗频点上采用微带线做匹配电路,电路的面积会非常大,所以电路的匹配采用集总器件做匹配电路.对电路PCB进行加工并测试得到其小信号增益为42dB左右,饱和输出功率在10W以上。在高低温箱内放置两个功率放大器,以20℃为步进,测试每个功率放大器在-45℃~75℃时的特性,使功率放大器在每个温度下保持30分钟后,测得两个功率放大器PTFA220121M的静态电流分别为I1、I2,饱和输出功率分别为P1、P2,画出四个参数随温度变化的曲线,如图1所示。分析数据可知,随着温度的升高,功率放大器的静态电流增加了50mA,即功率放大器在-40℃~75℃内的工作点具有正温度系数,得出温度对功率放大器的饱和输出功率一致性有很大影响。在测试过程中,在没有加激励的情况下,当温度升高到75℃时,功率放大器加电瞬间芯片损坏。功放芯片的结温度和工作环境温度及芯片本身的功耗有关,当温度升高时,芯片的静态电流增加,使得芯片的功耗增加,这两个因素同时增大使得芯片的结温度超过其能承受的最大温度,故而损坏,而北斗用户机实际的工作温度要求能承受75℃,所以要降低芯片在高温下的静态电流来保护芯片。为了保证功率放大器各性能的稳定,在功放芯片的偏置电路中加上温度补偿电路,使栅极电压随温度的升高而降低[5],保证芯片的静态电流在各个温度下的恒定,从而提高功率放大器性能的一致性。

2温度补偿电路设计

功率放大芯片在工作点附近通常具有正的温度特性,即在一定的栅压下,当工作温度升高时其静态电流升高,当工作温度降低时静态电流降低[6]。由图1的实验结果可知,工作温度的升高使得最大输出功率的波动很大,本设计通过在偏置电路加一个电压补偿网络实现温度的补偿[7]。温度补偿电路采用了温度传感器LMT84,封装大小为2.4mm*2.2mm,其输出电压随着温度的升高而降低。将LMT84的输出端与PTFA220121M的栅极经过电阻相连,通过分析实验数据来分配电阻值,使得温度升高时栅极电压下降,计算得到静态电流下降的幅度正好抵消静态电流增加的幅度,从而保证芯片的静态电流不随温度变化。对两个功率放大器做如下处理:在PTFA220121M栅极和地之间接上屏蔽电缆,在非接地电缆的另一端接电位器。将它们放入高低温箱内,温度设定为-45℃~75℃,每20℃一个步进,功率放大器在每个温度下存储30分钟,测试各个温度下PTFA220121M的静态电流。通过调节电位器的阻值使得PTFA220121M的静态电流在各个温度下保持在150mA,用万用表测试出对应温度下栅极的电压,温度补偿电路如图3所示,PTFA220121M栅极电流为1uA,为了使芯片栅极电压的波动对A点电压影响足够小,选取电阻时保证流过R1的电流I1为50uA左右。LMT84的最大输出电流为50uA,I2取值为40uA。根据叠加定理,电路中各器件之间的关系满足等式(1)、(2)、(3)、(4),其中UA1、UA2为图2直线中0℃和20℃对应的电压值,UB1、UB2为LMT84工作曲线中的0℃和20℃对应的电压值,计算出各个电阻值,取标称值为:R1=30kΩ,R2=18kΩ,R3=13kΩ,R4=20kΩ。电路设计时要求温度不变时UA1的变化范围为ΔV=±10mV,供电电压为U,为了求出补偿电路中所选电阻和电源芯片输出电压的精度,对等式(2)中UA1在R1=30kΩ、R2=18kΩ、R3=13kΩ、R4=20kΩ、U=5V处对R1、R2、R3、R4、U求偏导数,计算得出ΔR1=±0.8%R1,R2=±1%R2,R3=±3%R3,R4=±60%R4,ΔU=±9%U。由计算结果可知,R1的变化对UA1的影响最大,所以要求其精度最高,由于市面上常用的贴片电阻最高精度是±1%,所以取R1=(30±1%)kΩ。R4的变化对UA1的影响很小,对其精度几乎没有什么要求。电路中供电芯片选用的是LDO,其输出电压精度在±1%,满足设计要求。最后确定电阻值为:R1=(30±1%)kΩ,R2=(18±1%)kΩ,R1=(13±1%)kΩ,R4=(20±10%)kΩ。

3实验结果和数据分析

加入温度补偿电路的功率放大器实物如图4所示,其中每个芯片和改进前功率放大器用的芯片都属于同一批次,常温下对功率放大器进行测试,输入1616MHz信号,功率大约为0dBm,测试得静态电流为150mA,加电200ms测试出功率放大器的最大电流为650mA左右,最大输出功率10W以上。将两个功率放大器放在高低温箱内,按照以20℃为步进、每个温度下存储30分钟的方法测试-40℃~75℃下的静态电流,得出静态电流I11、I22和饱和输出功率P11、P22随温度变化曲线如图5所示,可以看出同一个功率放大器在不同温度下的静态电流变化很小,饱和输出功率的一致性也有明显改善,并且功放芯片没有损坏现象4小结本温度补偿电路设计简单,易于实现。将改进后的功率放大器用在北斗用户机中,经大量测试显示,加入温度补偿电路后,温度在-40℃~75℃时,功率放大芯片的静态电流基本一致,增益均在40dB以上,饱和输出功率均大于10W。这说明,该温度补偿电路对功率放大器在不同温度下的静态电流有很好的补偿作用,从而成功避免了因温度变化而导致芯片损坏情况的发生。

参考文献

[1]陈淡,郑应航.基于蓝牙技术的北斗终端通信模块的设计[J].现代电子技术,2013(23):16-18.

[2]崔庆虎,刘平.基站功率放大器的设计与仿真[J].电视技术,2012(17):82-85

[3]杨树坤,李俊,唐剑平等.LDMOS微波功放器设计[J].电子与封装,2014(4):18-21.

[4]韩红波,郝跃,冯辉等.LDMOS线性微波功率放大器设计[J].电子器件,2007(2):444-449.

[5]BELLANTONIJohn.BiastechniquesforGaNandpHEMTdepletionmodedevices[EB/OL].[2014-06-17]./appliations/defense/gan-products.

[6]耿志卿,曹盼,陈湘国等.一种应用于功率放大器的高精度温度补偿电路设计[J].现代电子技术,2015(3):137-140.

[7]黄亮,章国豪,张志浩等.一种带有温度补偿电路的射频功率放大器[J].电子科技大学学报,2015(6):814-817.

放大器电路篇2

关键词:精密放大器;低噪声失调电路技术;自稳零;斩波稳零;发展空间

中图分类号:TN72 文献标识码:B

文章编号:1004-373X(2008)09-153-03オ

High Precision op-amp and Low Noise Offset Circuit Techniques

ZHANG Tao,CHEN Liankang

(Wuhan University of Science and Technology,Wuhan,430081,China)オ

Abstract:The current state of precision op-amp and the circuit techniques available to realize are introduced in this paper,emphasis are given to autozero and chopper stabilization circuit techniques,their influence on circuit noise are quantitative analyzed coupled with simulation results.It is convinced by theory analysis and simulation result that these two kinds of circuit techniques can well restrain the offset and noise and can give a precision amplification of weak sensor signal.At last,the future development space of this kind of op-amp is expected.

Keywords:precision op-amp;low noise and offset circuit techniques;autozero;chopper stabilization;development space

1 运算放大器的现状

运算放大器自1963年问世以来,走过了很长的发展道路,并成为所有线性系统中事实上的标准部件。几乎每个大型半导体制造商的产品线中都有运算放大器这个产品。根据不同的应用需求主要分化出通用型、低电压/低功耗型、高速型、高精度型四大类运放产品。目前放大器的性能水平已达到了如下指标,这在20世纪60年代是闻所未闻的:带宽超过1 GHz;转换速率超过5 000 V/μs;工作电流低于10 μA;工作电压低至0.9 V;输入失调电压低于20 μV。

2 精密放大器

精密放大器一般指失调电压低于1 mV的运放,在使用过程中,他强调电路工作的低噪声和低失调性能。随着新型传感器技术(如导弹陀螺、MEMS微机械传感器等)的应用推广以及整机性能的提高,对该类型运算放大器的精度和带宽都提出了更高的要求。为了适应这种需求,国外IC公司已陆续推出了一些宽带产品。

美国国家半导体公司推出的一种超低噪声宽带运算放大器LMH6624,他具有极低的噪声和失调,增益带宽(GBW)达1.5 GHz,输入电压噪声低至0.92 nV/[KF(]Hz[KF)],输入电流噪声典型值为2.3 pA/[KF(]Hz[KF)],输入失调电流IOS典型值为0.05 μA,温度失调为0.7 nA/℃。

MAXIM公司最近推出几款低压、低噪声、满摆幅 OP-AMP,MAX410/MAX412采用低电压双电源供电(±2.4~±5 V),等效输入噪声为2.4 nV/[KF(]Hz[KF)],输出失调极小(最大值为250 μV),高电压增益(最小电压增益为115 dB),广泛地应用于低压低噪声系统中。

意法半导体(ST)也相继推出了一系列的低噪声OP-AMP产品,其中TSH330的带宽达到1.1 GHz ,压摆率(SR)达到1 800 V/μs,噪声(等效输入噪声电压)仅为0.3 nV/[KF(]Hz[KF)]。

3 低噪声失调电路技术

新型传感器的应用对运放精度提出了更高的要求,对微传感器来说,由于其输出信号主要处在低频端,且信号幅度很小,因此CMOS工艺带来的失调和低频1/f噪声的增加,对微传感器读出电路的设计提出了巨大的挑战。为了达到上一代CMOS工艺下相同的动态范围,电路需要尽可能保持最大的输出摆幅,以及采用各种技术降低失调电压和1/f噪声。

目前,主流的实现低失调、低噪声的电路技术主要有:自稳零AZ(autozero)技术、相关双采样CDS(Correlated Double Sampling )技术和斩波稳零CHS(Chopper Stabilization)技术。本文主要介绍AZ和CHS技术。[LM]

3.1 自稳零技术(AZ)

3.1.1 AZ基本原理

自稳零技术(AZ)的基本思想是,先将噪声和失调采样并保存,再将其从输入或输出的瞬态信号中除。当然也可以通过在输入和输出之间增加一个额外的端口来实现对噪声和失调的归零。如果噪声信号是不随时间变化信号(如DC失调),他将被消除;如果是一缓慢变化的低频随机噪(如1/f噪声),将被高通滤除。其原理如图1所示,假定输入参考失调电压为Vos,输入参考噪声为VN。AZ过程分为两个阶段:第一阶段,信号被隔离,AMP输入被短接,在采样脉冲的作用下,输入失调Vos和噪声VN被采样并保存,并以负反馈的形式从端口N引入,输出被控制在很小的幅度;第二阶段,信号接入,如果假定Vos和VN与采样时基本相同,那么噪声和失调将被消除。

图1 AZ原理图

3.1.2 AZ对噪声的影响

(1) 对白噪声的影响

假定运放的等效输入白噪声等效为-3 dB带宽为fc的低通特性(LF)噪声,采样频率为fs,通常fcfs,AZ的输出白噪声可以近似为:

S┆AZ-white(f)[WB]S┆fold-white(f)

[DW](πfcTs-1)S0sinc2(πfTs)[JY](1)

И

当fcTs=5时,白噪声在AZ过程前后的PSD可以清楚地从图2中看出,在奈奎斯特频率范围内(|fTs|≤0.5)折叠分量占主导地位[1]。И

图2 AZ技术对白噪声的影响(fc=5fs)

(2) 对1/f 噪声的影响

对于闪烁噪声(1/f)PSD我们可以通过相似的分析得到,设1/f噪声的转角频率为fk。如图3所示,由于采样函数在DC处引入了零点,1/f噪声被大大削弱。同时,虽然1/f噪声是一窄带过程,但其“尾巴”在采样过程中引入了混叠。在奈奎斯特频率范围内,1/f噪声混叠分量可以近似为:

И

S┆fold-1/f2S0fkTs[JB(\[]1+ln23fcTs[JB)\]]sinc2(πfTs)[JY](2)

ИИお[KH-2]

图3 AZ技术对1/f噪声的影响

(fcTs=5,fkTs=1)

3.1.3 存在的缺陷

AZ在消除运放失调的同时,也大大削弱了1/f噪声,但其欠采样过程引入了白噪声和闪烁噪声的频谱混叠,使得在信号频带范围内输出白噪声成份有所增加。同时,1/f噪声的“尾巴”也将在采样过程中导致输出的混叠,加大采样频率可减轻混叠,但与此同时也带来了负面效应,包括时钟溃通(clock feed-through)和沟道电荷注入(channel charge injection)效应。

3.2 相关重采样技术(CDS)

相关重采样技术可以描述为AZ技术+S/H,他广泛地应用于采样系统和开关电容电路SC(Switched Capacitor Circuits)中。虽然CDS技术对输出信号进行采样/保持,CDS技术对AMP失调和噪声的影响与AZ技术相似。和AZ技术一样,CDS基带传输函数H0(fTs)同样也在DC处引入一个零点来消除AMP的失调,同时大大削弱1/f噪声分量;另一方面,虽然对于n≠0时的传递函数二者有些不同,但由于宽带噪声被双采样,他们由采样引入的混叠成份是可以比拟的。

3.3 斩波稳零技术(CHS)

3.3.1 基本原理

与AZ技术不同,CHS采用的是调制和解调技术,而不是采样技术。他对信号进行偶数次采样(两次),而对AMP噪声和失调进行奇数次采样(一次),噪声和失调被调制到载波的奇数次频率处,而信号被经过偶数次调制,被解调回基带,通过低通滤波,可以将信号提取而将噪声和失调抑制。

CHS的原理如图4所示,假定输入信号最高截止频率为斩波频率的一半,则不会产生信号的频谱混叠。信号将被m1(t)调制到其奇数次频率处,经过AMP放大,然后再由m2(t)解调回基带。

3.3.2 对噪声的影响

斩波调制技术对AMP噪声的影响可以通过图5来说明,这里VN(t)Т表了AMP引入的所有噪声和失调,m1(t)为斩波调制的载波信号。

输出信号的PSD可以给定为:

И

S┆CS(f)=2π2∑+∞n=-∞n=odd1n2SN(f-nT)[JY](3)

И

经过斩波调制,噪声被搬移至斩波频率的奇数次谐波处。

图4 斩波运放原理图

图5 斩波调制示意图

(1) 对白噪声的影响

假定AMP的截止频率fc为斩波频率的5倍,即fc=5f┆chop,T为斩波周期。则对于白噪声,在基带内(|fT|≤0.5)г肷特性可以用一白噪声的PSD来近似[1]:

S┆CS-white(f)S┆CS-white(f=0)

=S01-tanhπ2fcTπ2fcT, (|fT|≤0.5)[JY](4)

И

当|fcT|1,基带内(|fT|≤0.5)噪声呈现白噪声特性:

И

S┆CS-white(f)S0 (|fT|≤0.5,|fcT|1)[JY](5)

И

图6的结果显示了式(4)给定的输出白噪声PSD对输入白噪声PSD归一化的结果,不难看出,输出PSD总是要比输入小。对于较小的|fcT|,输出PSD相对于输入被大大削弱,当|fcT|>6时,输出PSD逼近输入的90%。

图6 斩波调制白噪声在零频处

对输入白噪声的归一化

(2) 对1/f 噪声的影响

CHS的斩波调制技术对AMP1/f噪声的影响,也可以通过相似的分析得到,假定fcfchop,图7给出了斩波输出1/f噪声PSD结果,1/f 噪声的极点位置远离了基带,被搬移到了斩波频率的奇数次谐波处。在基带内1/f 噪声的PSD可以近似为一白噪声分量:

И

S┆CS-1/f(f)0.852 5S0fkT[JY](6)

И

3.3.3 存在的缺陷

虽然斩波技术(CHS)对降低AMP噪声和失调是十分有效的,但也存在一些缺陷。最大的不足是输出仍会存在一定的残余失调,如果调制解调器是由 MOS开关构成,则非理想特性主要包括时钟溃通、电荷注入。通常的解决办法是用CMOS开关来取代MOS开关,让相反的电荷量由两个沟道相互注入,以减小单沟道MOS开关的非线性效应。但是PMOS器件和NMOS器件的沟道电荷很难完全匹配,该方法不只能减少放大器的残余失调,但不能完全消除。

图7 斩波调制对1/f噪声的影响

4 精密运放未来的发展空间

在未来的几十年内,应汽车、智能系统、生产线上的性能监视子系统的需要,具有低失调、低噪声特性的精密放大器将更为广泛应用于传感器监视,为精密运放的发展注入新的活力的同时,也给设计师和芯片制造商提出了更高的要求。更低的噪声、更小的失调,更小的温度系数和更高的性价比,将成为下一代精密运放设计的焦点。电路构架、制造工艺和封装技术的不断发展和微调技术的不断创新,将为下一代精密运放的发展提供可靠的支撑,高精度运放将在工业自动化、医疗器材、量测仪器、汽车电子、甚至军事国防等不同领域扮演日趋重要的角色。

参 考 文 献

[1]Enz C C,Temes G C.Circuit Techniques for Reducing the Effects of op-amp Imperfections:Autozeroing,Correlated Couble Sampling,and Chopper Stabilization\[J\].Proceedings of the IEEE,1996,84(11):1 584-1 614.

[2]蔡光杰,沈延钊.一种适合集成传感器的微弱信号读出放大器\[J\].微电子学,2004,34(1):97-100.

[3]赵志诚,刘凯,郑浩.传感器技术和产品发展的重点\[J\].仪表技术与传感器,2005(3):1-2.

[4]Hsieh K C,Gray P R,D Senderowicz,et al.A Low-noise Chopper-stabilized Differential Switched-capacitor Filtering Technique\[J\].IEEE Journal on Solid-state Circuits,1981,SC(16).

[5]Phillip E Allen ,Douglas R Holberg.CMOS Analog Circuit Design\[M\].Second Edition.Beijing:Publishing House of Electronics Industry,2002.

[6]毕查得•拉扎维.模拟CMOS集成电路设计\[M\].西安:西安交通大学出版社,2003.

放大器电路篇3

关键词:智能化传感器;仪表放大器;电路设计;应用

智能化传感器中应用仪表放大器能够有效收集和放大各种数据信息同时对共模信号还具有抑制的功能,但是在实际应用的时候需要充分考虑输入共模电压范围、增益选择、放大的差模信号频率、滤波、偏置电流等设计问题。智能仪表仪器输入的传感器信号,一般都具有微小的特征,信号幅度比较小,且在应用的时候还会出现噪声。文章结合仪表放大器结构和原理特点,结合实际具体分析仪表放大器的设计,结合每个电路的特点来为电路实验操作和设计提供重要的支持。

一、智能化传感器中仪表放大器的构成原理

仪表放大器的结构具体如图所示。经过图发现,仪表放大器主要由两级差放大器电路共同构成,同相差分的输入方式是A1和A2,通过同相输入能够在很大程度上提升电路的输入阻抗,减少电路对微小信号的衰减。经过不同的差入输入能够让电路对差模型信号进行放大处理,同时对共模输入信号起到的重大作用是跟随,从而让送到后级差模信号和共模信号幅度值,也就是共模抑制比得到提升,在CMRR要求不发生变化的情况下,可结合实际适当的降低电阻精确匹配要求,从而让仪表放大器线路比一般的差分放大线路具有更强大的共模抑制能力。

二、仪表放大器的电路设计

・智能化仪表放大器电路实现方案

现阶段,智能化仪表放大器的实现方式分为两种,一种是分立元件组成实现,另外一种是单片集成芯片作用实现。结合现有的元器件,具体以单运放和集成四运放为关键,结合具体实践设计出四种仪表放大器电路方案。第一,由三个通用运放组成的三运放仪表放大器电路,并配合电阻电路、A1和A2,将同相互信号段的桥式信号输入到相应的电路中。A1、A2和A3可应用LM741这种通用型运放替代。电路操作原理和构成和一般情况下应用的仪表放大器相同。第二,应用三个精确密度运放组成。第三,应用四运放集成电路为关键来实现,能够将四种功能的独立运放集成在一个芯片中,减少因为运放和制造工艺不同带来的器件性能差异,同时应用统一的电源能够在很大程度上降低电源本身的噪声。第四,应用单片集成芯片实现,具有电路操作结构简单、对电源要求低等方面的特点,在应用工作电源的情况下就能实现操作,设计效率和应用效率良好。【1】

・智能化仪表放大器性能测试分析

智能化仪表放大器电器电路的四种方案中应用的都是电阻组合而成的电桥电路形式,具体是将差分信号输入转变为单端的信号源V。智能化仪表放大器性能测试主要是从信号源的最大输入转变为最小输入,具体转变的数据信息如表一所示。智能化仪表放大器性能测试最大和最小输入主要是指在给定的测试条件下,在电路信息输入输出不失真的情况下来进行信号源的输入操作。仿真性的智能化仪表放大器性能要比一般测试性能高,在应用的时候不会受到外界的干扰。但是在实际测量中一般结合应用仿真测试和实际测试,先通过仿真测试确定电路结构和参数信息,之后通过实际电路测试对其性能指标和参数信息设置问题进行调整,在保证电路功能的基础上提升电路设计总体效率。

・智能化仪表放大器电路设计需要注意的问题

・智能仪表放大器的共模范围

在对智能仪表放大器内部结构分析之后发现,共模电压的输出电压是相同的,差模电压一般出现在增益电阻上,在电流经过之后智能仪表放大器会出现反馈电阻。因此可以证明,在输入一定的差模电压之后,反馈电阻电压范围会发生相应的变化。在输入的共模电压比电源电压1.25V小的时候会达到理想状态的共模抑制比,因而在共模电压比较大的额时候需要选择较高电压的智能仪表放大器。【2】

・智能化仪表放大器共模电压的频率范围

共模电压的频率越高,最终所能够体现的抑制效果就越不好,并随着频率的增加不断恶化这种情况。如果智能仪表放大器在100Hz的情况下很平坦,在频率超过100Hz的时候,智能仪表放大器就会快速的下降,这种现象的出现不仅不会抑制高频共模喜好,而且还会让共模信号失去调节的作用。因而对于RF干扰性强的场合,要尽可能选择共模抑制频率范围 强的仪表放大器。同时,要将高频噪声在达到精密智能化仪表放大器之前对其进行过滤操作。

・智能化仪表放大器的差模放大倍数

在理论下,调节智能化仪表放大器的增益就能将差模进行放大处理。但是实际上放大的差模和被测试的信号频率存在很大的关联。在被测试信号频率高的时候,增益的倍数会在无形中降低。在输入的信号频率是10kHz的时候,增益的效果不会超过80倍。智能化x表放大器的设置可以参照各种类型仪表放大器的增益宽指标,在增益高的时候仪表放大器外接电阻会降低。【3】

・输入偏置的电流回路设计

在偏置电流回路设计的时候,主要是指在智能仪表放大器的输入端口中加入所需要的偏执电流。智能化仪表放大器的偏置电流分成多个纳安的形式,加上智能仪表当大气输入阻抗能力强,偏置电流会随着电压的输入变小,因此需要根据不同的适用场合来选择偏执电流回路接地形式。

结束语

综上所述,智能仪表放大器具有高精确度、低功耗、共模抑制性比较高的特点,被人们广泛应用在数据采集和放大中,智能仪表放大器能够对差分信号进行放大处理,对共模信号进行抑制。这个过程中需要考虑输入的共模电压范围、增益选择问题。文章在阐述仪表放大器电路结构、原理的基础上,通过仿真测试和实际性能测试分析了四种类型的放大器电路,总结出各自的优缺点,并讨论智能化仪表放大器在应用操作中需要注意的问题,旨在为相关人员设计仪表放大器提供重要的思路和意见参考。

参考文献:

[1]苏黎丽. 振动检测技术在涡街流量计中的应用[J]. 自动化与仪器仪表,2016,02:48-49.

[2]张文海. 基于电流传输器的检测电路的研究[J]. 西部皮革,2016,14:27.

放大器电路篇4

关键词:电荷放大器;梯形反馈网络;数控增益;D/A转换器

中图分类号:TP331 文献标识码:A 文章编号:1009-3044(2013)18-4325-03

对高灵敏度传感器微弱信号放大主要有两种方式:高阻抗电压放大器和电荷放大器。电荷放大器有出色的抗干扰特性,适合匹配容性传感器,它把传感器产生的电荷信号转换成可处理的电压信号。主要用于冲击、加速度等测量。数控增益电荷放大器是电荷放大器的一种,用来实现电荷到电压的转换,并且增益可数控,具有转换精度高、使用频带范围宽等优点,尤其适用于计算机控制和处理系统。

1 原理简介及电路框图

1.1 电荷放大器电路设计原理

数控增益电荷放大器原理是把容性传感器产生的电荷经“电荷/电压转换电路”转换为电压量,“隔直缓冲电路”去除前级放大器的直流误差,“数控增益控制”完成电压量的数控放大。本电路在设计过程中,首次采用梯形电阻反馈网络使反馈等效电阻高达2GΩ。

电路原理框图如下:

加速度g与传感器产生的电荷Q的多少成正比,因此单电源电荷放大器基本型电路是一个积分电路。数控增益电荷放大器基本原理就是把传感器上的电荷按一定比例转移到一个积分电容上,由高输入阻抗电压放大器转换出电压信号,电压增益大小受12位数控。

1.1.1电荷放大的原理

电路的核心部分是“电荷/电压转换电路”,其原理电路如图2。

传感器可以看作是容性信号源,可用等效电容CS和等效电压eS表示,Ce是电缆分布电容。电荷放大器是一个电压并联负反馈电路,虚地点输入阻抗趋近零,迫使传感器产生的电荷Q几乎全部转移到反馈电容Cf上,利用运放与电容将被测量的电荷转换成电压。

根据原理计算公式如下:

由公式可得以下结论:

电路中,输出电压是输入电流的积分,电荷被存储在反馈电容Cf上,当运放开环增益足够大时,下限频率足够低时,输出电压正比于输入电荷量,即电荷放大器。

由公式(3)看出,当K>>1时电路输出由Cf决定,而与信号源等效电容CS和传输电缆分布电容Ce无关,这就使得电荷放大器输入端可接较长的电缆而不影响其精确度。由于V0与K无关,运放的线性误差不被引入,所以整个电路线性较好。这也是电荷放大器性能优于高阻抗电压放大器的主要特点。因此,电荷放大器是目前公认较好的冲击测量前置放大器。

用户根据实际需要要求电路具有很低的频率特性,低频端为0.5Hz,因此电路设计的关键之一是设计下限频率,根据公式(2.4),由于电路的频带下限与电路中反馈时间常数有关,低的下限频率要求Rf、Cf尽可能大,考虑电路的温度特性和体积限制,Cf必须采用温飘较小的电容,其必须与传感器匹配;Rf必须选用特高电阻,本电路采用梯形电阻反馈网络,使反馈等效电阻高达2GΩ,满足了电路具有很低的频率特性的要求。

但高阻又与直流设计和电路噪声设计矛盾。由于运放偏流的存在反映到输出直流电压有个漂移,等效电阻很大时,这个漂移也比较大,而且这个漂移随温度、时间变化而变化,必须妥善运放偏流的设计。电路设计时要选择偏流小的运放。第一级输出到第二级之间采用隔直电容,但隔直电容将带来另一个问题――影响低频特性。电路中D/A转换放大电路部分的最大增益很大,即使mV级的运放偏流也会导致数伏的直流电压输出,要求输入的直流分量必须很小。所以电路中第二级运放采用同相输入,同相端连接的电阻尽量小,与隔直电容配合,形成合适的低频响应,同时也能兼顾直流偏移较小。

电路的频带上限则主要与电路中使用的运放带宽、压摆率有关。综合考虑以上因素,本电路选用频带较宽压摆率较高的运放,并妥善地选择合适的电阻电容值,使电路的带宽较宽0.1Hz~100kHz,很好地满足了用户对电路带宽和各种参数的要求。

1.1.2等效高阻反馈网络的原理与设计

以往电荷放大器的制作过程中,高阻的选择和制备一直是困扰设计和制作工艺的一个主要问题,受体积的限制,高阻最大能做到100MΩ左右,但一致性不好,成本很高。本电路把自动控制中常见的梯形电阻分压分流网络运用于电荷放大器反馈电路中(如图3),使反馈等效电阻高达2GΩ,而实际电路元件并不是阻值很高的电阻器,因此选用比较灵活。实际电路的等效值与理论设计值十分接近,提高了电路的一致性。比以往的电荷放大器频率指标提高了一个数量级。

1.2数控增益的实现

电路中数控增益电路的设计采用D/A转换器电路接成数控增益放大器,其原理图如图3所示,实际使用了其内部的分压分流受控的网络。

数控端通过调节反馈回路电流控制增益。由此可得增益大小为

用高精度D/A转换器来实现数控增益与其他方式实现数控增益(例如用模拟开关和电阻网络)具有精度高、可靠性好的特点,方便计算机控制。但只限于二进制码控制,有一定局限性,而且由于D为自然数,控制增益变化不是线性的(即增益值是离散的)。

推而广之,本电路略进行变换,也可接成12位的精密数控衰减器的形式,数控端控制运放输入电流从而控制增益。如下图5,则衰减倍数为

如果再把数控放大器和数控衰减器配合,将能弥补增益量的离散性,增益为

另外,本电路设计时要选择线性较好的器件,且尽量用高增益的运放来弥补信号通过阻容时的失真和线性变坏,使实测非线性度≤0.06%,失真度≤0.03%。

2 结论

数控增益电荷放大器使用数控的方式控制电荷放大器的增益完全适合计算机控制,而且数控范围较宽,电路的的低频特性带达到0.1Hz以下,较以往产品指标提高了一个数量级。是一种适合高灵敏度传感器和计算机控制的匹配放大器电路。

参考文献:

[1] 吴建平,李建强.数字程控放大器的设计与应用[J].成都理工学院学报,2002(6).

[2] 李建新,刘栓江.n级梯形电阻网络的研究[J].大学物理,2003(7).

放大器电路篇5

关键词:有线电视线路;故障;检修;排除

1、放大器故障及检修

放大器不良,致使电源交流成分串入有线电视高频传输线路,造成线路故障,直接影响用户收看。有线电视线路放大器内部主要分为两大块,一是电源部分,二是高频放大部分;也可以把它分为两个通路,即交流电源通路和高频信号放大通路。交流电源通路的作用主要是降压、整流、滤波和稳压,提供一个直流电压,给高频放大部分提供放大信号的能量。高频信号放大通路主要是接收交流电源通路提供的能量,把交流电源通路提供的能量转化为高频信号的能量,对高频信号进行放大、提升。前者为直流成分,后者为高频成分,二者同在一个“屋檐”下,并且为了同一个目的而共同工作,但却要求二者工作上严格分离。一方面,交流电源通路提供的直流成分必须是稳定的、没有脉动的直流,一个不稳定的直流或脉动的直流会混入高频放大通路,对高频信号造成直接影响;另一方面,放大后的高频信号同样不能混入电源通路,否则,通过电源通路又会反串到高频放大通路,使高频放大电路二次收到同样的高频信号,造成同频干扰、延时重影、多次谐波等问题,同样会使系统无法正常运行。放大器不良对线路信号的影响主要有以下几种:

1.1、放大器电源滤波电容被击穿。放大器的电源滤波电容被击穿,电源部分不滤波,形成100Hz的干扰纹波电压。由于放大器的两个通路既隔离又有紧密的联系,主要是采用电容和电感的隔离与耦合作用来实现的,一方面电源通路送出的直流通过电感耦合到放大三极管的两个PN结,使放大器正常工作;另一方面,高频放大通路的上下级之间是采用电容的“隔直流”特性来实现对直流的隔离及对交流高频信号的耦合。放大器的电源部分给放大器三极管PN结提供的必须是完全的直流,一旦出现交流成分,交流成分不仅会通过直流通路进入放大三极管的输入端,也会通过电容进入下一级高频放大通路,造成对高频信号的直接影响。放大器电源部分的滤波电容被击穿后,经过整流后的半正弦波无法实现滤波,致使100Hz的半正弦波无法变成直流,导致100Hz的纹波直流直接串入视频信号通道,与视频信号叠加在一起,在电视画面上形成两条水平黑带干扰,当此纹波的频率与场扫描频率不同步时,每一场图像上水平条纹出现的位置就不同,相对图像来说,水平条纹将沿一定的方向移动,这就是“滚道”。一般地,如果是某一片区所有频道都出现这类故障,就应该怀疑是这一片区的放大器电源部分的滤波电容被击穿;如果是整个网络的某一频道出现这类故障,则应该怀疑是该频道调制器的电源滤波电容有问题。

1.2、放大器稳压管击穿。放大器的稳压管击穿将造成放大器输出纹波电压增高,使该放大器所负载的所有用户信号均出现横向黑带干扰,有时伴有交流声。这种情况也应该怀疑是放大器的电源部分故障,应先检查放大器的滤波电容,如果滤波电容良好,就应该是电源部分的稳压管输入、输出端击穿,即内部PN结短路。

1.3、放大器变压器漏电。用户放大器电源变压器初级线包击穿与硅钢片短路后,通过放大器外壳与线路F头相通或感应,轻者造成黑带干扰,重者造成线路带电,损坏器件,甚至伤人。

2、前端常见故障及排除

2.1、某频道图像或节目伴音时有时无,这时故障发生在这个频道所用卫星接收机视频,或者音频出口到调制器的视频或者音频入口间某部分。导致此现象时要对卫星接收机出口到调制器入口间的连线细致检查,看看该频道的音频线、视频线是否间断,输入、输出口接触是否不良,卫星接收机和调制器的连线是否松疏,是否断路,仔细检查以上情况,可排除故障。

2.2、所有频道节目停止播放,故障发生的主要原因是稳压电源混合器损坏或混合器输出主口到传输干线之间某一个部件断路。首先应该检查稳压电源,如果电源不正常,故障就在此,如果电源正常,故障就在混合器,重新维修或更换,就可排除故障。

2.3、某一频道上图像“雪花”多。这个故障发生在这个频道所用功分器出口到监视器间某一部件,主要原因是:功分器出口到监视器各部件间接口连线接触不良,或者调制器、卫星接收机故障及与监视器相连的分支分配器损坏,此时应该检查功分器出口到监视器间的连线接触是否良好,用场强仪测得信号,所测量的数据一样,故障就发生在功分器出口到监视器入口间,如果数据不一致,应检查中频调制器及中频处理器,排除故障。

3、有线电视线路其他故障及排除

3.1、图像时有时无,这样的情况大多是因为插头接触不良,分支器、分配器的头接触不良,底线断路,连接线与底座、连接线与电视接触不良,用户盒地板滤焊,地板断路情况下发生。

3.2、电视图像出现网套,重影现象,这种现象大多都由电平过高,VL波段与VH波段信号差别过大,放大器内部的变压器过热,放大模块过热的情况下发生这种故障。

3.3、电视收不到稳定图像,“雪花”点过多。收不到稳定图像的这种现象大多都是由输入电视信号电平过低或过高而产生。图像既不稳定,雪花又过多是由输入电视的信号、电平过低而产生的,为排除这种故障,我们应调整放大器,或者配备放大器,为高dB的分支器和分配器的位置,更换低dB的分支器或分配器,一般情况下,黑白电视机输入信号、电平不得低于35dB,彩色电视机输入信号电平不得低于45dB,输入信号电平不得高于70dB,如果不这样,就不能避免电视收不到稳定图像而造成“雪花”点过多的现象。

3.4、电视图像的彩色时有时无,这种情况大多是输入电视的信号过低,用户盒地板的某个部位开路断路或者滤焊,所用连接线的电子阻抗不是75Л,线的质量达不到标准,连接线接触不良,所以出现以上故障。

3.5、VL波段图像清晰,VH波段雪花过多:这种情况大多是信号线位置过远,其主要原因是:放大器放置达不到标准,放大器输入电压不够,并从前端开始,信号调整不平致使VL波段和VH波段之间的信号电平差别过大。为排除这种故障,首先要保证前端信号基本上要保持平衡。然后为放大器提供标准电压,保证一个放大器和另一个放大器的距离在300-350米范围之内。在这样的情况下,还是不能使VL波段和VH波段的信号、电平的差别降到最小值,可以给干线放大器、输入口前面配置微调均衡器,而降低其差别值,只有这样故障才能(下转290页)(上接289页)排除。

参考文献:

[1]奥谷民雄,唐广庠.信号设备感应故障的仿真[J].电气化铁道,1997,(03).

[2]钟晨.有线电视故障自我检修[J].电气时代,2000,(02).

[3]杜锦胜.有线电视传输系统常见故障维修[J]..电视技术,1999,(06).

[4]李育林.有线电视系统几种不常见故障的检修[J]..电视技术,2006,

(10).

[5]严家怡.有线电视网特殊故障分析[J]..电视技术,2007,(01).

放大器电路篇6

放大器不良,致使电源交流成分串入有线电视高频传输线路,造成线路故障,直接影响用户收看。有线电视线路放大器内部主要分为两大块,一是电源部分,二是高频放大部分;也可以把它分为两个通路,即交流电源通路和高频信号放大通路。交流电源通路的作用主要是降压、整流、滤波和稳压,提供一个直流电压,给高频放大部分提供放大信号的能量。高频信号放大通路主要是接收交流电源通路提供的能量,把交流电源通路提供的能量转化为高频信号的能量,对高频信号进行放大、提升。前者为直流成分,后者为高频成分,二者同在一个“屋檐”下,并且为了同一个目的而共同工作,但却要求二者工作上严格分离。一方面,交流电源通路提供的直流成分必须是稳定的、没有脉动的直流,一个不稳定的直流或脉动的直流会混入高频放大通路,对高频信号造成直接影响;另一方面,放大后的高频信号同样不能混入电源通路,否则,通过电源通路又会反串到高频放大通路,使高频放大电路二次收到同样的高频信号,造成同频干扰、延时重影、多次谐波等问题,同样会使系统无法正常运行。放大器不良对线路信号的影响主要有以下几种:

1.1、放大器电源滤波电容被击穿。放大器的电源滤波电容被击穿,电源部分不滤波,形成100Hz的干扰纹波电压。由于放大器的两个通路既隔离又有紧密的联系,主要是采用电容和电感的隔离与耦合作用来实现的,一方面电源通路送出的直流通过电感耦合到放大三极管的两个PN结,使放大器正常工作;另一方面,高频放大通路的上下级之间是采用电容的“隔直流”特性来实现对直流的隔离及对交流高频信号的耦合。放大器的电源部分给放大器三极管PN结提供的必须是完全的直流,一旦出现交流成分,交流成分不仅会通过直流通路进入放大三极管的输入端,也会通过电容进入下一级高频放大通路,造成对高频信号的直接影响。放大器电源部分的滤波电容被击穿后,经过整流后的半正弦波无法实现滤波,致使100Hz的半正弦波无法变成直流,导致100Hz的纹波直流直接串入视频信号通道,与视频信号叠加在一起,在电视画面上形成两条水平黑带干扰,当此纹波的频率与场扫描频率不同步时,每一场图像上水平条纹出现的位置就不同,相对图像来说,水平条纹将沿一定的方向移动,这就是“滚道”。一般地,如果是某一片区所有频道都出现这类故障,就应该怀疑是这一片区的放大器电源部分的滤波电容被击穿;如果是整个网络的某一频道出现这类故障,则应该怀疑是该频道调制器的电源滤波电容有问题。

1.2、放大器稳压管击穿。放大器的稳压管击穿将造成放大器输出纹波电压增高,使该放大器所负载的所有用户信号均出现横向黑带干扰,有时伴有交流声。这种情况也应该怀疑是放大器的电源部分故障,应先检查放大器的滤波电容,如果滤波电容良好,就应该是电源部分的稳压管输入、输出端击穿,即内部PN结短路。

1.3、放大器变压器漏电。用户放大器电源变压器初级线包击穿与硅钢片短路后,通过放大器外壳与线路F头相通或感应,轻者造成黑带干扰,重者造成线路带电,损坏器件,甚至伤人。

二、前端常见故障及排除

2.1、某频道图像或节目伴音时有时无,这时故障发生在这个频道所用卫星接收机视频,或者音频出口到调制器的视频或者音频入口间某部分。导致此现象时要对卫星接收机出口到调制器入口间的连线细致检查,看看该频道的音频线、视频线是否间断,输入、输出口接触是否不良,卫星接收机和调制器的连线是否松疏,是否断路,仔细检查以上情况,可排除故障。

2.2、所有频道节目停止播放,故障发生的主要原因是稳压电源混合器损坏或混合器输出主口到传输干线之间某一个部件断路。首先应该检查稳压电源,如果电源不正常,故障就在此,如果电源正常,故障就在混合器,重新维修或更换,就可排除故障。

2.3、某一频道上图像“雪花”多。这个故障发生在这个频道所用功分器出口到监视器间某一部件,主要原因是:功分器出口到监视器各部件间接口连线接触不良,或者调制器、卫星接收机故障及与监视器相连的分支分配器损坏,此时应该检查功分器出口到监视器间的连线接触是否良好,用场强仪测得信号,所测量的数据一样,故障就发生在功分器出口到监视器入口间,如果数据不一致,应检查中频调制器及中频处理器,排除故障。

三、有线电视线路其他故障及排除

3.1、图像时有时无,这样的情况大多是因为插头接触不良,分支器、分配器的头接触不良,底线断路,连接线与底座、连接线与电视接触不良,用户盒地板滤焊,地板断路情况下发生。

3.2、电视图像出现网套,重影现象,这种现象大多都由电平过高,VL波段与VH波段信号差别过大,放大器内部的变压器过热,放大模块过热的情况下发生这种故障。

3.3、电视收不到稳定图像,“雪花”点过多。收不到稳定图像的这种现象大多都是由输入电视信号电平过低或过高而产生。图像既不稳定,雪花又过多是由输入电视的信号、电平过低而产生的,为排除这种故障,我们应调整放大器,或者配备放大器,为高dB的分支器和分配器的位置,更换低dB的分支器或分配器,一般情况下,黑白电视机输入信号、电平不得低于35dB,彩色电视机输入信号电平不得低于45dB,输入信号电平不得高于70dB,如果不这样,就不能避免电视收不到稳定图像而造成“雪花”点过多的现象。

3.4、电视图像的彩色时有时无,这种情况大多是输入电视的信号过低,用户盒地板的某个部位开路断路或者滤焊,所用连接线的电子阻抗不是75Л,线的质量达不到标准,连接线接触不良,所以出现以上故障。

放大器电路篇7

(平高集团有限公司,河南 平顶山 467001)

【摘 要】智能高压设备需要监测的量较多,部分传感器输出的模拟信号幅值变化范围较宽,给信号的模数转换带来一定的困难,本文根据工程实践,提出了采用对数放大器进行信号压缩运算的设计方法解决此问题,通过对数放大器信号采集系统电路采集NI信号源电流信号,验证了该信号采集电路的测量精度。

关键词 智能高压设备;宽范围变化信号;对数放大器;信号压缩

0 引言

随着智能电网建设的推广与普及,电网设备在线监测技术的应用也越来越广泛,与之相关的传感器技术也快速发展。传感器是一种将设备状态的各种物理量或化学量转变成电信号的部件。由于电信号容易进行各种处理,故无论被测量是电量还是非电量,一般都要通过各类传感器将其转换成电信号后再处理[1]。大部分传感器输出的都是模拟信号(电流、电压等),在传感器信号采集系统设计中,需要将模拟信号转换为数字信号,供后续处理电路进行分析、计算、通信等。在智能变电站中,需要传感器采集监测的量类型很多,部分被监测量的变化范围很大,导致传感器输出的模拟量变化范围也较大,给数据采集系统中的模数转换带来一定的困难。

1 智能高压电器宽范围变化信号

智能高压电器中,需要监测的量很多,主要包括两个方面:1、主电路的实时电量参数,如:电流、电压、频率、相位等;2、设备状态参数,如开关设备的状态、机械状态、绝缘情况等。

在被监测量中,部分量的变化范围很宽,例如:126kV变电站正常状态下,主电路的电流,从0A到4kA;避雷器泄漏电流,要求监测范围从100μA到50mA。一般情况下,传感器的输出信号都是与变化信号成线性关系的模拟信号,因此,传感器的输出信号变化范围也较大。

2 传感器信号的处理

在高压电器设备中,需要监测的量,通过传感器转换为模拟量,再经过处理电路,变成可以用于微处理器运算和通信的数字信号。传感器将监测到的物理量变化以模拟量的形式输出(连续变化的电流、电压),该模拟信号经过整形、滤波、放大处理,转换为可以稳定进行A/D转换(模数转换)的信号,此模拟信号经过A/D转换,变为数字信号。

2.1 信号调理电路

传感器是能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件和装置。传感器把需要测量的物理量转换为电压或电流信号,成为传感器的原始输出信号,这些信号往往比较微弱,并且受环境因素影响较大,信号上叠加一定的干扰信号,需要经过调理电路,对信号波形进行调理,才能够进行模数转换。该调理过程一般包括滤波和放大。

2.2 宽范围变化信号的放大问题

在数据采集系统中,若待测信号是很微小的电信号,需要用放大器来加以放大[2]。普通运算放大器的放大增益是由硬件电路的结构和参数决定的,如果要更改放大增益,需要对硬件电路进行修改,即普通运算放大器电路对待测信号的放大倍数是固定的[3]。如果放大倍数低,则不能满足微弱信号的测量需求,如果放大倍数高,则较大的信号经放大后,容易失真,不能满足后续运算需求。

在智能高压电器中如何解决宽范围信号放大检测问题,对信号进行非线性压缩计算是一种很好的解决思路。对于函数Y=log10 X ,当X=1时Y=log10 1=0;当X=10时, Y= log10 10=1;当X=100时,Y=log10 100=2。X每扩大10倍,Y只增加一个数量级,X在一个很大的范围内变化时,Y只在一个很小的范围内变化。所以,对数放大器具有很好的压缩性。

3 宽范围变化信号检测电路设计

3.1 对数运算放大器

理想的对数放大器是输出信号幅值与输入信号幅值成对数关系的放大电路。实际的对数放大器在输入信号幅值较小时,具有线性放大的功能增益较大;当输入信号较大时,具有对数放大的功能,增益随输入信号的增加而减小[4]。在宽范围变化信号测量领域,输入信号在短时间内会有很大变化,输出信号应稳定在几十毫伏到几伏之间。对数放大器能够自适应调节输出增益可以避免输入信号过大时,增益过大所产生的饱和。

图1中,横轴为对数刻度,当VX=VIN时,对数为零,称VX为对数放大器的截止电压。VY是10 VX对应的输出电压,即以10为基数,对应的对数为1时,输出值。VX、VY为对数截距,VOUT为输出电压。

VOUT = VY log | VIN/VX |

从图3可以看出,随着输入电压VIN的增加,其对应的输出值的增益减少。

3.2 对数放大器电路原理

对数放大器利用硅二极管上的电压与流过它上面的电流成对数关系的原理制成,结构如图4所示。

硅二极管的正向特性曲线函数为

V =(kT/q)ln(I/Io) (1)

图4所示基本对数放大器构架的转换方程为:

VO=kT/ln(I/IO)≈0.061 log(VIN/(RINIO)) (2)

图2 对数放大器基本原理

式(1)和(2)中,k为玻尔兹曼常数,T为绝对温度,q为电子电荷,I为正向电流,为反相饱和电流;VIN为输入电压,RIN为输入电阻。

3.3 对数运算放大器应用电路

对数运算放大器应用于宽范围变化信号测量系统中,传感器发出小的传感器信号,经过滤波电路接入对数放大器,对数放大器的输出经过一定增益的线性放大后,接入A/D转换电路,转换为相应的数字信号。

DSP接收到转换后的数字信号,根据对数放大器的输出特性及线性放大增益,计算出对应的传感器输出信号,从而得到待测信号信息。

对数放大器应用于测量系统中,可以简化硬件电路设计,在小信号、宽范围变化信号检测系统中具有明显的优势。

4 试验及结论

采用对数放大器方案,设计一个信号处理系统,NI公司的PXI-4132系统作为信号源,信号采集系统对信号源电流信号进行采集处理,对比信号采集系统实际测量的试验结果。

注:当信号源发出的电流信号较小时,信号采集系统由于受到外界干扰,测量电流显示值会在一定区间跳变.

通过表1数据可以看出,对数放大器信号采集系统所采集到的结果与NI信号源发出电流信号相比误差并不大,因此,该系统有较好的采集精度。可应用于多种宽范围变化量的采集。例如,变电站中避雷器绝缘性能在线监测是通过监测其泄漏电流实现的,按照相关标准,监测设备的监测范围应是100μA-50mA,最大值是最小值的500倍,如果再考虑监测精度要求,一般放大电路难以满足需求,该电路的特性可满足此监测范围的需求。而电子式电流互感器应用于126kV智能站时,其主电路电流变化范围从0A-4kA,短路电流则可能更大,监测的最大值和最小值相差104倍,一般的放大电路难以满足需求,此电路的输出特性能够满足监测需求。

参考文献

[1]黄新波.变电设备在线监测与故障诊断[M].2版.北京:中国电力出版社,2012.

[2]黄梓瑜,高文刚,谭威,范维志.宽范围微弱电流对数放大电路设计与仿真[J]. 工业控制计算机,2013(26),6:130-131.

[3]汪俊杰,盖建新,刘旭,程爽.增益连续可调宽带前置放大电路设计与实现[J]. 信息技术,2012,10:33-36.

[4]贺欣.宽带大动态AGC电路设计[J].电子设计工程,2012(20),8:167-170.

[5]刘伟,黄新波,章云.电容型高压设备介损在线监测系统的现场采集单元设计[J].计算机测量与控制,2010,18(1):233-236.

放大器电路篇8

关键词: 关机 噪声 静音

随着人们生活水平的提高,无论乡村还是城镇,各种带有声音输出的设备如电视机、音响、DVD等越来越普及,已经成为人们日常生活的必需品。有些设备在操作中如开关机或转换等,会发出较大声响,成为噪声,影响人们的情绪。因此,讨论研究如何去除这种噪声问题,比较具有实用价值。本文仔细分析了噪声产生的原因及一般设备的静音控制方法,并尝试搭配相关应用电路来消除此噪声问题。

各种带有声音输出的设备音频部分工作的通用电气框图(图1)如下:

各种有用音源经音效处理电路后,输出可控制大小的声音信号给功率放大器电路模块,经功放放大后输出给扬声器而发声。

设备在使用操作中如开关机发出的噪声,如果是由扬声器端发出的,则由此溯源,极大可能是功率放大器输出了噪声信号。由图示,导致功率放大器输出噪声信号的原因可能有如下三个:所使用的电源有突变,MCU控制不当,音效处理电路输出的声音信号有突变。

目前所使用的电源一般为开关电源,效率较高,电压较稳定,一般都有大容量储能元件来维持所需的电压、电流,不致突变;另外目前的功放器件本身也有克服开机时电压突变的措施SVR端(SupplyVoltageRejection),所以电源引起的可能性较小。

MCU控制音频功率放大器的方式主要通过MCU――GPIO管脚发出高低电平至音频功率放大器,控制执行中可能会存在电位过高、电位突变等因素导致音频功率放大器发出噪音。为避免该种原因造成的噪声,特在设备的MCU控制电路中加了钳位、防突变电路,如稳压管,阻容应用,所以MCU控制不当造成的噪声也可基本排除。

在正常工作中,音效处理电路输出的音频信号是变化的,但不会产生噪声,这是有用信号。其等效直流电位基本是固定或起伏较小,如果在设备操作中,导致该信号的等效直流电位发生突变,就产生了噪声,该噪声经音频功率放大器放大后,从而在扬声器中发出。这种突变有些是集成电路本身决定的,不易改善。

由以上分析,噪声产生的极大可能就是音效处理电路输出的音频信号在设备操作中(开机、切换、关机等)有异常突变而产生。

消除该种噪声的方式可参照设备的静音原理。措施一般有音频处理电路停止输出音频信号(辅助动作),音频功率放大器停止工作不输出声音信号(主要动作)。目前此类设备大都采用此种措施。

具体的控制方式是通过设备的MCU来执行的,设备如需要进行相应操作,则MCU在执行操作指令前,会先发出一指令,来控制音频功率放大器。以广播电视接收机为例来说,电视机在进行切换频道的操作过程中,MCU在执行换台动作前,令MCU的MUTE管脚发出一控制电位去控制音频功率放大器,让其停止工作,不输出声音,然后再执行换台动作。因此声音处理通道的信号波动即使传送到放大器,也因放大器无输出,不会产生噪声;在开机时,令MCU的MUTE管脚先发出一控制电位去控制放大器,让其滞后工作,延后输出,因此开机时的声音处理通道的信号波动即使传送到放大器,也因放大器无输出,不会产生噪声。

上述方式在设备开机等操作时非常有效,此时的MCU供电正常,工作也正常,但设备在关机后有时还是会发出噪声,这是因为设备在关机后,MCU已不能正常工作,不能给放大器控制信号使其停止工作;而放大器因有大容量储能元件,还能延时工作一段时间(虽然非常短,但对于噪声发出是足够的),也即关机后伴音电路放电时间大于MCU电路放电时间,此时伴音处理通道信号因关机造成的波动会传送到放大器,从而输出到扬声器产生噪声。

针对上述问题,现列举一控制电路来消除此种噪声。

图2是仅通过MCU来控制放大器的原理图,设备MCU发出的MUTE信号直接送至放大器的MUTE控制端。图3在图2基础上增加了一个控制电路,来实现设备关机时的噪声消除。控制电路的工作原理为在设备正常工作时,Q1不导通,此时Ua通过D2给CD1充电;在设备关机时,Ua电压消失,Q1导通,储存在CD1上的电能通过D4给放大器提供一控制点位,使放大器停止工作,无输出,从而消除噪声。

本电路适合音频功率放大器工作输出控制端(MUTE端)高电位停止工作的情形。具体的工作过程如下。

首先,该电路中有一储能电路,由储能元件CD1、三极管Q1、电阻R1、R2和二极管D2组成,储能元件CD1一般选取普通并便宜的铝电解电容;三极管Q1则为PNP的管型,导通时间越小越好;二极管D2为普通的快恢复二极管。该储能电路在设备开机时,Ua电压(直流)同时产生,Ua通过D2后会降低一个管压降(约0.6V),此时三极管Q1因b极电位高于e极,不导通。在设备正常工作时,Q1也因b极电位高于e极,不导通。此时,Q1虽不导通,但Ua会给储能元件CD1充电,即使Ua减小或消失,因D2反向截止,CD1也会储能。

其次,在设备关机时,Ua消失,Q1的b极电位也迅速减小,e极因储能元件CD1及D2的方向截止而保持原有电位,当Ueb大于一定电压(通常0.7V)时,Q1迅速导通,CD1放电,从而Q1的c极获得高电位,经D4把此高电位传送到放大器输出控制端即MUTE端口,实现放大器停止输出,噪声消除。

电路中的二极管D3用以加快Q1的导通速度,电阻R3、R4和DZ1用以防止放电电压和电流造成对放大器的冲击(有时也会产生噪声)和损伤,D1用以防止放电对MCU造成冲击或放电电位被拉低。

该电路的关键点是储能电路放电产生控制电位的时间点必须在关机造成伴音通道信号波动的时间点的前面,理论上越早越好。这样才会形成在伴音通道的信号因关机造成的波动传送到放大器之前,放大器已停止输出了的情形。

要保证储能电路放电产生控制电位的时间点必须比关机造成伴音通道信号波动的时间点提前,需要从以下几方面考虑。

一是储能电路已储能即Q1的e极有高电位存在;

二是Q1的导通要足够快;

三是电阻R1和R2取值要适当,R1选择不易太小,否则放电会太快,存在电路失效可能;也不要太大,一般选择10K≤R1≤100K,R1一般大于R2,最佳值可在具体应用试验中选取;

最后是Ua选取,最重要的就是Ua在关机时,要消失得足够快。

Ua是直流电源,一般从设备的电源次级整流电路中选取一组,该组电压不宜过高,最好在50V以下,否则可能会造成元件损伤,降低电路可靠性;关于Ua需要在关机时消失足够快,可用示波器观测,把电源次级整流电路中的每一组输出都连接至示波器,在相同参照量的情况下,进行关机操作,对比哪一组下降最快,下降最快的一组也即关机消失最快。

上述电路只是针对音频功率放大器的工作输出控制端(MUTE端)在高电位时停止输出的情形。若是音频功率放大器的工作输出控制端(MUTE端)在低电位时停止输出的情形,上述电路原理同样适用,只是在后端再增加一倒相电路即可,见图4,即可消除设备关机时的噪声。该电路的具体工作过程同前一电路(图3),这里不再赘述。

参考文献:

[1]童诗白,华成英.模拟电子技术基础(第三版).北京:高等教育出版社,2001:23-34.

[2]阎石.数字电子技术基础(第四版).北京:高等教育出版社,1998:45-55.

上一篇:光纤通信范文 下一篇:开关电源电路范文