放大电路范文

时间:2023-03-07 11:05:26

放大电路

放大电路范文第1篇

关键词:放大电路;叠加定理;基尔霍夫定律;戴维南定理;分析

1 引言

晶体管放大电路的分析一般分为静态分析和动态分析两部分。在进行放大电路的分析时,恰当地运用电路定理,可以使放大电路的分析迎刃而解。

2 用叠加定理分析放大电路

晶体管放大电路在工作时,三极管各极电流和电压的瞬时值既有直流分量,又有交流分量,即电路处于交直流共存的状态。如果把交直流同时进行分析,很不方便,所以,一般把晶体管放大电路的静态和动态分开来进行分析。放大电路没有信号输入时的工作状态称为静态,放大电路有信号输入时的工作状态称为动态。静态分析的主要任务是确定放大电路的静态值(直流值)IB、IC、UCE。放大电路的质量与静态值关系很大。动态分析的主要任务是确定放大电路的电压放大倍数Au、输入电阻ri和输出电阻ro,[1]只考虑其中的交流分量。晶体管工作在放大区时,可以看成是一个线性元件,放大电路就可以看成是一个具有两个独立源,即交流电源和直流电源的有源线性网络。根据叠加原理,电路中的电流和电压等于直流分量和交流分量的叠加。

3 用基尔霍夫定律分析放大电路

在固定偏置电路中,根据基尔霍夫定律可分析电路的静态工作点。分析三极管放大电路的静态工作点,需要画出直流通路。静态时,电路中没有交流信号,由于电容“隔直”的作用,直流电流能通过的电路部分就形成放大器的直流通路。固定偏置电路直流通路如图1所示。

根据基尔霍夫电压定律(KVL),可列回路电压方程IBQRB+VBEQ-VCC=0,变形即得IBQ=(VCC-VBEQ)/RB,同理可得ICQRC+VCEQ-VCC=0,变形即得VCEQ=VCC-ICQRC。可见,应用基尔霍夫电压定律可以很方便地求出三极管放大电路的静态值IBQ、VCEQ。[2]

4 用戴维南定理分析放大电路

进行动态分析时,首先要作出放大器的交流通路。电路在交流信号下,由于电容“通交”的作用,当耦合电容c1、c2容量足够大时,容抗近似为零,对交流信号来说可看作短路;直流电压源的内阻很小,交流电流通过直流电源时,两端无交流电压产生,所以画交流通路时,直流电源可看成短路,即直流电源的正负极连接通地。交流通路如图2所示。对于小信号微变量,由交流通路可得放大电路的微变等效电路,如图3所示。

利用基本放大电路的微变等效电路,根据戴维南定理可计算放大电路的输入电阻和输出电阻。

从信号源往放大电路里边看,放大电路的输入回路就是一个无源二端网络,根据戴维南定理,该无源二端网络的等效电阻等于放大电路的输入电阻。即

通常RB>>rbe,因此Ri≈rbe。

放大电路对负载而言,相当于一个信号源。从负载端往放大电路里边看,放大电路的输出回路就是一个有源二端网络,放大电路的输出电阻就等于该有源二端网络的等效电阻。根据戴维南定理,电流源βib等于零时,即电流源βib所在支路开路时,该有源二端网络的等效电阻等于放大电路的输出电阻。即

ro=RC

根据戴维南定理也可以很方便的求出分压式偏置电路的输入电阻和输出电阻。分压式偏置电路的交流通路和微变等效电路如图4所示。

利用分压式偏置电路的微变等效电路,根据戴维南定理,分压式偏置电路的输入电阻为

ri=RB1//RB2//rbe

同理,输出电阻为 ro=RC

掌握放大电路的分析方法,恰当地运用电路定理,不仅可以分析放大电路的工作情况和性能指标,而且也可以根据预期性能指标设计放大电路。

参考文献

[1]袁明文,谢广坤.电子技术[M].哈尔滨:哈尔滨工业大学出版社,2013:31.

[2]李新.基尔霍夫定律在分析模拟电路中的应用[J].科技创新与应用,2012(26):44.

放大电路范文第2篇

摘要:本文总结了电子设计实验中常用的几种功率放大电路的设计方案,针对不同的设计要求和设计条件从电路搭建、注意事项及测试结果进行了说明,能满足大多数实验电路设计的需要。

关键词:功率放大;推挽输出;丙类功放

一.前言

在电子电路设计中,很多系统需要对输出信号进行放大,以提高其带负载能力,驱动后级电路,因此就要对信号进行功率放大。功率放大器的主要性能指标有输出功率及效率,其按照电流导通角的不同,可分为甲、乙、丙三类工作状态。甲类放大器电流的通角为180度,适用于小信号低频放大,效率最低;乙类放大器的通角约为90度,适于宽带大功率工作,大多数集成运放的末级输出都采用乙类推挽形式;丙类放大器的电流的通角则小于90度,电流波形失真太大,只适于以调谐回路为负载的窄带放大,但效率较甲、乙类高。【1】

二.电路设计

(一)大电流高摆幅运放

若不考虑成本限制,可直接采用大输出电流、高摆幅运算放大器作为输出级。设计重点在于运放的选择及电路连接。市面上有各种性能的buffer以及可用以驱动的运放,它们能满足大多数设计的要求。专门的驱动芯片如buf634,其输出电流达250ma,摆率为2000v/us。美国德州仪器公司也有许多相关产品,如ths3121,输出电流可达450ma,摆率达1500v/us。设计的关键在于芯片的正确使用,由于大多数为电流型运放,故反馈电阻的选取很重要,另外由于处理的是高频信号,所以电源去耦,电路布线方面也须十分注意。经实验测试,ths3121在反馈电阻取470ω、增益为2时在50ω负载时小信号-3db带宽达100mhz,-0.1db带宽达30mhz,并且在电压峰-峰值为10v的输出状态下,频率大于10mhz时仍无失真现象。

(二)互补对管推挽输出

若对功率放大要求不高,可采用分立元件搭建,以互补对管推挽电路作为输出级。设计的关键在于根据系统要求选择合适的互补对管。互补对管采用2sd667和2sb647,其特征频率为140mhz,集电极功率耗散为0.9w,适合低频功率放大。前级放大负反馈由输出引入,使得通频带更加平坦。

(三)直接功率合成

在手头没有合适的驱动芯片时,可以采用三极管直接搭建,虽在实际应用中较少,但在实验室条件下仍是不错的选择。直接功率合成的先决条件是各路参数要对称。要求vt1和vt2、vt3和vt4参数对称,r2=r3,r4=r5,r11=r12等。输入功率在a点一分为二,分两路分别进行放大,在c点合二为一。

(四)单管丙类功率放大

以上三种都是宽频带非谐振功率放大,效率较低,而在无线通信设计中,效率是发射机的主要性指标之一,丙类谐振功率放大较甲类、乙类相比具有更高的效率。三极管基极采用自给偏压电路,集电极采用rlc并联谐振回路,滤除谐波分量,采用π网络作为输出滤波匹配网络,实际参数值可根据所要求的谐振频率具体设计,在此不赘述。

结语

本文通过对不同条件下功率输出级设计提出相应的方案,并经过实际实验测试,效果良好。但在电子设计实验中,较少涉及电力系统,对信号的功率放大要求不是很高,本文仅对系统中常用的简单功率放大进行总结与实验验证,而实际应用中的功率放大电路远不止如此简单。

参考文献:

【1】董尚斌,等。电子线路(1)。北京:清华大学出版社,2006.

【2】黄根春,等。电子设计教程。北京:电子工业出版社,2007.8.

放大电路范文第3篇

关键词 Protues;放大电路;仿真操作

中图分类号TP31 文献标识码A 文章编号 1674-6708(2013)86-0188-02

Proteus 软件具有强大的调试功能和软硬件相结合的仿真系统,多用来调试单片机程序和仿真单片机器件的工作情况,一般情况下该仿真软件学习和单片机课程是同时开设的,同学们往往因为对软件不熟悉,而仿真不出应有的效果,学习积极性受到挫折。为了使同学们提前熟悉Proteus 软件的环境,我们在电子技术部分就开始使用该软件进行仿真,为今后单片机电路仿真做好准备。

1 原理图的绘制

1)新建一个设计

选择工具栏里的“”按钮,然后单击“文件”选择“文件另存为”,在弹出的对话框中选择一个路径,并在文件名框输入“单管共射放大电路”,再单击保存即完成一个电路设计。

2)元件的选取

首先选择“器件和仪器工具栏”的“”图标如图1所示,然后单击“ ”按钮,弹出“Pick Devices”窗口如图2所示。这时我们可以在关键词中输入要选择的元件的类型名称,在结果中就可以看到想要的相应类型元件,根据电路所需的具体型号在结果中双击该元件,即可将该元件添加到“DEVICE”栏目下。有些元件名称我们不熟悉,可以参考Protues 的元件库中英文对照表来进行选择。对于电源和地,需要左键单击“”按钮,这时在左侧元件列表中就会看到电源“POWER”和地线“GROUND”可供选取。正弦交流信号的选取,左键单击:“”,然后从元件列表中选择“SINE”即可。

3)元件的放置

isis操作页面的中右侧是搭建硬件电路系统原理图和显示系统运行状态的区域。点击已选好的“元件列表”中的元件,在工作区的任意位置点击左键就可将该元件放入工作区内,注意元件之间要留出一定距离,以方便连线。

有些元件在放置完成后,由于元件方向或位置需要调整,这时需要按下工具栏中的“”按钮,在绘图区选中(单击或框选)需要编辑的元件,对其进行移动、旋转或复制操作。

5)元件参数的修改

对于电阻、电容、二极管等元件,需要修改其名称或数值,双击要修改参数的元件,弹出元件参数设置对话框,可以修改元件名称和参数值,以电阻元件为例,如图3所示,可以修改其元件名称和阻值。

6)连线:按下工具栏中的“”按钮,此时鼠标变成铅笔状,将鼠标移至连线起点元件的引脚处单击,拉动鼠标,在终点另一个元件引脚处单击即可完成连线操作,连接好的电路图如图4所示[1]。

2 电路的仿真

在绘制好的电路图中单击运行按钮“”即可仿真电路运行,为了方便观察电路的电压和波形图,我们在电路中使用电压探针(Voltage probe)检测直流电压,用示波器观察输入、输出电压波形,电路连接如图5所示。

首先,调试静态工作点,断开交流电源,将电位器电阻调至最大,按下运行按钮,调整电位器电阻,使放大电路工作在合适的静态工作点。然后将交流信号接入电路,调整交流信号源幅值为10mV,频率为1000Hz,通过PROTEUS提供的虚拟示波器(Oscilloscope)观察A通道放电路输出的波形和B通道输入信号的输入波形,如图6所示,通过示波器我们可以看到输入波形和输出波形反相,输出波形的峰峰值为400 mV,可以计算出放大电路的放大倍数约为200 ,调整输入信号的大小,观察饱和失真和截止失真的波形图。

3 结论

通过Proteus软件平台对单管共射放大电路的详尽的仿真分析,调动了初学者的学习兴趣、和积极性,为今后单片机的仿真分析打下了基础,同时, Proteus软件对于模拟电子技术的教学演示和实际设计都具有很大的辅助作用[2]。

参考文献

[1]李生明,杨红.PR OTUES 软件在学习单片机中的应用[J].清远职业技术学院学报,2010(6).

放大电路范文第4篇

三极管构成的放大器要做到不失真地将信号电压放大,就必须保证三极管的发射结正偏、集电结反偏,以常用的NPN型共射放大电路为例,主流是从集电极到发射极的电流I,偏流就是从基极到发射极的电流I。相对于主电路而言,为基极提供电流的电路就是所谓的偏置电路。偏置电路往往有若干元件,其中有一个重要电阻,往往要调整这个电阻的阻值,以使集电极电流的大小在设计的规范之内。这个要调整的电阻就是偏置电阻。简而言之,偏置电阻就是用来调节基极偏置电流,使三极管有一个适合的静态工作点。也就是说让放大器有一个正常的工作电压,这就与动物一样,要动物想活,你必须要给它食物,让它有活动的能力。给三极管一个偏值电压就是这个目的,让三极管无论何时都能处于放大状态。如果没有偏值电压三极管将在信号的正半周处于放大工作状态(但此时信号电压将要大于二极管的开启电压否则没放大的能力),当信号处于负半周时由于加入的是负电压所以三极管没放大的能力,为了让三极管有放大的能力就要从电源那接一个偏置电路为它提供偏置电压,但是接一个偏置电阻会存在很多缺点和不足,所以往往要接两个甚至两个以上的电阻来提供合适的偏置电压,让偏置电压处于放大状态的中间位置。这个点就是三极管中重要的静态工作Q点。让动态的信号在Q点上下移动,并且不会进入饱和区和截止区。这就是加偏置电阻的目的。

对于静态工作点,不仅关系到放大电路对输入信号能否不失真地放大,而且对放大电路的性能指标有重大影响。因此,应该选择合适的、稳定的静态工作点。这可以通过稳定偏置电路或电流源电路来实现。

下面集中介绍几种偏置电路。

第一种是固定偏置放大电路。

如图所示的电路是最基本的固定偏置电路。

固定偏置电阻的值可以使这个三极管的偏置电流固定在一个范围内,而往往为了精确调整这个三极管的静态工作点,还要加上一个可变微调电阻来调整。我们仅以NPN的共发射极放大电路为例来说明一下放大电路的基本原理。下面的分析仅以NPN型硅为例。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流),并且基极电流有很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做电流的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流I的变化,I的变化被放大后,导致了I很大的变化。如果集电极电流I是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号。把共发射极放大器集电极静态电压设计为电源电压的一半,可以获得最大输出电压动态范围。这也是设计共发射极放大器的基本原则。

当环境温度升高时,虽然I为常数,但β和I的增大会导致I的上升。可见,电路的温度稳定性较差。只能用在环境温度变化不大,要求不高的场合。

第二种是分压式射极偏置电路。

如图所示的电路是广泛采用的一种电流负反馈分压式偏置电路。下面来分析一下该电路。

这种电路组中的R、R和R是组成放大电路的偏置电路,其中R为上偏置电阻,提供基极偏流I,R为下偏置电阻,对流经R的电流起分流作用,R为发射极电阻,起电流负反馈作用,C为发射极交流旁路电容。

分压式射极偏置电路稳定静态工作点原理是:当温度上升时,由于三极管参数(I、β)的影响,使I增大,发射极电位V=IRe亦随之增大。又因为极基电位V为固定值,必然导致加到发射结的正偏电压V减小,I随之减小,促使I减小。这样就牵制了I的增大,从而使I基本不随温度变化,稳定了静态工作点。这种自动调节过程为直流电流负反馈。R越大,直流负反馈的作用就越强,I温度稳定性也就越好。

第三种是集电极―基极偏置电路。

下图为集电极―基极偏置电路,它是利用电压负反馈作用来稳定静态工作点的,称为电压负反馈偏置电路。

集电极―基极偏置电路稳定静态工作点原理是:当温度上升时,由于三极管参数的影响,使I增大,集电极负载电阻R上的电压降随之增大,导致V减小,I减小,促使I减小。这样就牵制了I的增大,从而使I基本不随温度变化,稳定了静态工作点。这种调节过程称为直流电压负反馈。集电极―基极偏置电路不适合R值很小的放大电路。

第四种是温度补偿偏置电路。

下图是温度补偿偏置电路,这种电路是利用热敏元件(如热敏电阻、半导体二极管等)的温度特性来补偿放大器件的温度特性,以减小放大电路静态工作点的温度漂移,达到稳定静态工作点的目的。包括热敏电阻补偿电路和二极管补偿电路等。这里就简单介绍一下热敏电阻补偿电路。

上面两个电路均利用热敏电阻R进行温度补偿。R具有负温度系数,其阻值随着温度的升高而减小。

射极偏置电路在较宽的温度变化范围内都能稳定静态工作点,而且更换β值不同的三极管也具有稳定静态工作点的效果;集电极―基极偏置电路能够克服三极管的I和V的温度特性对I的影响,但不利于克服β变化对I的影响;采用热敏电阻补偿,需通过实验来选配合适的R值及特性,也可使静态工作点稳定;二极管补偿,可在一定程度上进一步提高静态工作点的稳定性。

在实际的放大电路中,加合适的偏置电路是保证放大器正常工作的重要条件。这里有两个原因。首先是由于BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小。如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0A)。如果我们事先在基极上加上一个合适的电流,那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0A,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。另外偏置电路一定要做得好一点才行,否则有还会有失真现象出现。

放大电路范文第5篇

关键词:前置放大器; NJM4580;AD620;Multisim 10

中图分类号:TN919-34 文献标识码:A

文章编号:1004-373X(2011)20-0156-03

Design of Pre-amplification Circuit in Electromagnetic Ultrasonic Transducer

HAN Na, LI Song-song, LI Xiang

(Dalian Ocean University, Dalian 116023, China)

Abstract: Because the signal received by electromagnetic acoustic transducer (EMAT) is very weak, two weak signal amplifying circuits which respectively adopted NJM4580 and AD620 were designed. The virtual simulation for the two pre-amplification circuits were conducted by Bode plotter and oscilloscope in Multisim10produced by NI and the simulated results of the two circuits were compared. The results show that the circuit with AD620 is better than the one with NJM4580. The structure of the former one is more simple and the amplification capability is more superior.

Keywords: pre-amplification circuit; NJM4580; AD620; Multisim 10

0 引 言

在无损检测中,EMAT因其独有的优点被广泛应用,但经EMAT接受线圈接受到的信号通常很微弱,信号幅值小,一般只有几十μV到几百μV,并且对周围环境噪声敏感度高 ,接收信号常被淹没在噪声中,辐射模式较宽 ,能量不集中[1-2]。为了得到适合显示观察的水平,需要对信号进行放大和滤波处理,以减少噪声和干扰。

为了避免EMAT的接收系统放大倍数过大引起信号失真和自激的现象,通常采用多级放大。主要包括前置放大器、滤波器、主放大器,以及用于在数字设备中的A/D转换电路等。为了得到更好的结果,前置放大器自然起着至关重要的作用。应用专业的EDA软件对其进行仿真分析,能够更迅速准确地分析电路性能,从而选出性能较好更适合需要的电路,本文设计了2种前置放大器,并且利用Multisim10仿真软件对这2种电路进行了仿真比较。

1 前置放大器

1.1 用NJM4580设计的放大器

在第一种电路设计中,选用NJM4580运算放大器,该放大器是日本新无线公司生产的双路运算放大器,具有无噪声、更高的增益带宽、高输入电流和低失真度,不仅适用于音响前置放大器的音响电子部分和有源滤波器,还适用于手工测量工具等。

NJM4580的主要特点是[3]:工作电压为±5~±18 V;低输入噪声电压为0.8 μV;增益带宽为15 MHz;低失真为0.005%;转换速率为5 V/μV;采用双极技术。应用NJM4580设计的放大器电路如图1所示。

本设计采用NJM4580,主要是在差分放大电路设计部分保持信号的带宽,使其不失真。采用3个运算放大器排成2级,由运放U1A,U2A按通向输入接法组成第1级差分放大电路,运放U3A组成第2级差分放大电路。在第1级电路中,信号源加到U1A的同相端,R6和R3,R4组成的反馈网络,引入了负反馈。

为了使电路对称,提高仪用放大器性能,选取的电阻应满足R3=R4关系,参数严格匹配,误差控制在很小范围内。经过计算,最终得到输出电压的关系如┦(1):

ИVout=-(RS/R1)(1+2R3/R6)ΔVin(1)И

所以,电压增益可以由式(2)得到:

ИAv=Vout/ΔVin=-(RS/R1)(1+2R3/R6)(2)И

从式(2)中可直观看到,根据选取R5/R1和R3/R6电阻的比例关系,达到不同信号放大比例的要求。所以电阻的选取也是仪用放大器设计中最重要的环节之一。考虑到电路的稳定和安全,固定R1~R5,R7,R8的阻值,都选精确的10 kΩ电阻,只将R6设置成可调,随着R6的减小,放大倍数越大,带宽越窄。所以设计时确定R6为2 kΩ。

该放大电路是级联放大电路,为前级放大,而后级级联放大电路则由2个741级联构成[4],共同组成一个完整的信号接收端的前置放大电路。

图1 应用NJM4580设计的放大器电路图

1.2 应用AD620设计的放大器

在进行微弱信号检测中,为了减少集成运算放大器对电路的干扰,应选择接近理想运算放大器的芯片。要求具有较小的输入偏执电流、输入偏执电压和零漂,具有较大的共模抑制比和输入电阻[5]。

因此,在另一种电路设计中,应用AD620对第一种电路进行改进。AD620是AD公司生产的高精度单片仪表运放,它拥有差分式结构,对共模噪声有很强的抑制作用,同时拥有较高的输入阻抗和较小的输出阻抗,非常适合对微弱信号的放大[5],而且AD620具有很好的直流和交流特性,更有低功耗、高输入阻抗、低输入失调电压、高共模抑制比等优点,其外部电路连接方便简单,只需要一个连接于1,8脚的外接电阻就可调节放大倍数[6]。增益G=49.4 kΩ/RG+1。其中:RG为1和8脚连接的外电阻。

AD620主要特点有以下几点[7]:带宽800 MHz,输出功率24 mW;功率增益120 dB;工作电压±15 V;静态功耗0.48 mW;输入失调电压≤60 μV;转换速率1.2 V/μs;最大工作电流1.3 mA;输入失调电压5 μV;输入失调漂移最大为1 μV/℃;共模抑制比 93 dB。应用AD620设计的电路如图2所示。

图2 应用AD620设计的放大电路整体电路图

2 采用Multisim 10软件仿真

2.1 软件介绍

Multisim 10是由美国国家仪器公司(National Instrument,NI公司)推出的,相对于Multisim 10的仿真软件,它具备更加形象直观人性化的特点,提供了16 000多个高品质的模拟、数字元器件;各种分析方法(直流扫描分析,参数扫描分析等);电压表、电流表和多台仪器(数字万用表、函数信号发生器等)。该软件大多数采用的是实际模型,保证了仿真和实验结果的真实性和实用性。应用Multisim 10可以进行模拟电路、数字电路、模数混合以及射频电路的仿真。其中,它的高频仿真和涉及环境是众多通用仿真电路软件中所不具备的。本文设计的是μV级的电压信号放大。采用了2种方案,通过Multisim 10的仿真来对这两种电路性能进行比较[8-10]。

2.2 仿真比较

(1) 函数信号发生器的设置。

在软件中打开信号发生器,因本文使用的信号频率范围一般为25 kHz~1 MHz,为了模拟传感器接收到的信号,在此范围中,选取输入信号频率为100 kHz,幅度为100 μF的正弦波信号来做分析比较,函数发生器设置如图3所示。

图3 信号发生器设置

(2) 电路的幅频特性仿真与比较。

应用此软件中的波特图仪(Bode Plotter)对两电路的幅频特性进行仿真比较,设置的观察频率范围是25 kHz~1 MHz,结果如图4所示。

通过波特图可以直接观察出当输入信号频率为25 kHz时,两电路的增益分别为85 dB和98 dB。比较可以得出,应用AD620改进电路的放大效果较好。通过移动波特图仪的光标柱可以观察2个电路在其他频率时的放大增益。将光标注移动到100 kHz,可以直接观察到此频率下两电路的增益分别为60 dB和72 dB。

(3)输出信号波形的比较。

在软件打开示波器,在示波器中进行设置,红色表示输入信号,绿色表示放大后的输出信号。选取频率100 kHz,幅度100 μV的信号,经电路放大,分别得出输出波形如图6所示。通过Multisim 10仿真可以很清晰地看出两电路的输出波形。为了便于对波形进行观察,将Channel A(输入信号通道)设置为100 μV/Div ,图6(a)的Channel B(输出信号通道)设置为100 mV/Div,图6(b)的Channel B(输出信号通道)设置为500 mV。从波形图可以看出,当输入信号均为100μF时,两电路输出的信号大小分别为100 mV和380 mV,很显然,应用AD620的改进电路二,放大倍数更大。

通过此方法,可以对输入信号为其他频率时的输出波形进行比较。

图6 输出信号波形

3 结 语

本文针对输入信号为微幅级的信号,用NJM4580运算放大器设计了与741共同构成的级联放大电路,并在此基础上应用AD620对电路进行改进以达到更加优良的性能;利用Multisim 10对设计的2个放大电路进行仿真、比较,从而验证了应用AD620的放大电路不仅电路构成简单,而且在放大性能上更加优于应用NJM4580运算放大器构成的差分级联放大电路。

参考文献

[1]王淑娟,康磊,赵再新,等.电磁超声换能器的研究进展综述[J].仪器技术与传感器,2006(5):6-8.

[2]王淑娟,康磊,翟国富.电磁超声换能器的微弱信号检测[J].无损检测,2007,29(10):591-595.

[3]新日本无线公司.NJM4580元件数据手册\.北京:新日本无线公司,2003.

[4]黄丽,李雪梅.基于Multisim仿真的超声波测距系统的设计与实现[J].湖南工程学院学报,2009(11):53-55.

[5]张石锐,郑文刚,黄丹枫,等.微弱信号检测的前置放大电路设计[J].电子设计,2009(8):106-108.

[6]常新华,王洪刚,于永江,等.一种程控放大滤波器设计[J].四川师范大学学报:自然科学版,2009(10):95-97.

[7]王树振,单威,宋玲玲.AD620仪用放大器原理与应用[J].微处理机,2008(3):33-35.

[8]李松松,李响,高晓也.Multisim在射频电路实验教学中的应用研究[J].现代电子技术,2010,33(9):125-127.

[9]刘宏杰,李晓波,谢海良.基于Multisim 10的低频功率放大电路分析与仿真测试[J].世界科技研究与发展,2009(6):16-18.

放大电路范文第6篇

光电二极管可以将光信号转变成电信号,这就可以对空间中的光量进行监测。基本放大电路结构简单,但在实际应用过程中仍是受到了很多方面的限制.本文在基本光电二极管放大电路的基础上使用了T型电阻网络来代替电流-电压转换电阻来控制在高增益情况时潜在的残余偏移量;为了降低电路中所产生噪声的影响,本文在基本放大电路的基础上,增加了一个运算放大器和反馈元件,组成了噪声滤波复合放大器,以此来达到控制直流偏置和降噪的目的。

关键词:

光电二极管;运算放大器;电路设计

光电二极管能够输出满足大多数电子仪器所需的电压输出,但是这种输出模式却导致了非线性的响应特性和非常有限的带宽。如果使光电二极管输出为电流,再对输出的电流进行电流-电压转换,就可以极大地提高它的效能和特性,这就要求光电二极管和信号电压隔离开来,这种基于运算放大器的电流-电压转换器就是最基本的光电二极管放大电路(见图1)。

1偏置

在光电二极管的应用中,放大器的输入电流和光电二极管的漏电流同时流过反馈电阻Rf,那么在电路输出端就会出现直流偏置。如图2所示,使用一个T型电阻网络来代替图1中的Rf,可以极大地减少偏置误差(其中Rft>>R1,R1>>R2)。这个T型网络产生了与Rf等效的反馈阻抗,但是它的阻抗值要小得多。首先要考虑信号条件,电路的反馈通路在放大器的反相输入端接收了光电二极管的电流Ip,那么反馈信号就在Rft上产生一个电压IpRft。对于基本电流-电压转换器来说,IpRft是电路的输入电压。由R1和R2构成的分压器可以使得输出电压e0增大,直到满足电压IpRft的要求,e0=IpRfeq中的Rfeq=Rft+R1+RftR1/R2为T型等效反馈阻抗。实际上Rft是T型网络中最大的阻抗,有Rft>>R1,那么Rfeq≈(1+R1/R2)Rft。这样,T型网络就有效地放大了Rft,放大系数为R1与R2的分压比的倒数或1+R1/R2。T型网络的等效反馈阻抗产生了一个输出信号e0≈Ip(1+R1/R2)Rft ,就好像用于反馈的是一个很大的电阻而不是T型网络。对给定的电流-电压增益,这种乘法关系减少了对于Tft阻值的要求,减少因子同样是1+R1/R2。

2噪声

图1是光电二极管的简单结构图,在这个图中,光电二极管处于零偏压,并对运算放大器的输入端呈现高阻抗。这使得运算放大器由单位反馈系数产生了一个简单的电阻反馈。这样电路通常会产生单位噪声增益,并且将运算放大器的输入噪声电压直接传输到电路的输出。图3是对图1所示的基本光电二极管放大器进行噪声分析的模型。在该模型中,电流源,Rd,Cd代表光电二极管。噪声源ini,eni代表放大器输入端的相关特性。最后噪声源enR表示反馈电阻的噪声电压。有反馈电阻直接贡献噪声的噪声谱密度是en0R2=4KTRf。式中,K为波尔兹曼常数,值为1.38x10-23J/K;T为绝对温度(K);R为电阻阻值。从图中可以得到[1]:eno2=enoR2+enoi2+enoe2Eno2=EnoR2+Enoi2+Enoe2式中,enoR为噪声谱密度;enoi2=Rf2*2qIB-Eno,为输出噪声电压。其中的各电压采用RMS均方根值表示。计算电流噪声:放大器或光电二极管的偏置电流会产生散粒噪声,散粒噪声谱密度为:i2no=2qI而散粒噪声电流计算为I2no=2qIΔf由电流噪声产生的噪声输出为E2noi=2qIΔfRf2噪声电流通过反馈电阻产生噪声电压,直接作用于输出端,放大器对其无增益,电流噪声与偏置电流的平方根成正比,与反馈电阻成正比。

3降噪

图4在基本光电二极管放大电路的后面再加一个运放来控制噪声带宽,可以使噪声和信号带宽相等。图中这两个运放串联,需要反馈电阻Rf返回到U1的同相输入端,而不是反相输入端。这样就避免了在同一个反馈回路中,出现两个放大器相位倒置,同时也保留了负反馈。随着频率的变化,U2从放大器变为积分器,然后变为衰减器。在低频率段,C1阻碍了U2的本地反馈,这个放大器为复合反馈提供了完整的开环增益。增加的增益降低了低频误差。在中间频率段,有R1和C1组成的积分器在向衰减模式过渡中降低了U2的增益支持,该增益是在转变为衰减模式中获得的。在高频区域,C1变成短路,A2的增益控制变成R1,R2的闭环效应。UCL2=-R1/R2,在R2<R1时可以得到期望的高频衰减。复合放大器架构基本不改变电流-电压转换器的其他性质。由于U1的高增益把复合电路输入同U2的输入误差隔离开,所以添加U2并没有额外引入噪声或偏移[2]。如图5所示,曲线1、2分别是未采用复合放大器和采用了复合放大器方案的噪声仿真图,对比曲线1和2可以看出采用复合放大器方案能将噪声增益降低,同时还能保持信号的带宽不改变;验证了复合放大器降噪电路的效果。

4结论

通过以上的分析我们可以知道,基本光电二极管放大电路有很多的缺点。首先为了解决在高增益情况时潜在的显著的偏移,所以在电路中加入了T型电阻网络来代替原来的反馈电阻,这样就可以控制残余的偏移量。在光电二极管放大器中,电流-电压转换器显示出了很多较复杂的噪声电流和噪声电压。因此在电路中又加入了一个放大器与已有放大器串联来组成了噪声滤波复合放大器。通过分析我们可以看到,在增加了一个运算放大器后,复合放大器取代了单个放大器放大电路的外部相位补偿功能。而且复合放大器提高了低频开环增益的强度,增加了响应的准确性。且复合放大器降噪降低了放大器带宽,移除了只对噪声有用而对信号无用的带宽部分,以此来达到降噪的目的。

参考文献:

[1]张正茂,陈锋.光电探测放大器的噪声分析[J].

[2]JeraldGraeme著[美],赖康生,许祖茂,王晓旭译.光电二极管及其放大电路设计[J].科学出版社.

放大电路范文第7篇

关键词:压电传感器;电压放大器;电荷放大器;运算放大器

中图分类号:TN721.1 文献标识码:A 文章编号:2095-1302(2013)02-0027-03

0 引 言

传感器是感知各种信号的最直接工具。自产业革命以来,各式各样的机器不断地出现,代替了以前很多由人直接从事的劳动,人类社会也因此逐步进入了工业社会时代。为了改善机器的性能以及提高机器的智能化程度,需要实时地测量反映机器工作状态的信息,并利用这些信息去控制机器,使之处于最佳工作状态。为了便于测量和控制,传感器就成了必不可少的信号拾取工具,它能将各种被测控量(信息)检出并转换成便于传输、处理、记录、显示和控制的可用信号(一般为电信号)。

目前,传感器种类繁多,几乎各个领域都有传感器的影子。在众多的传感器中,压电传感器以其具有工作频带宽、灵敏度高、信噪比高、结构简单、工作可靠、体积小、重量轻等特点,被广泛应用于工程力学、电声学、生物医学等领域的动态测量。

弄清压电传感器的工作机制及信号调理电路,对于更好地使用压电传感器进行各种测试具有十分重要的意义。

1 压电传感器的工作原理

2 压电传感器前置放大电路

2.1 压电传感器等效电路

2.2 压电传感器的两种前置放大电路

压电传感器的前置放大器有两个作用:一是把压电式传感器的高输出阻抗变换成低阻抗输出;二是放大压电传感器输出的微弱信号。压电传感器的输出信号可以是电压,也可以是电荷。因此,前置放大器也有两种类型:一种是电压放大器,它的输出电压与输入电压(传感器的输出电压)成正比;另一种是电荷放大器,其输出电压与传感器的输出电荷成正比。

3 结 语

压电传感器是动态测试的重要工具,由其产生的动态信号极其微弱,所以在用一般的测试仪表对其进行测试以前必须进行放大,否则传感器所检测到的信号就无法得到。通过本文的分析可知,用于压电传感器的前置放大电路有两种,即电压放大和电荷放大,这两种放大方式各有优缺点。电压放大器的优点是电路简单、容易实现,缺点是受电缆的影响大;而电荷放大器的优点是与电缆长度无关,因而可以进行远距离测量,缺点是电路复杂,设计要求高。随着电子技术的发展,电荷放大器的这些缺点可以克服,所以,电荷放大器将成为压电传感器的主要前置放大器。

参考文献

[1] 郭爱芳,王恒迪.传感器原理及应用[M].西安:西安电子科技大学出版社,2007.

[2] 何道清.传感器与传感器技术[M].北京:科学出版社,2004.

[3] 魏冬,张志杰,裴东兴.电荷放大器可靠性分析[J].中国测试技术,2007(1):91-92.

放大电路范文第8篇

关键词:共射放大电路;性能;分析

引言

在单管放大电路中,静态工作点稳定与否,不仅影响输出波形是否失真,而且对放大电路的动态性能产生重大影响。基本固定偏置放大电路结构简单,但静态工作点稳定性差;分压式偏置放大电路因其能自动稳定静态工作点而得到广泛的应用,但不同的分压式偏置放大电路动态性能不尽相同,只有弄清不同电路的特点,才能兼顾静态工作点和动态性能,以达到最好的效果。

1 基本固定偏置放大电路

1.1 电路组成

该电路由晶体管、直流电源、基极偏置电阻、集电极电阻和耦合电容组成,如图1所示。当直流电源和基极偏置电阻固定时,晶体管的静态工作点就固定,固定式偏置电路因此得名。

1.2 静态工作点

该电路结构简单,通过设置合适的电源电压和偏置电阻可得到较为合适的静态工作点。但当环境温度升高时,集电极电流会增大,放大电路的静态工作点就会移动饱和区,这样放大电路就不能正常工作。所以基本固定偏置放大电路虽然结构简单,但是静态工作点不稳定,因此只能用在环境温度变化不大,稳定性要求不高的场合。

当温度变化时,想自动稳定静态工作点,常用的是分压式偏置放大电路。

2 分压式偏置放大电路

2.1 电路组成

偏置电路由RB1、RB2和RE组成,其中RB1为上偏置电阻,提供基极偏流IBQ,RB2为下偏置电阻,RE为发射极电阻,起电流负反馈作用,因为三极管的基极偏置电压UB由电阻RB1和RB2分压提供,因此叫分压式偏置放大电路。电路如图2所示。

2.2 稳定静态工作点原理

在设计电路时,为保证静态工作点的稳定,要求I1>>IBQ,对于硅三极管,一般I1=(5~10)IBQ。由电路分析可得I1≈I2,发射结的正偏电压UBEQ=UB-IEQRE,基极电位UBUCC,当温度上升时,由于ICQ(IEQ)的增加,在RE上产生的压降IEQRE也要增加,[1]由UB的计算式可知,UB固定不变,因此发射结的正偏电压UBEQ减小,IBQ随之减小,从而牵制ICQ的增大,这样通过自动调节的过程就稳定了静态工作点。RE越大,静态工作点稳定性就越好。

2.3 动态性能

研究放大电路,除了要保证放大电路具有合适的静态工作点外,更重要的是还要研究其放大性能。[2]根据放大电路的微变等效电路可得分压式偏置放大电路的电压放大倍数为Au=-,输入电阻ri=RB1//RB2//[rbe+(1+β)RE],输出电阻ro=RC。

而基本固定式偏置放大电路的电压放大倍数为Au=-,输入电阻ri=RB//rbe,输出电阻ro=RC。

与基本固定式放大电路相比,分压式偏置放大电路的电压放大倍数降低了,但输入电阻增大了,输出电阻不变。

为了解决稳定静态工作点和电压放大倍数下降这一矛盾,通常在电阻RE上并联一个大电容CE,如图3所示。因为电容有隔直流通交流的作用,所以并联电容CE后,电路不仅能稳定静态工作点,而且电压放大倍数比并联电容前提高了,电压放大倍数的公式和基本固定式偏置放大电路一样。但是并联电容CE后,输入电阻的公式变为ri=RB1//RB2//rbe,与并联电容前相比,输入电阻减小了。

在实际应用中,我们既想得到稳定的静态工作点,又想得到较高的电压放大倍数和输入电阻,为此可把分压式偏置电路中的发射极电阻RE用两个电阻RE1和RE2串联代替,并且只让RE2与电容CE并联。另外让RE1取值几十至几百欧姆,RE2取值几千欧以上,这样在静态分析时,发射极电阻等于两个电阻之和,而在动态分析时,发射极电阻只等于RE1,电压放大倍数的公式变为:Au=-, 输入电阻的公式变为:ri=RB1//RB2//[rbe+(1+β)RE1],由上述分析可以看出,虽然电压放大倍数有少量降低,但是输入电阻却提高了不少。[3]

综上所述,与基本固定式偏置放大电路相比,改进后的分压式偏置放大电路不仅静态工作点稳定,而且动态性能又好,因此分压式偏置放大电路得到了更为广泛的应用。

参考文献

[1]袁明文,谢广坤.电子技术[M].哈尔滨:哈尔滨工业大学出版社,2013:39.

[2]黄冬梅.电子技术[M].北京:中国轻工业出版社,2011:32.

[3]张健.浅谈单管共射放大电路静态工作点的稳定问题[J].科技信息,2009(32):97.

放大电路范文第9篇

关键词:放大电路;反馈;判断

中图分类号:F40 文献标识码:A

1反馈概念的引入

在电子电路中,信号传输方向一般是从左侧输入端到右侧输出端的,即:左入右出,这是正向传输方向。而反馈就是将输出信号的一部分或全部送回到放大电路的输入回路的过程,是反向传输的。放大电路无反馈时的状态称开环系统,放大电路有反馈时的状态称闭环系统。

2反馈的分类

这种分类方法是针对闭环系统中反向传输的反馈网络分解。掌握分类的方法,能够更好地判断放大电路的反馈组态。

2.1正反馈和负反馈

如果引入的反馈使净输入增大,就是正反馈。如果引入的反馈使净输入减小,就是负反馈。负反馈多用于放大电路中,这也是本文讨论的重点内容。

2.2直流反馈和交流反馈

放大电路是交直流信号共同作用的电路,交直流信号在放大电路中互相依存,缺一不可。其中直流信号是放大电路工作的基础:它既是放大电路的能源,同时又为放大电路设置了一个合适的静态工作点;而交流信号才是放大电路工作的目的:放大电路工作的目的就是要将接收的微弱电信号放大到需要的数值,以推动负载工作,让我们听到动听的音乐,看到优美的画面。若反馈信号中只含有直流成分的就是直流反馈;只含有交流成分的就是交流反馈;既有直流成分又有交流成分的就是交直流反馈了。

2.3电压反馈和电流反馈

在输出端:若放大电路要稳定输出电压值,则引入电压反馈:若放大电路要稳定输出电流值,则引入电流反馈。

2.4串联反馈和并联反馈

在输入端:若反馈信号和输入信号串联,即为串联反馈;若反馈信号和输入信号并联,就是并联反馈。因此,在负反馈放大电路中,可组成四种类型的反馈放大器:电压串联负反馈;电流串联负反馈;电压并联负反馈;电流并联负反馈。以上四种也称为反馈组态。

3反馈类型的判断

3.1识别放大电路中有无反馈的方法

反馈的重要标志是电路中存在着输出与输入之间反向连接的通路,这条通路是由电阻和电容构成的,而且它不经过电源端和接地端。

3.2判断正、负反馈的方法

若反馈信号与输入信号接在同一个电极上:则极性相同,为正反馈;极性相反,为负反馈。

如图1所示:输入信号和反馈信号接在B极上且极性相同,故为正反馈;若将图中A点接在E上时,则输入信号和反馈信号接在B极上且极性相反,故为负反馈。若反馈信号与输入信号不在同一个电极上,极性相同,为负反馈;极性相反,为正反馈。

如图2所示:输入信号接在B极而反馈信号接在E极上且极性相同,故为负反馈;若将图中A点接在E上时,则输入信号接在B极而反馈信号接在E极上且极性相反,故为正反馈。

总结口诀:同极异负,隔极异正。

3.3判断串、并联反馈的方法

若输入信号与反馈信号加在同一个电极上的为并联反馈。若输入信号与反馈信号加在不同电极上的为串联反馈。

如图3所示,输入信号与反馈信号均加在B上,故为并联反馈;若将图中A点接在E上时,输入信号加在B上而反馈信号加在E上,故为串联反馈。

总结口诀:同并异串。

3.4判断电压、电流反馈的方法

若输出信号与反馈信号加在同一个电极上的为电压反馈。若输出信号与反馈信号加在不同电极上的为电流反馈。如图4所示,输出信号与反馈信号均加在C上,故为电压反馈;若将图中A点接在E上时,输出信号加在C上而反馈信号加在E上,故为电流反馈。

总结口诀:同压异流。

3.5判断交流、直流反馈的方法

电容的作用就是隔直通交。如果反馈网络中起反馈作用的电阻两端并联电容,则为直流反馈;如果反馈网络中串联电容,则为交流反馈;如果反馈网络中无电容,则为交直流反馈。因此判断放大电路中的反馈的口诀:同极异负,隔极异正,同并异串,同压异流。

结语

电子电路中常常利用负反馈来改善电路的工作性能。而产生于模拟电子技术领域的反馈理论,在工程领域中获得广泛的应用。几乎所有电子电路自动控制系统都是建立在负反馈基础上的。因此掌握放大电路中负反馈的判断非常重要。

参考文献

[1]陶希平.模拟电子技术[M].北京:化学工业出版社,2006.

放大电路范文第10篇

【关键词】放大电路;反馈;电压;电流;串联;并联

1.反馈回路的判断

电路的放大部分就是晶体管或运算放大器组成的基本电路。而反馈则是把放大电路输出端信号的一部分或全部送回到输入端的电路,反馈回路就应该是从放大电路的输出端引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,这是初学者最容易犯的问题。例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经Rf至T1的发射极。反馈信号uf=ve1影响净输入电压信号ube1。

图1 电压串联负反馈

2.交直流的判断

根据电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串连电容,隔开直流,则为交流反馈,改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。图1中的反馈即为交直流共存。

3.正负反馈的判断

正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在这一步要搞清楚放大电路的组态,是共发射极、共集电极还是共基极放大。每一种组态放大电路的信号输入点和输出点都不一样,其瞬时极性也不一样。如表1所示。相位差1800则瞬时极性相反,相位差00则瞬时极性相同。运算放大器电路也同样存在反馈问题。运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。

依据以上瞬时极性判别方法,从放大电路的输入端开始用瞬时极性标识,沿放大电路、反馈回路再回到输入端。这时再依据负反馈总是减弱净输入信号,正反馈总是增强净输入信号的原则判断出反馈的正负。

在晶体管放大电路中,若反馈信号回到输入极的瞬时极性与原处的瞬时极性相同则为正反馈,相反则为负反馈。其中注意共发射极放大电路的反馈有时回到公共极——发射极,此时反馈回到发射极的瞬时极性与基极的瞬时极性相同(使得净输入信号减小)则为负反馈,相反则为正反馈。

图1中的瞬时极性判断顺序如下:T1基极(+)T1集电极(-)T2基极(-)T2集电极(+)经Rf至T1发射极(+),此时反馈回到发射极的瞬时极性与基极的瞬时极性相同所以电路为负反馈。在运算放大器反馈电路中,若反馈回来的瞬时极性与同一端的原瞬时极性相同(使得净输入信号增大)则为正反馈,相反则为负反馈;若反馈回来的瞬时极性与另一端的原瞬时极性相同则为负反馈,相反则为正反馈。

图3中的瞬时极性判断顺序如下:输入同相端为(+)输出为(+)经Rf反馈至反相端为(+),侧为负反馈。

图4中:输入反相端为(+)输出为(-)经Rf反馈至反相端为(-),侧为负反馈。

4.反馈类型的判断

反馈类型是特指电路中交流负反馈的类型,所以只有判断电路中存在交流负反馈才判断反馈的类型。反馈是取出输出信号(电压或电流)的全部或一部分送回到输入端并以某种形式(电压或电流)影响输入信号。所以反馈依据取自输出信号的形式的不同分为电压反馈和电流反馈。依据它影响输入信号的形式分为串联反馈和并联反馈。

图2 电流并联负反馈

(1)串联并联的判断

反馈的串并联类型是指反馈信号影响输入信号的方式即在输入端的连接方式。串联反馈是指净输入电压和反馈电压在输入回路中的连接形式为串联,如图1中的净输入电压信号ube1和反馈信号uf=ue1;而并联反馈是指的净输入电流和反馈电流在输入回路中并联,如图2所示电流反馈中的净输入电流ib1和if的连接形式。

综合一下就是:

1)在分立元件组成的放大电路中若反馈信号如果引回到输入回路的发射极即为串联反馈,引回到基极即为并联反馈。

2)在运算放大器负反馈电路中,反馈引回到输入另一端则为串联反馈,如图3中uD与uF串联连接;如果引回到输入另一端则为串联反馈如图4中iD与iF并联连接。

图3 电压串联负反馈

图4 电流并联负反馈

(2)电压电流的判断

电压电流反馈是指反馈信号取自输出信号(电压或电流)的形式。电压反馈以图3为例,反馈电压uF是经R1、R2组成的分压器由输出电压uO取样得来。反馈电压是输出电压的一部分,故是电压反馈。在判断电压反馈时,可以采用一种简便的方法,即根据电压反馈的定义——反馈信号与输出电压成比例,设想将放大电路的负载RL两端短路,短路后如使uF=0(或IF=0),就是电压反馈。图1为电压反馈。

上一篇:boost电路范文 下一篇:数字电路与逻辑设计范文