光纤传输范文

时间:2023-11-19 02:08:43

光纤传输

光纤传输篇1

关键词 谐振条件;强度调制;光纤放大;分路

中图分类号:TP393 文献标识码:A 文章编号:1671-7597(2013)17-0047-01

当光照射到金属或半导体上产生光电流的现象。光电流的强度与入射光成正比;当入射光的频率低于红限频率时,不会产生光电效应。入射光的频率太高,半导体材料对光的吸收系数将变大。光纤传输技术正是将此项物理现象应用到通讯中。

1 光纤传输特点与光构成

1.1 光纤传输的特点

光纤对光信号的衰减极小。每km光纤对信号的衰减为0.2分贝,调幅光纤不加中继可传输40 km左右,数字光纤可传输100 km以上。光纤不易受电磁干扰,传输质量很好。光纤的容量极大。每一根光缆中包含4根至几千根光纤,每根光纤可复用几十个波长,每个波可传输几千套电视节目。

1.2 激光

英文为Laser(Light Amplification by Stimulated Emission of Radiation,即莱塞、镭射),受激辐射引起的光放大。辐射过程有三种:自发辐射、受激辐射、受激吸收。产生激光的三个条件:实现粒子数反转、满足阈值条件(受激辐射放大的增益大于激光器内的各种损耗)和谐振条件(直射光与反射光位相相同)。工作物质(激活物质)、泵浦系统和谐振腔构成激光器的基本组成结构。

1.3 与激光有关的基本概念

粒子数反转(高能态的粒子数大于低能态的粒子数);激活物质(具有能实现粒子数反转能级结构的物质); 泵浦过程(激励过程,即通过外界不断供给能量,促使低能态粒子尽快跃迁的过程); 谐振腔(使受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大)。

2 光信号的调制和解调

2.1 光信号的副载波强度调制

AM-IM的特点是传输节目更多,但对激光器的要求较高,光接收机的灵敏度较低,传输距离较近,1.31 μm激光,无中继距离不超过35 km。

FM-IM的特点是对激光器线性的要求不高,传输距离较大。图像质量高交调互调产物表现为接收调频波的背景噪声,对图像质量的影响较小。但所占频道较宽(每个频道35 MHz~40 MHz),一根光纤只能传输16~18套电视节目,光接收机输出的信号需经过FM/AM转换器才能送入用户。可组成一个卫星电视传输系统。

PCM-IM方式:失真小,无噪声积累,多级传输后载噪比仍可达60 dB,C/CTB和C/CSO可达70 dB。无中继放大可传输100 km以上,利用光纤放大器,可传输数千公里。但价格贵;无压缩时,一根光纤只能传输16套节目。经过压缩,可传输数百套节目,但成本较高。

2.2 光调制器原理

直接调制的技术简单,损耗小,易于实现。但易出现附加频率调制或啁秋效应(chirping)。出现组合二次互调失真(CSO)。内调制和外调制需要通过专门的调制器。外调制效率较低,但无啁秋效应。光接收机的任务是把光信号恢复成电信号。硅波长响应范围为0.5 μm~1.0 μm,锗和InGaAs为1.1 μm~1.6 μm。

3 光纤的结构和原理

光纤由光纤素线、光纤芯线、光纤软线(单芯、双芯)构成,分为单模光纤(SM)和多模光纤(MM)。在-25℃~-35℃时,光纤附加损耗为0.03 dB/km~0.04 dB/km,在-40℃时,附加损耗为0.06 dB/km~0.08 dB/km。

光纤具有色散特性,输入信号中不同频率或不同模式光的传播速度不同,不同时到达输出端,使输出波形展宽变形、失真的现象。 色散限制了光信号一次传输的距离;减少了传输的信息容量;与光源的调制特性一起产生组合二次失真(CSO)。对数字传输产生不良影响。色散常数D=dτ/(L·dλ) 。

G.652光纤对1.31 μm光的色散为零,性能最佳;也可用于1.55 μm光;G.653光纤:零色散波长在1.55 μm附近,适于长距离、大容量的信息传输,但价格较贵;G.654光纤(截止波长移位光纤):1.55 μm处的衰减最小(色散仍然较高),用于海底光缆;G.655光纤:零色散点不在1.55 μm,避免发生多波长传输的四波混合,用于密集波分复用;无水峰光纤:多了一个1.4 μm的窗口(损耗比1.31 μm小,色散比1.55 μm低),可提供从1.28 μm至1.625 μm的完整波段,可复用的波长数大大增加。

4 光缆

光缆的基本组成部分有光纤、导电线芯、加强筋、护套。光缆的接续分固定连接(粘接和熔接)与活动连接(光连接器和机械连接子)两类。

4.1 模拟光纤干线的基本原理

光发射机将电视信号调制到光信号上,光分路器把光信号分成不同比例,分别送入各光节点,光纤放大器将光纤中的光信号放大,使之传输更远的距离,光接收机从光信号中解调出电信号。光发射机有直接调制光发射机、YAG外调制光发射机、DFB外调制光发射机。光接收机(optical receiver)应用在通信的光纤传输与接入,负责接收光信号的设备。通常由光检测器、光放大器和均衡器以及其他信号处理设备组成。

光接收机的任务是以最小的附加噪声及失真,恢复出光纤传输后由光载波所携带的信息,因此光接收机的输出特性综合反映了整个光纤通信系统的性能。光信号经由光发射机发射与传输后,脉冲的波形被展宽,幅度得到了衰减。此时光接收机检测经过传输的衰减过的光信号,将其放大和整形,从而复生原信号。光纤放大器的工作原理有直接放大与间接放大,有后置放大器(光增强器);前置放大器(预放器)以及光中继器。

4.2 掺铒光纤放大器(EDFA)

双掺杂EDFA同时掺入钇和铒两种元素,泵浦光功率达3 W,波长为1.047 μm,信号光输出功率达2×500mW(27+3dBm)。包层泵浦EDFA的光纤有两个包层。纤芯的直径为5 μm,第一包层的直径为90 μm,第二包层的直径为125 μm。泵浦光(波长为910 nm~990 nm)从第一包层输入。可放大1537 nm~1574 nm或1560 nm~1600 nm的光,输出功率达3000 mW以上。三种泵浦方式进行比较:输出光功率方面,双向泵浦>后向泵浦>前向泵浦;噪声方面前向泵浦

掺镨光纤放大器(PDFA)的高增益区在1.3 μm附近,最高可达42 dB,最大输出功率达280 mW,在30 nm带宽内,可以得到大于100 mW的输出功率。PDFA与1.48 μm泵浦的EDFA的噪声性能差不多。

4.3 光分路器

M×N光分路器有M个输入端和N个输出端。光分路器原理分为微光型、光纤型、光波导通路型。光分路器的技术指标有插入损耗:Aj=10lg(Pi/Pj);附加损耗:Af=10lg(Pi/∑Pn);分光比:kj=Pj/∑Pn。显然,Aj=Af-10lgkj,光分路器的附加损耗值Af可通过固定参数表查得。

5 结束语

光工作平台的输入输出是一个综合性指标,其性能综合受制于输入光功率与输出电平,需要在较低的接受输入功率与较高的输出电平间掌握平衡。

参考文献

[1]李鉴增.光纤传输与网络技术[M].北京:中国广播电视出版社,2009.

[2]纪越峰.光缆通信系统[M].北京:电子工业出版社,1992.

光纤传输篇2

近年来,我国的广播电视行业的发展速度越来越快,各种科学技术的发展推动了这个行业的进一步发展,本文即将分析的广播电视信号传输中的光纤传输技术就是促进广播电视事业发展的一项很重要的技术。

【关键词】光纤传播 广播电视 信号传输

随着国内技术的发展,电子信息技术和网络方面的技术有了很大的发展,可以说在发展程度上实现了飞跃式的发展,这些科学技术的发展实现了网络的通达,网络传播中出现了光纤传播技术,现在网络在光纤传播技术的发展下,传播速度大幅度提高。这种传播技术有很多优点,首先传播速度快,这是显而易见的,光纤的传播速度肯定要大于以前网络的传播速度;其次可以分门别类的管理信息资源,因为这种技术可以通过一些途径来实现这样的管理;再次光纤传播可以使得传播信息更加多样化,对不同的信息资源有不同的处理,这是光纤传播与以往传播技术的最大的不同,也是最大的优势所在。

在众多广播电视信号的传播方式中,现在的光纤传播技术是最好的传输方式,相对与以前的卫星传播和微波技术,光纤技术可以实现对信息资源的分门别类的管理,这是其它技术所没有的,这样就可以很方便的实现信号的切换。广播电视信号传播不仅要满足各种设备的安全运行,还要实现信息资源的方便切换,对于这些要求而言,只有光纤传播可以都满足,所以目前它是广播电视信号传播的最佳选择,我们要实现对他的最优利用。这不仅是为了满足广大消费者的需求,也是为了广播电视事业的未来发展添砖加瓦。

1 非压缩传输

要想实现对信号传输的非压缩传输管理,就必须要了解相关的非压缩传输的概念。目前,我国所使用的非压缩信号传输,主要是一种基于视频的信号传输的终端设备的光纤连接方式,也就是说是一种通过对信号传输的高清压缩进行的广播电视信号管理。在具体的操作过程中,有关终端设备需要通过光纤线路将制定的非压缩信号传输到广播中心 IBCI 的 TER 机房。

运用这种传播技术的情况较多的是直播,尤其是比赛的直播,运用这种技术可以保证能够更好的直播实况,通过转输比赛现场的情况,保证信号传播的质量和观众观看视频的效果。想要实现更好的直播,比赛现场和直播设备之间的距离要把握好,一般是五十米之内,通过设备实现对信息资源的转化,最后呈现到观众的面前。由于电视观众对比赛视频的清晰度和流畅度的要求很高,尤其是很多狂热的球迷,在观看比赛的时候,如果在关键时刻视频不流畅或不清晰,会引起他极大的反感,所以对于比赛的直播一定要利用好现有的技术,提高直播的质量。

在整个传输过程中,对于设备的连接也要加以注意,因为不同的信号对于信号的接口要求是不一样的,所以要做好区分,为了保证信号的流畅,一般我们会把信号的对应加以固定,这样不至于在设备的使用中,再进行区分了。现在我国的广播电视行业,对于信号的管理,一般都有自己固定的传输方式,不需要在现场进行连接,这种传输方式是为了实现设备的简便对接,不会在直播现场再有多余的操作步骤,这就节省了很大部分的时间和精力,更重要的是不容易出现问题,保证了视频的流畅度和清晰度,能够满足观众的各种需求,而且还把先进的技术用到了管理中。

所以采用这种方式进行光纤信号传输的过程中,用户必须要实现在 TOC和 HD- SDI 两个接口的同时使用,也就是是活可以实现对 IBC TER 通信机房的不同信号的转化,不仅实现了信息和视频文件的有效交互,还实现了系统的可能故障的有效预防。采用两张接口,可以在其中一种设备故障的情况下,顺利的实现信号的转换,以便保证实时的信号传输的效果和质量,避免由此导致的转播中断。具体的过程是如果传输主用通道发生故障,服务不会立即中断,主备通道的传输质量和可用性相同。在主要场馆使用物理满足光缆要求的双路由,从而保障一侧发生故障不至于信号中断。

在传输的信号管理上,一定要做好备用的设备,一旦我们平时主要使用的设备出现了故障,在直播的时候,一定要有替换的设备可以来得及替换,不能影响直播的进度,不能中途出现视频的卡壳,这是在直播中绝对不允许的。

2 压缩与非压缩结合传输

因为不同的信号又不同信号的优点,没有集所有优点于一身的信号,也没有都是缺点的信号,所以在工作实际中,要把不同信号的优点结合到一起,去掉各自的缺点,去粗取精,实现对信号的最优的管理。现在一般都会把压缩传输和非压缩传输结合到一起,尤其是对于一些需要大量广播的地区,都采用这种方式进行电视广播。广播电视事业是一项有着很大发展前途的朝阳产业,所以对他的管理不能沉于窠臼,一定要采用最为先进的手段和方法,将能发挥的优势都发挥出来,这才符合广播电视事业发展的要求。

单边信号的传输使用双光缆和冷备设备,双光缆设置在 TER 机房和 TOC 电视转播机之间,冷备设备主要包括:传输接口设备、编解码器和光端机等。TOC 用户提供 HD- SDI 接口一个,设置主备光缆和冷备设备在通信机房和 TOC 之间,当主用传输发生故障时,完成光缆或者设备替换,从而保障主备通道的传输质量和可用性相同。IBC机房和 TER 机房之间设置的设备中也包括很多冷备设备,SDH 电路为带保护倒换的电路,完成长途传输,主用设备发生故障时,及时替换相应的传输接口设备和编解码器,主备通道的传输质量和可用性相同。

3 结束语

根据上文的分析,我国的广播电视事业的发展现在有着很大的技术优势,所以我们要充分的利用这些优势,实现他的快速发展,对于如何充分的利用这些优势还是要加以注意的,相关部门必须要加强管理,不仅要提高广播电视信号的传输质量,还要加强信号的多样化管理,实现对传输资源的分门别类的管理。在目前的电视事业发展中,消费者的要求很多,又要速度快,又要种类多,又要信号好,我们要努力实现这些所有的要求,就要在技术上不断的努力,不断的提高,利用全新的先进的技术弥补现有的不足,在目前的基础上不断的提高,这才能实现广播电视事业未来的进一步发展。

参考文献

[1]孙殿伟,候飞.光纤传输技术在广播电视信号传输的应用[J].电子制作,2013(09).

[2]商云娇.广播电视信号的传输及安全[J].新闻传播,2012(06).

作者单位

光纤传输篇3

1光纤传输技术的应用优势及在广播电视中的重要性

在广播电视网络传输中,光纤网络占据最为基础性的地位,将光缆作为传输介质,并以SDH平台进行传输,这是数字电视与数据传输的最可靠链路,其质量好坏会直接影响到电视直播信号的质量。在电视信号传输中应用光纤传输技术,能够有效的改变传统的微波中继传输信号中容易出现噪声及受到电磁波干扰的问题,有效的提高了数据传输的质量。利用光纤技术来进行广播电视信号传输,对提高电视传输的稳定性具有重要的作用。运用光纤技术来将直播信号向多个地区的轩播平台进行传输,而且各地区的传播平台也能够将数据信息向主平台传送。而且利用光纤传输信号过程中,能够对外界环境变化的影响具有较强的抵抗作用,满足大量数据传输的要求,克服信号变换时中继器产生的噪音,有利于信号的稳定性。相较于其他传输途径,光纤传输在安全性和稳定性方面更具优质,承担着当前广播电视传输的重要责任,直接影响着直播节目播出的效果。而且利用光纤传输技术进行广播电视信号传输,更易于管理,具有其他传输技术不可替代的优势,有效的促进了我国广播电视行业的健康发展。

2光纤传输在广播电视信号传输中的应用

2.1非压缩传输

这种传输方式主要是利用光纤线路来对非压缩信号进行光波传输,在长距离传输过程中,信号被传输到广播中心的机房。非压缩传输方式主要在现场直播信号中传输中进行应用,而且在实际传输过程中对距离具有非常严格的要求。而且在具体应用过程中,往往会将光纤设计成为一条单独占据的通道,并利用视频光端机来接收信号,从而确保直播信息能够稳定的传输到用户接收样的端口。在利用非压缩传输进行信号传输过程中,特别是需要对公共信号进行传输时,为了能够确保信号管理效率的提高,工作人员通常会选择主备用信号传输方式,实现端口直接对接,确保光纤传输效果的提升,并能够充分的发挥出光纤调和中双光缆的优点,有效的保证光波信号传输的可靠性。而且对于主备用信号传输来讲,即使主传输出现故障,只在将冷备设备和主备光缆在通信机房与TOC之间设置,这样设备能够及时进行替换,有利于充分的保证信号传输的可靠性。

2.2压缩传输

这是一种在广播电视信号传输过程中极为常见的一种光纤传输方式,主要是利用压纹设备来对光波信号进行压缩,使其占用较小的空间,从而实现对大数据的高清传输。在压缩传输过程中,由于长距离传输需要确保数据的完整性,因此需要充分的发挥解码器的作用,利用解码器来对传输信号进行压缩解码,从而获得ASI信号,并使其经过网络适配器将信号传输到IBC机房内,并利用解码器进行解码。

2.3压缩与非压缩结合传输

无论是压缩传输还是非压缩传输都具有各自的优点和不足之处,因此在实际操作过程中,往往会将压缩传输与非压缩传输进行结合,充分的利用各自的优势,确保信号传输的质量。特别是随着广播电视覆盖率的不断升高,涉及的区域越来下,将压缩与非压纹传输进行有效结合,有效的将各个区域的视频光端机与基带光纤进行结合,使宽带实现灵活增减,以便于能够与不同信号的有效适合,对于一些需要大量广播的地区,压缩传输与非压缩传输之间的结合更具适用性,在实际工作中,能够有效的将不同信号的优势充分的结合在一起,实现对信号的优化管理,能够将二种传输方式的优势充分发挥出来,更为符合当前广播电视事业发展的要求。

3结束语

在文化娱乐产业迅速发展的今天,广播电视的普及率及覆盖率也已大大上升,人们对于电视节目的播放质量有了更高的要求。广播电视系统是一项复杂而又庞大的工程,光纤传播技术作为新兴资源,在广播电视的节目输送中发挥着重大作用。三网并网技术正在迅速发展,各个地区基本均已形成了以光纤作为主要传输介质的信号输送网络,光纤技术在广播电视中的地位进一步提升。

作者:陈岩 单位:哈尔滨广播电视台

参考文献:

[1]张伟,赵林.光纤传输技术在广播电视信号传输的应用[J].西部广播电视,2014,2:120.

[2]李锦,张联.浅谈广播电视信号传输中光纤传输技术的应用[J].数字技术与应用,2014,6:49.

光纤传输篇4

光纤通信传输技术是现代通信技术中的新技术,是实现通信现代化的重要基础。管线通信技术具有传输量大且抗干扰能力强的优点,对促进电力通信进步有重要作用,在电力系统中得到了广泛的使用,本文主要从光纤通信传输技术在电力通信中的应用展开分析。

【关键词】

光纤;通信传输;技术;电力通信;应用;分析

一、电力通线网构成

1.电力通信简介

电力电网系统对实现大容量、长距离的传输有很高的需要,如何保证电力通信传输的安全性和稳定性,保证传输经济核算最优是目前电力传输中最重要的问题。下面主要介绍电力通信的几种主要方式:

1.1电力线载波通信。

电力线载波通信技术是将信息通过载波机转换成高频弱电流,用电力线路实现信息传送。这种通信方式具有较高的可靠性,投资少且通信效果良好等特点,电力线载波中还有绝缘地线载波技术,通过电力线路架空地线传送载波信号,和普通的电力线载波方式相比,该方法受线路停电检修类故障的影响较小,地线处于绝缘状态可减少电能损耗,因此在现代电力通信中使用广泛。

1.2光纤通信。

光纤通信有传输容量大、传输质量好且抗电磁干扰等特性,在电力部门的实际应用中迅速发展起来,电力通信中常用的还有传统明线、音频电缆等通信方式。

2.电力通信特点

光纤通信技术的光波频率远高于电波的频率,光纤中的石英具有绝缘性,在信号传输过程中不受接地回路问题的影响,能够有效地防止雷电等自然现象对传输质量的干扰,能够大大降低传输损耗;再加上光纤通信系统具有较大的传输容量,光缆的直径较小所以传输系统占据的空间也相对较小,光纤之间的距离紧密能够有效的防止信息泄露,可以满足信息技术方面的多种要求,广泛使用在现代光纤通信技术中。

二、光纤通信技术

1.光纤通信传输技术简介

光纤通信传输技术是以光纤为媒介的现代通信技术,光纤具有大容量通信,能够进行长距离传输且对环境污染小等优点,实际应用中将光纤分为感用光纤和通信光纤两种类型,能够根据不同的使用情况进行分频、调制光波和整形等。光线可以实现模拟信号、数字信号和视频传输,每秒的传输速到能够达到2.5GB,光线对电机、无线电的电磁噪声有较大的阻抗能力,具有较好的抗干扰力。光纤是由石英材料组成的因此具有很强的绝缘性,在实际应用中,光纤通信传输技术具有更高的光波频率,相较于普通的传输方式而言,光纤的传输损耗较小具有较高的传输质量。

2.光纤通信技术的特点

2.1容量大

光纤传输相较于铜缆和电缆传输而言,具有更高的带宽且传输的损耗较小,通过特殊的技术手段可以扩大光纤的传输信息量,可以实现远距离的高效传输。

2.2施工成本较低

石英光纤比其他类型的光纤成本低且损耗小,石英光纤在施工过程中可以不用安装接地和回路,其本身具有较好的绝缘性因此施工成本也比较低。随着现代技术水平的不断提高,光纤传输过程中的损耗在不断降低。

2.3良好的抗干扰能力和保密性

光纤通信中的石英光纤不仅具有较好的绝缘性还有较好的抗腐蚀性,对其他电磁干扰的抵抗杜强业张凛刘伟国网青岛供电公司山东青岛266002力较强不论是自然活动中的电磁干扰还是高压线释放的电磁干扰都不会干扰信号传输,因此在军事方面的运用也比较广泛。传统的电波通信在传输过程中容易出现电波泄露问题,信息的保密性比较差。但光纤通信技术在传输过程中具有较强的保密性,能够较好的保护传输内容。2.4光纤占用空间小由于光纤的直径较小,在实际施工过程中占据的空间较小,能够减少施工任务,对实现通信系统的集成化有重要的作用。光纤占用的空间较小更容易进行后期检修,节约一定的光纤维修时间。

三、光纤通信传输技术在电力系统中的应用

1.电力系统中使用的光纤类型

我国通信领域常用的光纤包括复合地线、复合相线和自承式光缆等类型。

1.1光纤复合地线

光纤复合地线指地线内部由一些光线部分地线组成,这种类型的光纤在传输过程中可以起到绝缘效果,避免线路遭到雷电破坏。但是这种光纤通信技术的投入成本很高,一般在新建线路或旧线路更换地线情况下使用,这种光纤通信技术可以作为整个线路的避雷线从而保护输电导线,提高线路的整体抗冲击性。光纤复合地线不仅具有光学性能,还能满足所有架空地线的机械性和电气性能,光纤单元本身受保护管的保护,具有较好的可靠性和安全性,安装过程中不需要特殊的安装工具,具有较好的稳定性,且复合地线在使用过程中不必进行长期维护工作,可大大节约施工成本和线路维护成本。

1.2光纤复合相线

光纤复合相线是指利用电路系统资源将光纤复合在输电线路中,能够有效解决线路的架空问题,节约一定的电能;

1.3光纤自承式光缆

自承式光缆可划分为金属自承式和全介质自承式光缆两种类型,其中金属自承式光缆的构造成本比较低容易操作,全介质自承式光缆具有稳定的光学性能,可以在各种环境下进行架空铺设,支持直接的高压输电线杆搭建通信网络,这种光纤本身就具有较好的环境性能,施工时可以和其他高压电力传输线路一起施工,即使是在传输强电场环境中也有很强的抗干扰性,不会受到任何干扰。具有较强的光纤传输性和光缆机械性在电路故障时能够减少电能损失,全介质自承式光缆的出现使我国的电力通信系统取得了新的发展成果,已经成为了电力通信中广泛使用的光纤类型。

2.光纤通信传输技术在电力系统中的潜力

2.1发电厂中的光纤传输系统升级

发电厂内有电气、热力和燃料等设备类型,调度控制这些电力设备的光纤网络具有不同的数据传输结构,变电站通常需要收集电气设备的使用参数,并通过调度中心对数据信息的分析,实时调度、控制电气设备。这些光纤网络是由具有控制和处理任务的计算机系统组成,由于电气系统中的电气设备较多,调度所、供电所等需要处理的数据信息量很大,因此需要结构更加稳定、调度质量更高的光纤网络进行控制,以保证光纤网络正常运行。光纤传输技术在电力系统中有很高的发展潜力,现代电力系统的复杂性对电力传输的稳定性。安全性具有更高的要求,需要光纤通信传输技术不断创新、升级,以满足电力系统的发展要求。

2.2新型光纤的发展

现代经济科学技术的发展创造出了更多的新型科技材料和科学技术,传统的光线材料已经不能满足人们在通信领域中队实现远距离高效传输的需求,需要研发出更加新颖高质量的光线材料,目前的非零色散光纤和无水吸收峰光纤在通信领域得到了广泛的肯定,在信息传输过程中能够实现低能耗、高校传输,具有广阔的使用前景。如今光纤通信传输技术在电力通信中的应用越来越成熟,电力网络规模不断扩大网络结构也越发复杂,应及时维护电力系统的光纤通信网络以保证电力通信安全、稳定运行。

2.3光联网技术和光接入网技术

今年俩通信网络传输技术虽然取得了较大的突破,但在接入网方面仍然受限,数字化、集成化的智能网络成为了现代信息网络发展的必然趋势,但现在的接入网仍以双绞线为主,现代化的接入网通常使用光接入网技术,和双绞线相比具有更高的网络透明度和传输速度,改进光纤通信传输技术对提高电力通信质量有重要意义。光联网技术相较于传统的波分复用技术而言,有更高的灵活性和网络透明度,光联网增加了网络的节点数和网络范围,支持不同系统中不同信号的有效连接,一旦网络出现故障,光联网可以实现网络迅速恢复,减少因电力系统故障带来的损失。光联网技术满足了现代电力通信对网络的要求,世界各国正在大力发展光联网技术,可见光联网技术必然发展成为现代电力通信的支柱型技术,从而促进电力通信技术向现代化、高效化方向发展。

3.电力光纤通信网的组网技术分析

3.1波分复用技术

波分复用技术是指将不同波长的光信号复合在同一根光纤上,在传输过程中根据光波波长可以将一个信道划分为若干信道,光波作为信号载波可以将不同波长的信号合并,传输到同一根光纤中。信号接收端再接不同波长的信号分开从而实现信号传输。不同波长的载波信号之间相互独立,支持多路光信号在一根光纤中传输,出了单向信号传输以外,通过不同波长传输两个方向的信号,即可实现双向传输,波分复用技术根据相邻波峰之间的间隔长短可区别为密集波分复用技术和粗波分复用技术两种,其中密集波分复用技术支持高容量信息传输是现代新型网络构造出最常用的组网技术之一。

3.2同步数字技术

同步数字技术通过网络管理系统进行统一操作的信息传输网络,融合了复接、线路传输和交换等于一体,通过复用和映射可以将低级的同步数字技术转化为高级的数字技术,具有更高的网络传输速度,大大提高了信息传输效率和网络利用效率。同步数字技术简化了复接合分接技术从而提高了网络的灵活性和传输效率,且该技术本身就有自我保护体系,提高电力通信传输效率的同时能够保证信息传输安全性。

结束语

光纤通信传输技术的发展为电力通信带来了很大的改变,光纤通信技术的发展对完善电力通信系统有重要的作用,因此要不断提高光纤通信传输技术在电力通信中的应用,积极创新电力传输技术、研发新型有效的通信传输材料,不断改进现代电力通信方式,实现电力通信的安全、稳定运行。

参考文献

[1]刘敬阳,崔晓磊.浅谈现代光纤通信传输技术的应用[J].黑龙江科技信息,2012(35)

[2]叶小华,吴振英,李京辉,黄勇林.双二进制调制在高速LiNbO3光调制器上的实验实现[J].半导体光电,2009(03)

[3]吴卓,于洋.通信传输中信号变弱的原因及措施探讨[J].黑龙江科技信息,2015(30)

作者:杜强业 张凛 刘伟 单位:国网青岛供电公司

[4]谭学广,高建涛.通信传输网络发展的规划探究[J].信息系统工程,2015(05)

光纤传输篇5

【关 键 词】光纤传输;通信;设备

【中图分类号】 TN92【文献标识码】A【文章编号】1672-5158(2013)07-0249-01

目前,人类社会已步入信息时代,信息的价值也体现得越来越明显,深处信息的时代谁掌握有用的信息,谁就能够在竞争中取胜。随着信息量的增大,传输设备显然就成为了一个突破口。在这种条件下,以光纤为主要代表的光纤传输通信和设备技术已经相应产生,光纤传输设备比传统的模式拥有巨大的容量和速度。近年来,通过科技人员的研究,光纤传输通信技术在应用方面有很大的进步。

一、光纤传输通信及设备的发展现状

(一)传输性并不理想

目前,在光纤传输通信网光缆的线路中大多数采用的是G·652这种常规性的单模光纤,这种光纤对于1.55微米的波长,尽管产生的损耗相对较少,但是色散值比较大,大约18pa/(nm·km),所以,很显然这种常规性的单模光纤运用在1.55微米波长时传输性是不理想的。为了有效的达到越来越大的信息体积以及长距离的运输,应该使用低损耗的和低色散的单模光纤。色散位移光纤为零时和掺饵光纤放大器进行混合使用时因为光纤的非线性产生的四波混频,会影响WDM的正常应用,这也就表明,光纤色散为零对WDM很不利。

(二)光纤通信系统所使用的光学器件需要改进

近几年为了适应WDM系统的要求,我们开始研制多波长光源的器件,它大部分是把多路的激光管陈列排开,连接着一个星型耦合器能够制成混合的集成光组件。对于光纤通信系统的接收端机,它的光电监测器以及前置放大器,大多数是向高频率或者是宽频带响应的方向进行发展,PIN光电二极管接受改进之后仍然可以符合需求,最近几年据报道发明了一种以行波式进行分布的光电检测器,它对1.55微米的光波可以检测的3db频率带宽能够达到78GHz。FET的前置放大器有着被高电子迁移率晶体管所代替的危险。

(三)传输的PDH系统已经不能适应现代电信网的发展需要

目前,光纤通信转向联网化发展已经成为了趋势。SDH是交换功能合为一体,一种以互联网为基本特点的全新的传输网体制,它把复接,线路传输和并且拥有强大的网络管理能力的整体式信息网,如今已得到广泛的运用。伴随着用户对数据通信的要求迅速的增长,光纤接入网成为了目前重大的探讨课题。

二﹑光纤传输通信中重要的元器件分类及结构

(一)光缆和光纤的分类和结构分析

一般来说,能够依据按照光纤芯折射率所成分布的不一,可以将光纤分为均匀和非均匀的光纤。其中均匀的光纤人们又可称为阶跃型剖面折射率光纤,它的纤芯以及包层的交界面处折射率就会呈现阶梯状的变化。但是,非均匀的光纤又可称为渐变型剖面折射率光纤,它的纤芯折射率则会随着半径的增大而按照一定的规律减小。

如果根据光纤的传输模式的数量来划分,可将光纤分为单模光纤和多模光纤。其中,单模光纤只能传输一种模式,它有着频带宽﹑传播特性好和传输容量大的特性,但是成本又和多模光纤差不多,所以,单模光纤获得了广泛的运用,例如,有线电视信号的传输就是运用了单模光纤。但是,多模光纤中的传输模式多种多样,单单适合短距离﹑小容量的应用,相对来说花费太高,使用的领域很少。

(二)光纤连接器的特点和功能

光前连接器的特点主要是连接损耗少﹑体积小﹑成本低﹑稳定性强。简单地说,光纤连接器是由一个插座和两个插头组成。光纤连接器的分类很多,大多数是依据具体的连接器的模式来进行分类。但是光纤跳线是两个比较活动的连接器与一段带有软护套的光纤。大多数人都知道的,假如光纤的端面被弄脏,它就会增加插入损耗,对光的传输大大不利。因此,进行清洁时仅仅能够利用脱脂棉球蘸取很少的无水酒精进行擦拭,勿用手接触它。

三﹑光纤传输设备误码问题

(一)光纤传输设备误码问题简介

伴随着第三次科技革命的到来,利用数字通信技术取得了迅速的发展。但是,随着近几年人们对通信质量的提高,保证通信传输的准确性尤为重要,而误码特性是数字通信的系统的重要特征。相对于二进制数字信号来说,误码的基本的概念是:传输体系中的发送端发送“1”码时,在接收端接收到的却是“0”,但是当发送端发送“0”码时,接收端收到的却是“1”码。就是这种发信码的不一致就被称为误码。

(二)光纤传输设备误码问题出现的原因

(1)线路收光功率比较异常。收光功率对光纤设备是否能够正常的运转有着很直接的影响,当线路的收光功率线路过高或者过低时,很有可能会造成光纤传输设备出现误码问题,对光纤的传输质量有很大的影响。

(2)支路板出现故障,支路板发生故障也应该受到相关工作人员的重视,因为这很大程度上会引起低阶通道的误码,进一步影响光纤传输的运行结果。

(3)设备的温度太高。当光纤传输设备进行长时间的应用时,假如没有对它做好散热工作,就极有可能造成设备的表面和内部的温度过高,因而光纤运输设备误码问题的出现。所以,相关工作人员需要对光纤传输设备的管理工作做好准备,尽最大努力预防这一现象的发生。

(三)误码问题的科学解决

(1)找出导致误码产生的根源。光纤传输设备产生误码的原因比较多,工作人员需要根据实际情况进行分析查找我们应该牢记先高阶,后低阶的原则。

(2)排除线路的误码。假如存在线路的误码,就需要先排除线路的误码,需要注意观察线路板的误码情况时,如果某站所有的线路板都有误码,就可能是该站时钟板问题,就需更换时钟板。

结束语:光纤传输通信及设备在电信网络中的应用对电信网络的发展有着很大的促进作用,极大地满足了人们对信息高速传输的需要。但是因为光传输设备自身的复杂性使故障出现的可能性增大。一旦出现问题就会产生很大影响。所以需要做好设备的维护工作,为用户提供优质的服务。

参考文献

[1] 张帅.光传输设备故障分析及维护措施[J].通信世界,2011(33)

[2] 顾畹仪,李国瑞.光纤通信系统[M].北京:北京邮电学出版社,2006(09)

光纤传输篇6

关键词:广播电视传输;光纤通信技术;探究

光纤通信技术是目前广播电视传输中应用最广的技术,是时代快速发展的产物,为满足人们对广播电视日益增长的文化需求,所以相关技术部门通力合作,精益求精,加强技术创新研究,因此,光纤技术问世并被广泛应用于各行各业,其应用效果显著,节约了大量的通讯资源,有效提高了广播电视的传输能力。

1 光纤系统的组成与功能分析

光纤通讯系统主要由光发射机、光接收机、光纤或光缆以及光纤连接器及耦合器四部分构成。每一部分的运转效率都直接影响着光纤整体传输功能,光纤系统的顺利传输都离不开各个组成元素。

1.1 光发射机及功能

实现电光信号转换是光发射机的主要任务,通过调制解调器的运作可以将信号源发射的广播进行有效调制,重新组合信号源信息,最后将调制好的光信号输送到光纤设备。第一部分准备工作有序完成。

1.2 光接收机及功能

简单来讲,光接收机在光电转换中扮演者中介的角色,光纤传播过来的光信号通过光接收机的作用,有效将光信号转换成电信号,经过光放大器的加工,把十分微弱的电信号放大成千倍百倍,达到满足用户需求时,最后发送到用户端线缆中。

1.3 光缆及功能

光缆的作用意义重大,是光传输中必不可少的重要通道,光缆的作用犹如人身体中的血管,决定着整个身体运行情况。将调制好的光信号通过光缆的载体进行远距离传输,最终合并到光检测仪器上,以便完成最终的输送信息。

1.4 光纤连接器功能

光纤系统安装过程中,施工现场具体条件以及光纤拉制长度都直接影响到光纤长度。光纤线路容易出现多根混掺现象,所以各个光纤线路的连接一定要有序有调理进行连接,以便完成最后光纤接收传送。

2 光纤通信技术在广播电视传输中的作用意义

光纤通信技术在广播电视传输中的作用重大,意义显著。

首先,光纤技术有效抑制广播电视传输中信号程度弱、信号传输不稳定等现象,有效提高传输过程中信号安全与信号强度,光纤技术的应用在很大程度上提升信号传输效果,提升广播电视画面质量,为千家万户的电视提供可靠的网络技术服务,提供安全放心的电视信号保障,应用后备受好评与关注。

其次,光纤技术有效解决广播电视网络复杂,节目信号混乱的情况,依据自身的高防范性与强扩展性技术优势,打败传统的卫星传输。除此之外,光纤技术还具有强抗干扰性,通信容量巨大这些显著的特性,高效提升信号传输能力,有力保障信号传输速度与质量,因此光纤通信技术的应用对于广播电视传输具有重要意义,值得大家继续关注并不断支持。

3 光纤通信技术在广播电视传输中的应用分析

3.1 非压缩传输技术分析

目前在我国使用的非压缩信号传输,一般是以视频信号传输为基础,利用终端设备进行光纤连接的方式,即对信号传输进行高清压缩来管理广播电视信号实际的操作中,终端设备通过光纤线路将已经制定的非压缩信号传输到广播中心的TER和IBCI机房。通常,非压缩信号的传输主要适用于对各种赛事的直播,换句话说,转播装置和比赛场地间的距离,能够实现较好的传输效果和质量。比赛的场地一般是在电视台转播车与转播机房距离50m内设置电视转播机房TOC,同时利用光端机实现对HD-SDI信号和光信号间转换,然后通过本地光缆传输到达IBC机房,最后通过光端机的作用,将信号进行转换,得到HD-SDI信号。以芯光纤占据一个通道,收发使用视频光端机,提供BNC接口,从而达到无损传送信号的目的,保障全场的覆盖且具有良好的传送效果。

我国广播电视在信号传输过程中,为了使信号管理更为理想,在公共信号的传递中,大多采用的是1+1主备用的信号传输方式,该方式的优点是能够对终端设备端口的直接对接,即端对端的双设备光纤传输,这样不仅能够有效利用光纤设备,而且还将光纤设备双光缆的特点和优势充分地发挥出来。单边信号传输,使用冷备设备和双光缆,TOC用户需要提供一个HD-SDI接口,将冷备设备和主备光缆设置在TOC和通信机房之间,当主用传输发生故障时,设备替换或完成光缆,从而确保主备通道的传输质量和可用性相同。

3.2 压缩传输技术分析

压缩信号传输和非压缩信号传输在传输的过程中具有独立的优势和特点实际应用中对两者的优势进行有效的结合和发挥可最大程度上保证信号传输的质量,如电视广播的转播质量就是对其结合的最好体现。当广播电视覆盖范围所涉及的地区比较多时缩和非压缩传输结合方式。通过对各个区域的视频光端机直接连接到基带光纤,对于长途地区可通过SDH传输,即通过解码器和接口设备来压缩和解码HD-SDI信号,并将信号输送到IBCTER机房。这样通过压缩和非压缩相结合的信号传输方式可以灵活的增减宽带,方便适应不同大小的信号。通常外地区域的汇聚点是中心的TER机房,通过传输电路直接通往机房,传输到BC机房,最后将ASI信号传输到解码器进行最后的HD-SDI解码,实现了信号的长途传输的高质性。

3.3 压缩和非压缩结合传输技术分析

非压缩信号与压缩信号具有各自的特点和优势,在具体的应用中,实现电视广播的转播质量就需要对两者的优势进行结合和发挥。通常,当广播所涉及地区较多的时候,可以采取压缩和非压缩传输结合的方式。各个分地区的场馆利用视频光端机直连到基带光纤,而长途的部分可以通过SDH传输,使用编辑解码器和接口设备来压缩和解码HD-SDI信号并输送到IBCTER机房。因为进行压缩解码会降低信号码速率,所以使用压缩和非压缩相结合的信号传输方式能够灵活地增减带宽,从而适应信号。传输电路是直接通往TER机房,HD-SDI信号通过光端机在TOC机房和TER机房间传播。编码器对高清信号进行压缩解码,向传输单元口提供ASI信号,经网络适配器的信号通过SDH长途传输通道而传送至IBC机房,随后利用接口单元将ASI信号传输到解码器进行HD-SDI解码。

结束语

本文首先对光纤通信系统的组成与功能进行论述,有助于增加对光线技术的细致全方位的了解,紧接着阐释光纤技术在光电电视传播中的作用意义,在一定程度上提升光纤技术的应用价值与使用意义。最后着重论述光纤技术在电视传输中的具体应用,有助于更好应用此技术,光纤技术集抗干扰性、安全性、防范性、便捷性于一身,有效提高广播电视信号传输能力与质量,因此备受广泛应用。

参考文献

[1]姜秋萍.广播电视信号传输中光纤技术的运用[J].西部广播电视,2015(3).

光纤传输篇7

1.1物理损耗低,中继距离长

光纤的主要构成材料是石英,与其他的传输介质相比较,其所产生的损耗更低,整体低于20Db/km。由此可见,在长途传输线路当中应用光纤通信技术,因为中继站减少,所以中继距离得以延长,降低成本。

1.2抗干扰性能较强

光纤通信材料属于绝缘体材的范畴,基本上不会出现损坏的现象,具备良好的绝缘性。在实际的应用过程当中,其受外界电流影响非常小,同时也不会受到电离层电流的制约,对电磁的“免疫力”比较理想。仅此而言,可实现和高压线路平行架设的目的,在电信,电力,甚至是军事方面均可广泛应用。1.3不存在串音干扰光纤四周环绕的均是不透明塑料皮,可吸收所泄露的电磁波射线。因此,即便是在同一条电缆之中存在不同的光纤电缆,亦不会出现串音干扰的问题,针对电缆外部而言,也难以窃听到光纤中传输的信息,可保证通信信息安全。

2光纤通信传输技术的应用现状及不足

在三网融合的的发展趋势之下,光纤通信传输技术取得了较大的进步。但是依旧存在着部分的不足,需要向光纤到户接入技术以及单纤双向传输技术两个方面转变,具体如下:

2.1光纤到户接入技术

针对现代宽带业务领域的研究逐渐深入,基于更好地适应用户的通信要求,所采用的通信技术一要具备宽带主干传输网络,还要具备光纤到户接入技术,后者是保证信息传送得以进入千家万户的重要保障之一,鉴于此,大部分业内人士均认为,信息接入网是信息高速公路发展的“临门一脚”,在肯定了光纤到户接入技术的重要性的同时,也指出了信息通信领域的瓶颈所在。

2.2单纤双向传输技术

在应用双纤传输技术之时,信号处于分散传输的状态,即是信号在两根光纤当中进行传输。而应用单纤传输技术,全部的信号均在一根光纤当中完成传输。根据现代光纤传输理论可得知,光纤传输的容量是不存在上限的,但是在传输设备的制约之下,导致光纤传输的容量一直无法达到理想的水平。目前,我国的通信领域采用的基本上都是双纤传输技术,导致宝贵的光纤资源被严重浪费。现阶段,单纤双向传输技术的主要应用方向是光纤末端接入设备方面,包括PON无源光网络、单纤光收发器等,应用程度有待深化。

3光纤通信传输技术的主要发展趋势

光纤通信传输技术未来的主要发展趋势集中体现在集成光器件、全光网络、光网络智能化、多波长通道四个方面,具体如下:

3.1集成光器件

为了全面提高光纤通信传输技术的应用水平,必须要实现光器件的集成化目标,这也是其余的发展趋势得以实现的关键前提之一。在互联网技术高速发展的背景之下,现有的ADSL接入宽带已经难以满足实际的信息传输需求了,实现光器件的集成化,可显著改善光器件的工作性能,进而提高其传输信息的速度,推动光纤通信传输技术的发展进步。实现光器件的集成化,主要的方向是采用相对成熟的新工艺,在硅衬底之上进行光学器件的制作,包括波导与光纤耦合器等重要的无源器件,在一块硅芯片之上实现全部光学器件模块的集成处理。

3.2全光网络

广义上的“全光网络”指的是无论在网络传输还是网络交换的过程当中,网络信号均是以光的形式存在的,其进行电光或者是光电转换的步骤仅限于进/出网络之时。目前,我国部分的光网络系统,虽然在各个节点之间基本上已经实现了全光化的目的,但是在网络结点的位置,其所采用的依旧是电器件,而非光器件,对光纤通信干线的总容量造成了较大的限制。鉴于此,未来的光纤通信技术必须要实现全光网络,关键在于创建完善的光网络层,光网络层的核心技术为光转换技术与WDM技术两项,同时将电光瓶颈尽数消除。在4G网络发展建设的推动之下,我国的光器件产业逐渐趋向完善,目前市面上无论是有源光器件,还是无源光器件均实现了批量生产与商业应用,如华为、中兴、光迅等知名电子科技企业均代表着我国光器件生产的最高水平。

3.3光网络智能化

我国的光纤通信素以传输为主线,伴随现代计算机技术的发展进步,其在网络通信当中所起到的作用将会越来越重要以及明显,因此必须要实现光纤网络通信技术的智能化,提高网络通信技术的实际应用高度。针对现代光网络技术而言,实现光网络智能化,其关键在于将自动连接控制技术以及自动发现技术应用到其中,辅以通信网络系统的自我保护与恢复功能,以期全面实现光纤通信传输技术的高度智能化。实现光网络智能化,核心思路在于提高 固定栅格频谱的利用率,在传统的WDM网络的固定栅格之下,各种速率的光通道支撑为50GHz的频谱间隔,针对100Gb/s的通道而言,这样的频谱间隔是合理的,但是对于80Gb/s以下的通道而言,则会造成固定栅格频谱的浪费。此外还要建立完善的波长通道,实现光信道的动态调整,开放接口,实现资源云化,打造灵活的弹性光路。

3.4多波长通道

在光纤通信传输技术当中,存在一种衍生技术“波分复用技术”,其核心作用在于对光波通信的信息容量实现有效的拓展,进而实现时分与空分多址复用的目的。其中,空分复用需要依靠多根光纤进行信号的传输,与单根光纤复用相比较,空分复用还需要借助频分或者是码分复用来实现。在现代商业当中,频分复用的应用范围比较广,针对传统的G.653光纤而言,采用色散调节技术确实可以提高其传输速度以及拓展其信息容量,但是在正常的使用过程当中非常容易出现FWM(四波混合)的问题,这是光纤放大器不合理使用而直接导致的结果。FWM的原理可细分为三点:一是后向参量放大和振荡、二是三个泵浦场的不规则作用情况、三是入射光中的某一个波长上的光改变了光纤的折射率。FWM所带来的负面影响主要是衍生出新的波长,进而导致串音干扰,削弱传输信号,不利于波分复合技术的实际应用。鉴于此,需要研发可抗御FWM影响,并且集超大容量与超快速度等优点于一身的新型光纤,以提高波分复用技术在光纤通信传输的应用水平。研究表明,采用G.652光纤可抗御FWM所带来的负面影响,但是鉴于其存在色散的问题,因此需要加强色散补偿,这是现阶段业内抗御FWM影响的主要技术方向。

4结语

综上所述,现阶段光纤通信传输技术虽然取得了长足的进步,但是依旧存在着部分的不足。相关的下从业人员需要在明确其不足的基础上,立足于集成光器件、全光网络、光网络智能化、多波长通道等方面,切实提高光纤通信传输技术的应用水平。

光纤传输篇8

【关键词】有线电视光纤传输网;设计方法;设计模型

作者简介:张旭(1979-),男,工程师,研究方向:广播电视网络设计与规划(光缆部分),广播电视网络维护

我国有线电视网络发展到2011年,全国有线电视的用户数量达到了2.02亿,其中数字电视的用户数量达到了1.15亿。探索有线电视光纤传输网的设计模型,对提高有线电视光纤传输网的建设质量,对促进有线电视光纤传输网的发展具有重要的意义。

1有线电视光纤传输网的设计方法

1.1有线电视光纤传输网的结构

有线电视光纤传输网由四部分构成,分别是:光纤干线、光传输设备、光接收机和光分路器。其中光接收机和光传输设备属于有源设备;光分路器和光纤干线属于无源设备[1]。

1.2有线电视光纤传输网的设计方法

有线电视光纤传输网的设计要按照以下流程进行:第一,以用户数量和用户分布为依据对光节点的数量和位置进行明确。第二,以光节点的数量和位置为依据对光纤路由的走向进行明确;第三,以光纤路由的走向和光节点的数量为依据对光纤支路需要的光功率进行明确的计算;第四,以光纤支路的光功率为基础对光分路器的光分比进行明确的计算,对光发射机的数量和功率进行明确的计算。

2有线电视光纤传输网的设计模型

2.1明确光节点的数量

目前,有线电视光纤传输网的建设呈现出光节点的数量持续增加,电缆放大器持续减少,有线电视光纤传输网建设朝着“电缆无源分配网+光传输网”的方向发展的趋势[2]。在这样的发展背景下,在有线电视光纤传输网的设计中,光节点成为了设计的重点。通过观察可知,该设计模型以光节点为中心,以260米的半径为覆盖区,覆盖了144户用户。其中最远端的电缆链路的损耗分析如下,5MHz—65MHz的电缆链路的实际损耗为25.54dBμV,750MHz—1000MHz的电缆链路的实际损耗为56.78dBμV。在实际的建设中,可以以实际情况为准对其做相应的调整,以光节点的覆盖区域为基础对光节点的数量进行明确。然后以光节点数量为基础来确定光缆路由,然后根据路由的走向明确光纤会接点,同时对光功率的路由损耗值进行计算,然后以此为基础对光分路由器的光分比和位置进行明确。

2.2与EPON网络的配合

一般情况下,有线电视网络系统的光分路器使用的是熔融拉锥技术,在这种技术下,线路的光分比可以根据需要进行设计。

2.3有线电视光纤传输网设计模型

第一,覆盖半径。有线电视光纤传输网络的覆盖半径是:以末级分前端为核心的2—24千米范围以内的区域,在设计的时候,可以以实际情况为基础随意的选用。第二,光接收机的功率。光接收机接受的最低的光功率是负2.9dBm,最高的光功率是0.1dBm,充分确保了数字电视的MER在31dB以上。第三,光传输设备的选择。为了保证设备的运行效率,在选择末级分前端的主要的光传输设备的时候使用的是22dB的光放大器。第四,设计原则。以上述模型为主来进行有线电视光纤传输网络的设计,在设计的过程中,以实际的情况为准来调整光纤结构,降低的设计难度,并且将有线电视网络与EPON网络结合在一起,为三网融合,为以后有线电视事业的发展打下了良好的基础。

3结语

在三网融合的政策背景下,有线电视网络有着非常广阔的发展前景。但是在高速发展的同时也出现了一些矛盾,比如,有线电视光纤网络的建设期限比较短,导致有线电视光纤网络的设计结构可能存在不合理的现象。为了解决这个问题,本文从光节点的数量、有线电视光纤网络与EPON网络的结合两个方面对有线电视光纤网络的设计模型进行了探讨,以期为有线电视光纤网络的模型设计,对有线电视的发展做出应有的贡献。

参考文献:

[1]郭斌,王炜,李小刚等.有线电视光纤传输网设计模型[J].有线电视技术,2013,(11):17-19.

[2]陈小强.有线电视光纤网络设计策略[J].魅力中国,2014(17):238.

上一篇:语言文字范文 下一篇:绘图软件范文