光纤通信的目的范文

时间:2024-01-02 16:42:54

光纤通信的目的

光纤通信的目的篇1

关键词:光纤通信技术;超高速系统;光联网;IP业务

伴随着科学技术的进步和信息时代的到来,世界通信技术和通信方式都发生了翻天覆地的变化,致使传统的通信方式逐渐无法满足现代化社会发展需求,取而代之的是以光纤通信为主的新技术方式。这种技术方法在信息技术高速发展的新时期得到广泛的应用,不仅为人们信息交流提供了方便,还给社会经济的发展做出了重大贡献。

一、光纤通信技术概述

我国是一个人口大国,也是一个通信大国,光纤通信作为现代化通信技术领域最受关注的一部分,它正向着高速、超长传输距离以及大容量方向飞速发展。尤其是在当今网络化时代,人们对光纤通信技术的要求也在不断的提高,同时也促进了光纤通信技术的飞速发展。

1. 光纤通信技术概念

光纤通信是以光作为主要的信息载体,以光纤作为传输媒介的一种通信方式。在目前的社会发展中,这种光纤通信技术的基础在于光纤、光源和检测器,在应用的过程中光纤是一个通信媒介和光纤维导体,它是有线通信的一种。光纤通信系统中,作为载波的广播频率就如同电波频率一般,不过它与电波相比较却又高出了很多,因此具备着传输速度快,工作效率高的优势。近年来的社会发展中,光纤通信技术得到了大力发展,也受到人们的高度重视,同时它的应用范围大幅度的扩大。

2. 光纤通信技术分类

光纤除了在目前按照自身制造工艺、构成材料以及化学特性进行分类之外,在实际工作中还能够按照实际工作需求和分类要求进行归纳,将其控制在两种不同的范围之中。在目前的管理工作中,按照用途我们可以将光纤通信技术分为通信用光纤和传感光纤两种,按照功能则又可以将其分为光波、整形、分频以及倍频等多种功能。

二、光纤通信技术的特点

在我国社会发展中,光纤通信技术的应用已经有二十多年的历史了,这段历史中,我国的光纤通信技术得到了大力的发展,同时也取得了辉煌的工作成绩。光纤通信本身具有着损耗低、传输速度快、传送频率高以及容量大、体积小、抗干扰能力强的优点而得到业内人士的青睐,也迎来了飞速发展的态势。截至目前,这一技术已经广泛的应用在多个工作领域当中,成为现代化社会发展中最受关注和重视的技术手段。就目前光纤通信技术的应用特点进行分析,其主要有以下几方面:

1、通信容量大

光纤通信技术相对于传统的铜线、电缆通信技术而言有着传输频率宽、传输速度快。对于单波长光纤通信技术来说,它在应用的过程中因为终端设备中连接了电子屏,因此而产生电子瓶颈效应,给传输工作带来一定的困扰和制约。为此在工作中通常都是设置了相应的技术要求,采用现代化技术手段来增添光纤的容量,以保证信息传输工作的顺利开展和进行。

2、低损耗

现如今的通信媒介选择当中,没有任何一种通信媒介能够与光纤相媲美,这主要是因为光纤本身存在着能耗低、材料损耗少的优势,它在制造和生产中不存在任何的铜以及有色金属,而是由石英构成的,为此它有效的适应了节能、环保的社会发展大势要求。这也就意味着光纤通信技术在应用中能够更好的节约材料、减少工程施工成本,提高工作效率。

3、抗干扰能力强

因为光纤通信材料都是以石英等材料组成的,它在应用的过程中本身具备着良好的绝缘性能和抗腐蚀性能,因此免去了自然界各种腐蚀物和电离子影响。同时,在目前的工作中,这一技术在应用当中能够有效的抵抗太阳变化和雷电干扰,更是避免了人为因素而引发的电磁问题。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

4、无串音干扰,较好的保密性

在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内部光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。除了以上的显著特点之外,它还有光纤径细、较轻的重量、质地柔软、铺设方便等特性;光纤的原材料资源十分丰富,成本较低。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,同时还可以采用于在电力通信控制系统当中,执行工业监测、控制的人物,同时也越来越为广泛地被应用于军事领域。

三、光纤链路的现场测试

1、现场测试的目的

对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。

2、现场测试标准

目前光纤链路现场测试标准分为两个类别:光纤系统标准和应用系统标准。首先是光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。其次是光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。

3、光纤链路现场测试

光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。

四、光纤通信传输应用展望

今天,人们使用光纤系统承载数字电视、语音和数字是很普通的一件事,在商用与工业领域,光纤已成为地面传输标准,对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式。

光接入网通信技术的更进一步发展。现存技术上的接入网依旧是双绞线铜线的连接,仍然是原始的、落后的模拟系统,而网络中的光接入技术的应用使其成为了全数字化的,且高度集成的智能化网络。光接入网通信技术所要达到的主要目标有:最大程度的使维护费用得到降低,故障率得到明显下降;可以用于新设备的开发和新收入的不断增加。

五、结束语

光纤的魅力在于它有极大的宽带,随着通信技术的快速发展,光纤到户的成本已降低,在不久的将来就可达到与DSL网一样的水平,这使FTTH的实用化成为现实,所以说光纤通信将是一个新的亮点,随之在相应技术的成熟与实用化技术的支持下,FTTH的未来趋势是不可阻挡的。

参考文献

[1]董君.光纤通信技术的发展与趋势[J].中国科技博览.2009

光纤通信的目的篇2

关键词 光纤;传输技术

中图分类号:TN929 文献标识码:A 文章编号:1671-7597(2014)20-0091-01

目前光纤通信技术在通信领域得到了广泛运用,成为现代通信的一个重要支柱。本文详细介绍了光纤通信新技术的应用情况,并对新技术的特点与发展方向进行分析,旨在让更多人能了解光纤通信新技术的发展。

1 光纤通信新技术的基本类型与应用情况

随着光纤通信技术的不断发展,其已渐渐代替以电缆为介质的通信技术,成为我国现今重要的通信技术之一。从光纤通信技术开始推出到现在,已经有很多种类不同的光纤形式,例如长波形光纤、短波形光纤。在欧美等先进地区,光纤通信技术得到广泛推广和使用,光纤通信已经成为很多国家主要的通信方式,但目前我国仍同时运用光纤通信和电缆通信这两种通信方式,与西方发达国家相比,我国通信技术相对滞后,使光纤通信技术在运用过程中出现一些问题,这些问题严重影响了我国通信技术的发展。为了改变这种现状,研究开发新的光纤通信技术具有重要的现实意义。

当前在光纤通信领域主要有以下几种新技术。

1.1 相干光通信技术

在这种通信技术中主要引用了外差检测与相干调制。相干光通信技术的原理在于运用外差检测技术检测光信号后,将信号光传输到接受端。这种技术的优点是灵敏度高,通信容量大,传输距离长,有多种调制方式,大大提高工作效率。“相干”是干扰和调制信号,运用将要传输的信号改变光波载体的振幅与相位等,实现信号在多个频道的传输。“外差”主要是将因振荡形成的激光和输入信号混合在一起,直到看不见原有光的形状,其已成为另外的中频信号为止,将要传送的光与这些中频信号具有相同规律的振幅与相位。相干光通信技术可以达到多频道的传输的目的,实现同样时间里多个用户的通信。与原有的光纤通信技术功能相比,相干光通信技术具有更为完善的性能,大大提高了传输效率与质量。因此,这种技术是光纤通信领域的一个重要发展方向,将更为广泛地运用于人们的日常生活与工作中。

1.2 光弧子通信技术

这种通信技术是一种全光非线性通信方案,是把需要传输的信息调制到弧子后再进行传输的一种通信模式。目前在光纤通信领域,限制传输容量和传输的距离主要有两方面的原因:

1)传输过程中光脉冲渐渐变宽,产生色散现象。

2)光信号在传输过程中能量逐渐减弱。为了解决这两个问题,研究设计出了光弧子通信技术,主要目的在于提高光纤通信技术的质量,实现高效传输的目的。

1.3 光复用技术

光复用技术是目前光纤通信技术中最活跃的领域,在很大程度上推动了光纤通信技术的发展。光复用技术主要目的在于尽可能地提高同样时间内的通信传输效率。主要的复用形式有以下三种:信息码分复用、信号分复用、光波分复用。信息码分复用方式:把用户的编码序列调制到具体的专门的光信号中,同时只有在接近网络且具有准确的编码序列时才可以进行通信,这种分复用方式起到密钥的作用,能够有效地发挥防窃功能。信号分复用方式:分割同一光载波波长,使其成为一个个帧,再将分割出的帧进行复分割,使其成为若干个长度相同的时隙,这些时隙在同样的时间里以相同速度发送信号,这样能够使位置不同的信号接收地点在同样时间里接收到一样的信号内容。光波分复用方式:对波长进行间隔及调制,从而实现同样时间同一光纤里多个波长的信号传送,使光纤通信效率大大提高。

2 光纤通信技术的特点与发展方向

2.1 光纤通信技术的主要特点

通信干扰小,传输距离远。光纤中具有强抗腐功能的二氧化硅,能够较少通信过程中的干扰和破坏,光纤的优质材料也能够满足远距离传输的要求。通信容量大。虽然光纤尺寸较小,但其作为一种传导工具,在制作过程中经过特殊的处理,因此光纤传输容量非常大。光纤通信无辐射,保密性好。通常情况下,光波不能脱离于光纤之外,不会出现内容外泄的现象,保证了信息的安全,光波无法泄露出来,也就不能对人产生辐射作用。

2.2 光纤通信新技术未来发展方向

光器件集成发展。随着光纤通信技术在许多领域得到广泛运用,其对设备功能的要求也越来越大。单纯的增加设备来满足光纤通信的需求,这种方法增加了投资成本,可行性不高,因此光器件集成是光纤通信领域的重要方向。光处理方式发展。目前光纤通信需要经过电处理才能实现,容易受到断电的影响,所以摆脱电处理方式,实现光处理是未来发展的方向。全光网络就是光处理方式的体现,进入全光网络后的信号的传输都以光的形式存在,这种方式可以有效地保证通信管线不因过度膨胀而受损,大大提高了网络资源的利用率。

3 结束语

光纤通信技术作为信息技术的重要支撑,在信息社会中起到重要的作用。随着信息技术的不断发展,人们通信系统的要求也越来越高,而光纤通信技术有很大的发展潜力,将成为未来通信发展的主流。现代光纤通信传输技术因其具有诸多的优势性能,在通信领域内的综合应用将会越来越广泛,其应用的深度及广度也会发生质的飞跃,并在光纤技术不断发展优化的推动下将是通信网络逐渐向光网络智能化及全光网络化的方向上发展。

参考文献

[1]齐相军.浅谈当前光纤通信技术的现状与发展趋势[J].中小企业管理与科技(下旬刊),2011(08).

[2]唐军.有线电视网络传输技术分析[J].经营管理者,2011(15).

[3]王凤岐.浅析光纤通信技术的发展[J].科技信息,2011(16).

[4]苏赐民.从光纤通信技术的发展中看前景[J].工业设计,2011(05).

[5]夏坚.浅析现代光纤通信传输技术的应用[J].信息通信,2011(04).

[6]张智杰.现代光纤通信传输技术的综合应用[J].科技传播,2010(09).

光纤通信的目的篇3

关键词:光纤,发展趋势,通信技术,对策,应用

 

光纤通信最大的技术优点是信息容量大;且光纤的损耗低、传输距离长;光纤通信不易被电磁干扰,对信息的保密性能好;可以有效节约有色金属;光缆尺寸小,便于安装和运输。在这几十年的发展历程中,光纤通信已经成为现现代通信技术的重点。

1光纤通信的特点

1.1频带极宽,通信容量大

在光纤技术中,光纤可以容纳50000GHz传输带宽,光纤通信系统的容许频带(带宽)是由光源的调制特性、调制方式和光纤的色散特性决定的。例如,单波长光纤通信系统一般是使用密集波分复用等一些复杂的技术,以便解决通信设备的电子瓶颈效应的问题,保证光纤宽带可以发挥更积极的作用,从而增加光纤的信息传输量。目前,单波长光纤通信系统的传输率已经得到了2.5Gbps到10Gbps。

1.2抗电磁干扰能力强

光纤的制作材料主要是石英,其绝缘性好,抗腐蚀能力强。论文格式,发展趋势。因此,光纤有较强的抗电磁干扰能力,且不受雷电、电离层的变化和太阳黑子活动等电磁影响,也不会被人为释放的电磁所干扰,这就是石英这种通信材料的最大优势。论文格式,发展趋势。除以上有点之外,光纤体积小、质量轻,不仅可以节省空间,还便于安装;光纤的制作材料资源丰富,成本低;光纤的温度稳定性好,使用寿命长。论文格式,发展趋势。由于光纤通信的优点很多,使其使用范围也不断扩宽。

2光纤通信技术的应用

自上世纪90年代以来,我国光通信技术已经得到了很大的发展,特别是广播电视网、电力通信网、电信干线传输网等方面更是发展迅速,促使光纤生产量不断增加。现代信息网络通信系统不断扩展和增加,导致网络的管理和维护,以及设备的故障判定和排除就显得更加困难和繁杂。此时,我们采用SDH+光纤或ATM+光纤组成宽带数字传输系统,这种传输系统可以保证环网传输的稳定性,链路传输系统或者组成各种形式的复合网络,也能满足各种信息传输的需要。针对电视节目的传输,我们同事是采用的宽带传输系统进行传输,将主站到地方站的所有数字信息设置成广播的方式,让同样的电视节目可以在不同的地方下载,也能利用网络管理平台的控制,以便不同的站点可以下载不同的节目。目前,有线电视已经在全国普及,在有线电视的网络支持下,宽带多媒体传输网络就更容易实现了,因此,在这种情况下,我们不应完全废除现有的有线电视网,而是科学的利用它,满足人们的需要,将光纤通信技术融入到千万家,方便人们的生活。

3现代通信系统的光纤技术

3.1单纤双向传输技术

单纤双向传输技术是针对双纤双向传输而言的,双纤传输时,其信号可以在两根不同的光纤中传输,而单纤传输时,信号在调频过后可在不同的波段后,在同一根光纤里传输。现代光纤的传输容量不断增大,从理论上说,光纤传输的容量是无限的,只是受到设备等各种因素的影响,传输容量大大降低,远不及预期的效果。目前,光纤通信传送网都是通过双纤双向传输的,如果利用单纤双向传输技术就能有效的节省一半的光纤资源,而对于现代庞大的光纤网络传输系统中,可节省的光纤资源数量也是十分庞大的。

研发出成熟的单纤双向传输技术对网络通信的发展有十分积极的意义。单纤双向传输技术已经得到了广泛的使用,但主要用在光纤末端接入设备:PON无源光网络、单纤光收发器等设备,骨干传送网上还没有使用到这种技术。可见,这也是光纤通信技术的未来发展方向。

3.2光纤到户(FTTH)接入技术

高速数据通信和高质量视频通信等媒体业务的发展和拓展,对现代宽带综合业务网的研究起到了积极的推动作用。而今,核心网便成为了以光纤线路为基础的高速信道,国际权威专家认为,宽带综合信息接入网是现代信息高速公路发展的“最后一公里”,同时也指出,这是信息通信发展的又一个瓶颈。论文格式,发展趋势。虽然ADSL技术为现代通信业务提供了良好的基础,但对于未来将要发展的通信业务,如:网上教育,网上办公,会议电视,网上游戏等双向业务和HDTV高清数字电视,尤其是HDTV,现阶段的传输率仅为19.2Mbps,用H.264压缩技术可以压缩到5-6Mbps。论文格式,发展趋势。

在实践中,QOS有所保证的ADSL的最高传输速率是2Mbps,但仍然难以传输HDTV高清数字电视。论文格式,发展趋势。而使用铜线接入的ADSL的方式已经无法再满足数据高速传输的需求,采用光纤接入技术已成为必然趋势,是未来通信技术的发展趋势。

4光纤通信系统中的新技术探究

4.1光网络的智能化

光网络智能化是通信技术的重要发展方向,光通信技术已有40年的发展历史,主要是以传输为主线的。但随着计算机技术的发展,加上计算机技术与通信技术的结合,网络技术得到了更高层次的进步,现代光网络中还加入了自动发现能力、连接控制技术和更完善的保护恢复功能,促使光网络的智能化发展,其中,ASON就是典型的例子。

4.2全光网络

未来的通信网络是属于全光网络的世界,全光网是光纤通信技术发展的最高层次,也是光纤技术的最理想发展阶段。传统的光网络可以实现节点间的全光化,但在网络结点处仍采用电器件,限制了光纤通信容量的进一步提高,因此,真正的全光网已经成为光纤网络发展的最终极目标。

4.3光器件的集成化

光电子器件的发展趋势是实现其集成化。想要实现全光通信网络,器件的集成是重点,也是核心,光子集成芯片的制造需要将将激光器、检测器、调制器和其他器件都集成到芯片中,这些集成需要在不同材料多个薄膜介质层上不停的沉积,主要材料有砷化铟镓、磷化铟等。虽然这是一种复杂的技术,但随着互联网多媒体技术的发展,传统的1M-6M的互联网接入带宽变得不足,因此,只通过增加设备来提高速度扩大带宽已经不现实了,可见,光器件的集成是必须的,也是保证光纤通信技术发展的核心内容。

5结语

光纤通信技术的发展可以促进城市信息化的形成,而社会的信息化又进一步加速了光纤通信技术的发展,大容量、高速率是社会信息化的两个重要特征,新型光通信技术也正是为了解决现代光纤技术中的问题而诞生的,这必将使得光纤通信技术取的更大的发展。

参考文献:

[1]裘庆生.浅析我国光纤通信发展现状及前景[J].信息与电脑(理论版),2009,(12).

[2]刘海军.浅析光纤通信技术的现状与发展[J].科技信息,2009,(31).

[3]白建春.光纤通信技术的发展及其应用[J].中国新技术新产品,2010,(3).

[4]毛谦.我国光纤通信技术发展的现状和前景[J].电信科学,2006,(8).

[5]赵兴富.现代光纤通信技术的发展与趋势[J].电力系统通信,2005,(11).

 

光纤通信的目的篇4

【关键词】光纤通信技术的发展 特点 前景

一、光纤通信的历史

光纤通信的诞生与发展是电信史上的一次重要革命。1966年,美籍华人高锟(c.k.kao)和霍克哈姆(c.a.hockham),预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的重视。1970年,美国康宁公司首次研制成功损耗为20db/km的光纤,光纤通信时代由此开始。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。8.5微米波段的多模光波为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。

二、光纤技术发展的特点

(1) 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5gbps到10gbps。

(2) 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20db/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3) 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

三、光纤技术的发展前景

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(1)向超高速系统的发展。目前10gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(wdm)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(2)向超大容量wdm系统的演进。采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(wdm)的基本思路。采用波分复用系统的主要好处是:1.可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;2.在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本:3.与信号速率及电调制方式无关,是引入宽带新业务的方便手段;4.利用wdm网络实现网络交换和恢复可望实现未来透明的、具有高度生存性的光联网。

(3)开发新代的光纤

传统的g.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(g.655光纤)和无水吸收峰光纤(全波光纤)。从长远来看,bpon技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(4)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以 wdm技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

四、结语

光纤通信的目的篇5

【关键词】 光纤通信 发展现状 前景

一、光纤通信的内涵

光纤通信是指使用光纤作为传输媒介,把光作为信息载体的一种现代通信方式。光纤通信的原理是基于光纤、光源以及光检测的组成。其中光纤的的绝缘性质良好,是采用玻璃材质制成的光导纤维,不会引发接地回路的问题。光纤与光纤之间产生串线的情况的几率基本为零,信息传输的保密性能和安全性能非常高。光纤的内芯非常细,所以所占用的传输系统空间特别小,大大的节约的空间。光纤通信系统里的频带非常宽,故而光纤通信的容量巨大。在光纤通信中,光波频率高,损耗小,不需要中继设备,可以进行长距离的信息传输。抗各种电磁干扰的能力非常强大。因此,光纤通信对于资源的优化配置或是军事上都有重要作用。光纤通信的急速发展,使光纤通信的适用范围不断扩大,成为了现代通信的重要方式,也对整个社会的影响越来越大。

二、我国光纤通信的发展现状

1、使用于广播电视网。近年来,我国光纤通信技术发展的越来越成熟,应用的领域逐渐扩大。在电视广播领域里,广播电视信号以光纤作为传输的载体,网络建设是以光纤网络为中心的大局势已经形成。光纤通信传输信息系统具有传输频带极宽,通信容量大,光纤损耗小,串线几率低,抗干电磁扰能力强等优势,传输过程中不会存在因为中继设备而产生的噪音或杂声,而干扰信息信号的质量,更加不会因为拖延接收信号的时间而受到轻易影响。,光纤通信传输信息系统因其自身所具有的特点和优势,现在已经成为城市中最普遍的的数字传输和数字电视的链路,也实现电视传送方式中电视直播或者两地传输的基本方法。

2、使用于电力通信网。随着光纤通信在通信网络范围中的广泛采用,我国大部分城市的电力专门使用通信网络也大体上实现了由主干线的接入网向光纤通信网络的转向过渡。当前,以光纤通信网为基础的电力通信网已经成为我国较为完善的,较大规模的电力专用通信网。电力通信系统需要传输的各项音频、数据、宽带等各项电信业务以及电力生产产业的业务基本上都是光纤通信负责传输和承载。

三、对我国光纤通信前景的分析

1、通信容量巨大。目前,我国的电子通信正处于高速发展的好时机,尤其是是光纤通信的发展前途不可估量。长距离信号传输技术和容量大是当下最受青睐的光纤通信的优势特点。受到了各方的极大关注。光纤通信具有以下优势,信息传输频带大,光纤的损耗少,光纤具有超大容量和体积小等等。正是因为上述各种优点,光纤通信广泛应用于多个领域。”目前的波分复用技术可以可以实现提高光纤的信息信号传输,这种技术也能够实现在两种或两种以上的不同光信号在同一条光纤中完成各自的传输,互相之间不会产生干扰影响。在研究中,科研人员发现在某种程度上,光时分复用技术也可以实现增加光纤中信号的传输的信号数量,以期实现扩大信号传输容量的目标。

2、光孤子通信。在光纤通信技术中,光孤子通信不是通过非线方式进行而是依靠信号的光学性质实现的。在光纤通信的传输中,光孤子依据超短光脉冲的原理实现,光孤子,具有信号传递量大的特点,光孤子技术对长距离的信号传输有重大作用。称光孤子技术是适合在超长距离,高速传递的光纤通信里的最新先进技术。光孤子技术是在信号传输过程中提高信号传输速度的关键技术。光纤通信中的光孤子技术在信号传输的速度方面使用的长距离的高速通信技术,、在光孤子技术的工作原理上是利用时域超短脉冲完成的,除此以外,还包括频域的超短脉冲,也提升了通信系统信号在光纤中的传递的速度。

光纤通信的目的篇6

关键词:通信技术;光纤;现状;特点;应用

中图分类号:TN913.33 文献标识码:A 文章编号:

光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。

1光纤通信技术综述

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:①信号的发射;②信号的合波;③信号的传输和放大;④信号的分离;⑤信号的接收。

2光纤通信的主要分类

2.1 普通光纤。普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

2.2 核心网光缆。我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

2.3 接入网光缆。接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

2.4 室内光缆。室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

3光纤通信技术的特点

3.1 频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

3.2 损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

3.3 抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

3.4 无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

4光纤通信技术的发展趋势及主要应用

4.1 超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

4.2 光孤子通信

光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

4.3 全光网络

未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

4.4 有线电视网络。20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用 SDH +光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目。

现在光通信网络的容量虽然已经很大, 但还有许多应用能力在闲置, 今后随着社会经济的不断发展, 作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力, 推动通信网络的继续发展。因此, 光纤通信技术在应用需求的推动下, 一定不断会有新的发展。

参考文献:

[1]王磊,裴丽. 光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

光纤通信的目的篇7

当今社会各行各业都广泛的运用着信息通信技术。光纤通信技术具有出色的传输特性,能够很好的能够当前市场环境对信息输送的需求。本文介绍了光线通信技术及其应用,并分析未来光纤通信技术向何方向发展。

【关键词】

光纤通信技术;应用发展趋势

光纤通信技术的诞生是电信行业一项革命性的进步,光纤通信技术的应用使现在的信息传递质量得到了很大的优化。目前的光纤通信技术属于第四代通信技术,具有质量轻、速度快、损耗低、体积小等优势,且能够稳定的应对磁干扰环境,输送带宽大。在我国多个领域内都有广泛的运用,尤其是在生产和服务行业都对光纤通信技术有很高的认可度。

1、光纤通信技术

光纤通信是指利用光纤纤维来作为传输媒介,利用光通信的方式来达到输送信息的目标。光纤纤维使用的硬件主要包括涂层、纤芯、包层等结构。包层指的是中间层,由于纤芯和包层的折射率不同,光信号在纤芯内会进行全反射,而这就是光信号的传输过程。在光纤纤维中并不只有一根光纤,而是由许多光纤聚合形成光缆。光信号在光缆中传递的内容含量巨大,能够在同时间内输送极为大量的信息。这是因为这种光缆的光波频率非常高,并且光纤传输频带非常宽,所以其传输容量相对较大。使用这种光纤通信技术来传送信息,不仅占用空间小,传输稳定,在保密方面也有相当的优势,可以用于防窃听,可以运用在一些特殊领域。另外,可以作为光纤纤维的材料储量和来源都很丰富,可以减少使用有色金属,质量轻且成本低。

2、光纤通信技术的具体应用

2.1在通信方面的应用。

在当今的信息通信领域内,光纤通信有着非常重要的地位。特别是在城域通信、本地通信以及国际通信等通信行业中,光纤通信技术已经成为不可替代的存在。与此同时,光纤通信技术仍在不断发展,并逐渐在整个行业内成为领先技术。

2.2电力通信方面的应用。

当今全世界已经进入了电气时代,电气成为人们生活中必不可少的元素。近年来我国的经济和社会文明水平飞速发展,国家的电力供应负担也在不断加重。传统的电力系统中,主要采用远程通信和人力调节相结合的通信方式,而在当前电力系统规模不断扩增的背景下,这种传统的方式已经变得落后,逐渐无法满足需求。而为了满足这种需求,采取的有效方法之一就是改善和强化电力系统中的网络通信技术。光纤通信安全稳定、质量高、成本低、占用空间小等特性使得它成为一个非常理想的选择。

2.3在传媒行业的具体应用。

传媒行业中需要进行无线信号传送的主要是广播、电视、点播等部门,而输出的信号内容主要是声音和图像,如果传送信号不稳定,就有可能造成传输出的视频、音频出现杂波、色斑等问题。光纤通信技术抗干扰性强,其稳定高效的性能在这种环境下能够发挥出良好的效果。另外,光纤信号在传递过程中很少发生损耗,因此输送出的声音和画面质量比较高。目前许多大型媒体单位都开始建设和使用光纤技术来用作信号发送,来为用户提供高质量的音频和视频。

2.4在互联网中的具体应用。

互联网领域中涉及的信息传送是最多的。互联网信息传送要求信号传递准确,同时用户对网络传送速度要求也在不断提升。光纤通信技术在其中的运用完全满足了这些张智国家新闻出版广播电影电视总局694电台内蒙古呼和浩特010000要求。在互联网中光信号向数字信号转换时,最终得出的信号更加清晰,与传统通信方式相比有很大的进步。光纤通信技术在居民互联网中的运用还极大的提高了人们对互联网的利用率,使居民生活水平得到了很大的提升,普通居民能够在加重通过互联网实现许多操作,包括网络购物、物流下单、网银操作等,极大的方便了人们的生活。

3、光纤通信技术的发展趋势

光纤通信技术目前已经得到广泛的使用,在社会各行各业都发挥着作用,但未来光纤还有许多潜力可以开发。目前只应用了其全部潜力的大约1‰。未来随着市场规范逐渐完善,研究人员的研究逐渐渗入,再结合数字化和网络化技术,能够开发出光纤通信技术更多的应用。现阶段,光纤通信技术未来发展趋势为:

3.1通信信道容量持续增大,实现超大容量。

随着未来信息传递的规模越来越大,通信通道的容量必然要不断扩大,才能满足需求。现在除了光纤通信技术在不断进步外,其他技术和应用设备也有了很大的进展。原本装载光纤通信系统的10Gbps系统已经开始转化为更加庞大的网络系统。新系统能够敏感的应对极化模色散,传输质量更好。但这一系统目前和光纤电缆的匹配度还很低,需要进一步优化。如果进一步优化上述内容,就能够提高光纤通信传输速度和信息容量。同时,最近几年有效应用了一种波分复用技术,其可以显著提升光纤通信传输速度和信息容量,在以后的通信传输系统里面的应用前景非常具广阔。

3.2光孤子通信。

光纤通信技术本身在超大容量传输中具有很大的潜力。这种孤子传输技术能够显著改善色散给容量和信息传输距离带来的影响,进而提高信息传输的质量,这是通信建设的一个重要部分。孤子传输技术中的孤子对外来干扰具有天然的抵抗性,可以抑制极化模色散出现,并平衡色散,来延长孤子有效的输送距离。目前阶段孤子通信技术还有许多技术难题需要解决,可是在人们的努力下,孤子技术一定在以后的大容量、长距离以及高速全光通信里面,尤其是在未来海底光通信系统里面,有着非常大的发展空间。

3.3实现全光网络。

可以说,全光网属于光纤通信的未来。全光网络利用光节点来代替原来的电节点,传送的信号完全以光信号的方式存在,并进行传输和交换。而交换机处理具体用户信息的时候,不再依据比特,是按照其波长来选择路由。现阶段,该课题受到了广泛的关注,尽管依然处于发展初期,可是已经明确知道了全光网的巨大发展前景。克服电光瓶颈是未来光通信有效发展的一种必然选择,同时也属于未来信息网络的一个核心。

4、结束语

光纤通信技术利用光纤纤维中光信号的传播来实现信息的传输。正如文中所说光纤通信技术具有很多优点,在拥有诸多优点的同时,光纤通信技术还具有很大的市场优势,未来光纤通信技术还会向容量更大、速度更快、成本更低的方向不断发展。在光纤通信发展过程中,应该不断投入科技人才,勇于创新,进行不断的突破,让光纤通信技术不断为社会的有效发展做出贡献。

参考文献

[1]李岩.探讨光纤通信技术的应用及未来发展趋势[J].城市建设理论研究,2014(15):48~49.

[2]王维平,赵旭.光纤通信技术的发展及趋势[J].河南科技,2013(17):2.

光纤通信的目的篇8

摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。

 

关键词:光纤通信核心网接入网光孤子通信全光网络

光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。

1 我国光纤光缆发展的现状

1.1 普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

1.2 核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

1.3 接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

1.4 室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

1.5 电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

  2 光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(1) 超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

(2) 光孤子通信

光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(3) 全光网络

未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

3 结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。

参考文献

[1] 辛化梅,李忠.论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版) ,2003,(04).

上一篇:系统理论知识范文 下一篇:教育信息化应用总结范文