光纤通信技术的特征范文

时间:2024-01-10 17:29:52

光纤通信技术的特征

光纤通信技术的特征篇1

【关键词】光纤 传输信号 波形 技术

随着信息技术的发展,我国的网络覆盖率越发广泛。运营商所具备的光纤传输资源极为丰富,显著加快了光纤传输信号波形技术的应用。在高容量信息技术所需的发展下,光纤传输信号波形技术体积较小、重量较轻、具备了频宽带的特征,通过波形与光学技术的融合,产生了光纤传输信号波形技术。对于脉冲辐射场信号的测量而言,通过光纤的使用将同轴电缆给予代替,以此加快了信号在传输体系中所使用的时间。

1 信号在光纤传输中的特征

进行物理测试时,大多数状态下,脉冲辐射探测器的输出基本为电信号,光纤只能够进行光信号的传输。所以在光线代替同轴电缆以前,应当将电-光相结合,也就是说,探测器在进行输出时,其电流脉冲经由激光二极管乃至发光二极管,从线性转换成光脉冲信号,之后再通过光纤进行传输。这些系统被称之为有源光纤传输系统。对于物理测试而言,尤其在近区测试当中,有的辐射转换体能够直接将脉冲辐射变为符合光纤在传输中的光信号。契仑柯夫转换体不仅将光纤作为辐射-发光转换体,并且还成为了光的传输线。当γ辐射与光纤介质在直接作用的状态下,会产生康普顿电子,就传播速度而言,在光纤超过光纤介质时,可以通过契仑柯夫对于光的发射角度而引发的具有连续光谱的契仑柯夫光,并且通过与光纤给予耦合,将光的信号经由光纤直达到终端处,并且记录下光导系统的配合情况,从而缔造出新的脉冲辐射场测量体系,通常将这样的测量方式称之为无源光纤传输体系。

2 光纤传输的特点

光纤传输在特点方面大多呈现出衰减与色散两方面。就衰减而言,其特征作为光线的一个主要特点,体现出光在纤维内传输一段时间以后,体现出的传输能量在耗损方面的程度。吸收耗损则变成了广播在传输过程中,经由纯石英材质形成的本征吸收耗损与经由杂质损耗构成的非本征吸收耗损。散射与辐射损耗则意为在传输当中,光波向着包层外泄露且朝着反方向进行折回,以此构成了逆转传输中的耗损。

3 光纤传输信号波形技术

光纤的耗损与波形的变动相关,石英光纤进行传输时,耗损会通过长度而更改曲线。例如当长波是1.31?m与1.55?m时,衰减值则会较低,前一波长的衰减值为0.35db/km,后一波长的衰减值则为0.2db/km。大多情况下,多模纤维远远比单模光纤更加耗费。在测试当中,绝不可将敷设的光纤进行弯曲,这是因为当光纤一旦被弯曲,则会造成弯曲耗损。光纤在弯曲时,内部与外部的压力并不相同,压力的差异会导致折射率出现变动,因为光纤中包层内的一些光波会辐射出来,构成弯曲损耗。为了最大限度将弯曲的损耗降低,在施工当中,平洞竖井进行物理测试时,弯曲会导致光纤的折弯半径相较于光纤直径高出100倍,弯曲半径则应当超过30cm。

色散的特征更加显著地体现在光纤传输的脉冲信号当中。色散指的是传输信号中具备的信号频率乃至不同形式的光波在光纤中传播的速度不同,因此并不会同一时间到达输出端,从而则会变成所输出的波形与输入波形相比较,变形有所更改,令信号处于失真的状态。当所传输的信号是数字式的脉冲,进行解调后,信息会在宽度方面进行延续。所调制的波形如果是模拟式信号,检波之后,电平则会随着信号的频率的上升而降低,这一带宽的特征则属于光纤的色散。在多模色散不会出现在单模光纤中,多模光纤就色散而言则最为明显。

在辐射场的辐射状态下,金属壳体内产生的电磁场度,较难运用普通的同轴电缆进行传输。这是由于在同轴电缆的传输过程中,较易受到核辐照与康普顿电流的干扰,所测得的电磁脉冲极其微弱,但是脉冲在上升时却极为迅速。为了处理这一问题,可以通过光纤传输的方式进行。因为光线传输系统的频带较宽,基本不会被电磁场所左右。将瞬变波形改变为LD或LED后,输出光的功率通过输入信号的度进行改变,形成光电的转换,再通过1000多米的光纤传输以后,通过光探测器探寻接收光电的转变,光电转变之后的弱信号,在低噪音放大至一定的幅度之后,则能够进行显示、测量和记录。光纤从系统方面而言,大多通过三个方面所形成,也就是光的发射机、纤传输体系以及接收机。发射机为了保障系统可以更加迅速的给出反应,则可以挑选脉冲反应较快的激光器LD,以此作为发射机的光源。在快速调制脉冲方面,以LD特征而言,激光器并不能担负较大的功率。这是由于在信号到来前,4?s阈值信号由于在脉冲中较宽,所以设置在调制器内,以便可以使得激光器在工作时处于脉冲状态。为了能够令所传输的信号能够更加正确的进行运转,LD工作的点应当处于线性的中心,从而解决了温度漂移导致的误差和工作补偿。在比例测试信号方面并不稳妥,由于测试信号具备了其应有的直观性,将传输信号出现的同时触及与拾取跟随器在分辨正、负以后产生的固定幅度的标准信号给予对比,将其添加至信号输入的端口内,并处于传输信号的后侧。光接收机是在光探测器以及低噪音带宽放大器中产生的。经由光纤传输到终端的信号内,通过光探测器给予接收并将其变成信号,信号经由放大之后再透过两个显示管给予记录。示波器可以记录到被检测的信号乃至校准的信号中全波形情况,经过对比,直接把被测的信号幅值进行读取。台阶脉冲当中,核信号的存在与否完全取决于被测的波形。在物理测验中,假如未出现被测信号,则台阶脉冲内也会具有十分准确的信号进行输出。如果更改为同步触发,则能够令正确的信号变为系统的审核信号。

4 结束语

光纤传输特征令光纤传输信号波形的技术运用愈发普遍,由于传输资源与光缆资源极为丰富,令其在信号传输中具有显著的效果。所以在提升信号传输上具有良好的水准。近些年,通过光缆资源与传送网本地传送等不同形式的应用,令传输的效果更佳精良。

参考文献

[1]王忠华.光纤传输技术的优势特点及其维护策略[J].西部广播电视,2015(09):250.

[2]崔建生.光纤技术分析及其广播电视信号传输的应用[J].信息通信,2014(10):274.

作者简介

刘妍(1973-),女,四川省射洪县人。大学本科学历,科级/通信工程师,东北石油管道有限公司。主要研究方向为企业语音交换、通信传输网络系统的搭建、运营及维护。

作者单位

光纤通信技术的特征篇2

自从被研发之日起,光纤通信技术已经获得了迅速的发展与进步。现阶段,光纤通信技术已经具有更高的速率、更大的容量,而且其优势特点已经在通信系统运行过程中充分发挥出来,这项技术也被广泛应用在多个生产生活领域。现阶段主要应用的光纤通信技术主要有以下几种:

1.1核心网光纤

现阶段,中国已经在一些重要的主干线路系统,例如:国家、省级干线等使用光纤技术。单模光纤逐渐代替了多模光纤,被积极应用并发挥作用,主要的单模光纤有:G.652以及G.655型号光纤。其中的G.653与G.654号光纤由于存在一些弱势特征,例如:无法很大程度地扩大系统容量而被逐渐取消使用。干线光缆中分立的光缆代替了光纤带,被用在室外发挥了积极作用,所以的光缆中都采用了新型的架构形式,以往的紧套层较式以及骨架式结构都已经不被使用。

1.2应用于电力线路中的通信光缆

光纤属于介电质,或者被加工成全介质,内部不含任何的金属成分,达到电力线路应用的最佳标准。这种全介质光缆在电力系统中发挥了非常重要的作用,主要的结构类型有:全介质自承式结构以及架空地线的缠绕式结构。自承式结构由于能够独自布置与安放,被广泛利用,特别是在电力电能运输系统中发挥了关键而重要的作用。现阶段,市场上已经出现了各种各样的自承式结构的光纤技术,满足了广大企业的需求。然而产品的一些性能特征仍然有待发展,例如:光纤蠕变、耐电弧性能--------都需要不断地发展与完善。自承式结构的光缆目前在整个国内市场中的需求量非常大,而且属于一种畅销产品。

1.3室内光纤

室内光线主要被用在室内的信息传输等服务。而且多数情况下需要语音、数据、视频信息的同时传输。也会被用在遥测与传感器等领域。依照权威机构指代的室内光线,则应该体现为:局内光纤以及综合布线用光纤两种。前者主要用于通信中心局以及其他电信建筑中,放置有规则而且比较稳定安全;后者则被用户端使用,放置于用户的室内,这其中就存在一定的易损特征。

2光纤通信技术的发展趋势

人们对光纤通信技术的一大追求就是实现其高速率、高容量与远距离传输,或者实现全光网络服务功效。(1)高容量、远距离光纤传输波分复用技术在很大程度上增强了系统的传输容量,根据研究表明,在不久的将来还有可能被用在跨海光传输中。最近一些年来,波分复用系统迅速发展起来,其中的1.6Tbit的WDM系统被广泛地应用于商业领域,于此同时,全光传输距离也在不断地扩大,增加传输容量的一类有效方法就是通过光时分复用技术,也就是OTDM技术,这项技术的应用增加了单根光纤传输的道数,以此来扩大容量。如果单纯依赖OTDM与WDM技术来扩大系统容量是不够的,也是十分有限的。在这种情形下,通常将OTDM数据信息实行波分复用处理,进而来在很大程度上增加传输容量。为了能够控制相邻信道的彼此影响,通常使用偏振复用技术。Returnzero(RZ)编码信号在整个的通信系统中由于占据空间不是很大,这样就减弱了对色散管理分布的需求。更重要要的是这一技术能够更好地适应光纤的非线性以及偏振模色散。所以,现阶段的归零编码传输技术已经被广泛应用在OTDM与WDM系统中。(2)光弧子通信。这一系统主要是将光弧子作为信息载体,光弧子是一种奇特的ps数量级超短光脉冲。在光纤进行远距离、大规模的传输时,在这一技术支持下,能够维持传输中光纤波形以及速率的稳定性,确保信息传输毫无错误。将来的发展还会朝着通过利用再生、定时技术发展,也会凭借控制ASE的方法来进一步扩大信息传输距离,光学滤波能够把距离扩大到十万千米之多。利用超长距离的高速通信技术、时域或频域的超短脉冲等技术能够有效确保传输速度,传输速度可高达100Gbit没秒之多。从当前来看,虽然光弧字通信技术仍然有很多难题有待考察,然而在一些全光通信领域,例如:远距离、高速率、以及大容量特征的全光通信领域,这一技术仍然具有非常美好的未来。(3)全光网络。全光网络属于众多的研究者所追求的最高光纤技术,也是堪称光纤通信技术的最佳发展时期。这一网络化发展也势必会成为一种趋势。这一技术是将光节点来代替了电节点,而且各个节点都是以全光化的结构运行,以光的形式来对整个信息数据加以传播以及转换,而且根据波长度来探究如何使用路由,也能实现对用户信息的科学处理。现阶段来看,这一技术仍然属于初级发展时期,会成为重点研究与探索的对象。

3总结

以上是关于光纤通信技术现状与发展趋势的分析与总结,光纤通信技术已经被业界与社会广泛地认可,在未来的世界中,这一技术也势必会得到最广泛的利用与发展。

光纤通信技术的特征篇3

关键词:信息通信;光纤通信;应用

1引言

光纤实际上属于一种全新信息传输媒介,可以在传输环节内应用信息模式,推动通信技术现代化建设。通信技术在越加完善成熟内,不同领域为了可以满足自身对于传输信息容量要求,相继应用了多种辅助技术,提升光纤信息传输容量,有效解决光纤通信在信息传输内存在的问题,符合现代经济发展要求。

2现代光纤通信传输技术原理及特征

2.1现代光纤通信传输技术原理。现代光纤通信传输技术实际上是以光波作为媒介,借助光导纤维进行信号传输,实现信息传输通信要求。现代光纤通信主要由三部分构成,分别为光检测器、光源及光纤,其中光纤由三部分构成,分别为涂层、包层及纤芯,其中包层及纤芯在折射率上存在显著差别。所以,借助多种折射率实现纤芯全反射,保证传输媒介可以完成光信号传输任务。从用途角度来说,光纤主要可以分为两种类别,分别为传感用光纤及通信用光纤。2.2现代光纤通信传输技术特征。现代光纤通信信号传输所占据的空间体积较小,并且可以传输大量信息,信息传输具有良好保密性,可以应对电磁干扰,进而在实际应用内优势十分显著,已经成为现阶段有线通信传输主要形式。按照现代光纤通信传输技术原理可知,信息通过发送端传输到发送机内,中继器在完成信息调制及叠加之后,可以为信息信号提供载波,进而借助载波完成传送信息传输要求,光接收机调制输出有关信息。而现代光纤通信传输技术在实际应用内,受到石英材料因素影响,进而具有良好绝缘性能,并不会受到外部环境影响。

3现代光纤通信传输技术应用

3.1光复用技术。光纤信息传输容量较大,光纤利用率在有效提升内,要是技术室相对成熟,就可以应用光复用方法,也就是通过单模光纤模式所具有的能源较低特征,在一条光纤上同时对多个激光进行传输。光纤在设计内,借助单模光纤低能耗区域,可以输送储存大量宽带资源,借助光复用技术可以将低能耗区域划分成若干子区域,不同区域在通信传输内互不影响,保证信息传送顺畅。与此同时,发动端在安装方波分复用器之后,不同频率信道光波可以转变为载波,实现不同信号载波整合操作,同时传输到接收端内,借助波分复用器实现光载波划分。整个信号整合划分流程,主要借助波分复用器统一承载实现,保证不同频率及波长信号在行业可以应用相同光纤传输,提升数字信号传输速率[1]。3.2光纤接入技术。在现代光纤通信技术组成结构内,最为关键技术为光纤接入技术,正常情况下主要由两部分构成,分别为用户接入及竹竿传输网络。在接入网络用户智能终端内,主要表示用户所应用的计算机、电话机等,光信号主要借助局域网完成用户端电信号转换。系统光源在构成内,主要借助电信号作用,实现发出光信号及对应信号之间转换任务。3.3光弧子通信技术。约束现代光纤通信传输技术传输距离及容量主要原因就是色散及损耗。光信号在实际传输内,能量会逐渐减小,进而出现功率损耗,光脉冲在传输内,在展宽内会出现色散问题。光纤所出现的色散主要受到光波传播速度决定。光脉冲随时都有可能发生,正式由于频率存在差别,造成光脉冲以不同速度进行传输,在传输终点也会构成脉冲展宽,造成信号出现失真情况。光弧子在光纤传输内,必然存在损耗问题,减少损耗脉冲宽度,保持电弧子形状。

4现代光纤通信传输技术发展趋势

现代光纤通信传输技术在应用之后,实现了全球信息传输网络体系,已经成为主要通信手段。科学技术水平在不断提升内,信息通信管理体制改革已经成为必然趋势,同时逐渐进入到市场化建设进程内。现代光纤通信传输技术在快速发展内,应该积极与自动连接控制技术及自动信息发现技术相结合,也就是借助智能化技术,逐渐对现代光纤通信传输技术进行完善,按照用户对数据连接实际需求,保证光纤通信传输系统可以自动处理有关信息。在对光纤网络监测内,监测工作主要由电子计算机实现,进而保证及时发现光纤网络所出现的故障,将有关信息反馈到监控人员手中,智能化出现故障区域[2]。

5结束语

现代光纤通信传输技术作为我国信息通信领域发展建设内关键技术,伴随着信息需求大幅度增加,就必须提升对光纤通信技术研究及应用关注度,按照光纤通信传输技术发展实际需求,借鉴发达国家在光纤通信技术上所取得的成果,推动光纤通信传输技术进一步发展,促进光纤通信传输技术智能化及信息化建设水准。

作者:张铂源 单位:中国人民信息工程大学

参考文献

[1]陈晓岚.现代光纤通讯传输技术的应用分析[J].数字技术与应用,2016,(03):34.

光纤通信技术的特征篇4

【关键词】通信工程;光纤技术;设计应用

引言

随着社会发展水平迅速提升,社会结构全面优化。一方面,以互联网为核心的信息传输方式,为社会信息交流与共享提供渠道,社会发展各领域的交流密切性增强;另一方面,光纤传输技术,是一种新型新型传输手段,基于传统信息通讯的基础上,将模拟信号转换为数字信号,实现通信信息直接传播,为我国通信工程全面发展,适应社会需求带来技术研发新角度。

1光纤技术

光纤技术是指借助地下光缆,进行信息传输的方式,光纤传输利用光波作为信息传输的主要信息载体,将通信信号从这一端传导到另一端的信号传输方式。随着光纤技术的逐步发展,现代通信光纤技术逐步发展,从单一层光纤传输向多层光纤传输转变,与现代计算机数字信号传导,共同构建为一个信息传输体。结合现代光纤技术的应用实际,将光纤技术的基本特征归结为:其一,速率性。光纤技术信息传输在光波传导的作用下,直接将接收到的信号传输出去,信号中转时间较短,现代光纤技术信息传输,充分实现光纤传输技术的信号应用平衡;其二,多层性。光纤技术在通信工程中的应用,借助光波传输的无限延长和无限缩短的优势,实行光纤信息传输多层次分布,在主体光纤传输的基础上,构建通信信息传输体;其三,保护性。光纤技术信息传输中,传输光波与传输整体结构,分别具有光纤数字保护层,现代通信工程光纤技术应用,能够在此基础上,构建新型光纤数据传输体系,从而实现社会通讯技术全面升级。

2通信工程光纤技术设计应用

2.1移动通信中应用

光纤技术在现代通信工程中的融合,在移动通信中应用最为广泛。传统的移动手机信号接收与传输,主要采用数字模拟光波进行信号传输,手机信号接收中,需要依靠中转站进行手机信息的中转,并将模拟信号传输下去,原传输信号丢失,实现光纤技术在移动通信传输中的应用,采用光纤光波进行手机移动信息传输,整体信号输送与信号处理过程,都在光纤模拟空间站中完成,传输信号随时随地接收,随时进行传输,避免信号传输中转,导致信号传输稳定性低。光纤信号传输的构建手机信号传输网络,延伸移动信号的接收传输能力,推进现代移动数据传输信号的稳定性,接收强度,是通信工程中光纤技术设计与应用的体现。其次,生活中移动通信信息传输,也利用光纤技术构建起信息传输短暂存储系统,现代移动4G网络,正是基于生活中光纤技术传导播,将4G传输信息综合为整体信息,从而实现现代系统整体优化,光纤体系中信息综合传导,移动网虚拟短暂性信息存储,将成为社会信息传导的过度层,确保社会信息传输中信息交换工作第一时间内完成,起到信息传输辅助移动信息输送的作用[1]。

2.2交通运输领域应用

光纤通信技术是现代社会信息引导的主要技术形式,交通运输领域的通讯技术应用,主要包括无极光纤技术和有线光纤技术。无线光纤技术,是结合计算机虚拟空间应用程序,将交通运输中的光纤传输信息进行程序传输,系统数字信息变化,都必须进过自动化程序进行信息检验,光纤技术只负责后期整理后的信号传输,是一种网络连接性传输。无线光纤传输技术,主要应用于交通运输中接收信号处理和信号传输的输送,确保交通运输各部分路线信息网络的准确性,及时进行交通运输系统内部信息交流,提高交通运输运行的信息稳定;其次,有线光纤信号传输技术,是借助光缆,进行系统信息的综合传播,将光纤交通信息分为多个信息传输节点,光纤技术在每一个节点上建立信息接收站,并技术光波进行交通信息传输,与无线光纤技术传输系统构建为一个完整的信息传输体系,为现代交通通信信息的传输提供数据传输保障。

2.3相干性光纤传输技术

光纤技术在现代通信技术中的融合,采用相干性光纤传输技术,建立现代通信新型传输新结构。新型光纤传输技术与传统通信信息传输不同,新型传输技术按照信息传输量的多少,则划分为多少个自传输地址,实施光纤技术信息资源分地址传输,每一个光纤技术传输资源,都按照不同光纤传输地址进行信号输送。其次,相干性光纤传输凭借每个光纤传输信息之间的相关性,实现光波传输信号与外界光波传输信号同步连立,当光纤传输接收到外部传输信号,光波与外界信号库立即构建虚拟信号传导平台,光纤实现系统传输信息,保障信息传输信号强度大,与此同时,信号传输过程将最大限度进行光波放电,确保通信信号传输稳定,满足信号输送需求,打破信号传播的空间性限制[2]。

2.4光弧度传输技术

光纤技术在通信系统中的应用与设计,采用光弧度传输作为主导技术。所谓光弧度传输,是在光缆信号传输范围内,光纤接收端形成光纤传输带,在传统单一光纤传输的基础上,实现通信信号传输承接范围扩大,提升光纤技术信号传输的强度。我们可以对光弧度信号传输这样理解,带电传输信号在电波输送中,信号传输输送端是单一的光纤,而信息传导的接收端是由多个光纤组成的光纤信息传输网络,无论输送信息与哪一条接收光纤对接,接收端的光纤信息都会得到传输。光弧度传输设计,实现光纤信息传输资源在传输过程中,全面提升信息传输的稳定性,同时光纤传输进行多层光纤同步接收,可以减小光纤损耗,提升光纤在通信技术中的应用率。此外,光纤技术在通信系统中的应用与设计,也可以实光纤传输与以太网信息传输相关联。应用太网IP地址,光纤信息传导的稳定增加,接收信号传输过程中,光纤传输信号与以太网地址信号相互交流,实现现代光纤信息传输脉冲速率与光纤信号传输相同,达到现代通信信号稳定传输的效果。

结论

光纤通信的传播速率快,信号传输稳定性强,在现代通信技术中占有较大的发展优势。笔者结合光纤技术的基本特征,对通信工程光纤技术设计应用关键要点进行探究,引导我国社会通信技术拓展,优化。

参考文献

[1]张力.浅析通信工程中光纤技术的设计应用[J].通讯世界,2015,15:45-46.

[2]邹富坚.通信工程中光纤技术的设计应用和发展趋势[J].中国新通信,2016,23:41.

光纤通信技术的特征篇5

关键词:光纤通信网络接入技术

中图分类号:TP311.5文献标识码:A文章编号:1672-3791(2011)09(c)-0014-01

在信息化社会的建设步伐越来越强劲的今天,随着光纤网络通信传输技术与交换技术的共同进步,各类核心网络已基本上实现了宽带化、光纤化与数字化。而在强烈的需求攻势之下,原有的接入网络逐渐呈现出力不从心的服务状态,使得满足宽带需求、单位维护成本较为低廉的光纤接入网则越来越受到各大运营商的青睐。

1光纤接入技术定义

所谓光纤接入网(OAN)就是采用光纤传输技术的接入网,泛指本地交换机或远端模块与用户之间采用光纤通信或部分采用光纤通信的系统。通常,OAN指采用基带数字传输技术并以传输双向交互式业务为目的的接入传输系统,将来应能以数字或模拟技术升级传输宽带广播式和交互式业务。根据接入网室外传输设施中是否含有源设备,OAN又可以划分为无源光网络(PON)和有源光网络(AON),前者采用光分路器分路,后者采用电复用器分路。在宽带接入网进入了大发展的现阶段,各种光纤接入网技术均得到了长足发展。

2光纤接入网络的基本构成

光纤接入网主要通过光线路的终端即OLT与服务业务的各个节点进行相通连接,并令各光网络单元(ONU)达成与用户的对接,从而高效实现接入网络的准确信息传输功能。同时光纤接入网络中的设备还具有对本地系统进行维护及对远程网络集中监控的职能,可通过透明、开放的光传输组成一个具有维护功能的管理网络,在相应网络协议的规范下归结于网管中心进行统一管理。一个完整的光纤接入网络应包括远程光网络单元设备及各局部端线路终端设备。终端OLT及远端ONU在整体接入网络中实现由各业务节点接口到用户网络接口的相关信令协议高效转换,其中OLT的功能在于为光纤接入网络提供了与本地交换机接口进行连接的渠道,并通过光传输机理与用户端进行高效的光网单元连接通信,实现了交换机交换功能同用户接入端的完全隔绝断开,而光线路的终端则为其自身设备及用户使用端提供了维护与监控功能,可直接与本地交换机统一放置于交换局端,也可设置在远端位置。ONU的功能在于终结来自OLT的光纤通信处理信号,为光纤接入网络提供了丰富的用户侧接口,令其可接入多类用户终端,同时能发挥高效的光电转换功能,并进行相适应的监控与维护管理。

3光纤接入技术特征

随着城市化建设进程的不断深入,人们各类通信业务量与日俱增,种类也不断丰富,例如高速数据业务、高保真音乐、互动视频多媒体业务等。为满足这些丰富的网络业务需要,目前光纤通信传输主要应用技术包括SDH、ATM技术、以太网技术等,依据这些技术特征可有效构建有源光纤接入网络(AON)。倘若光配线网整体由无源类器件组建,而不需要任何有源类别的节点,则该技术构建的光纤接入网络则为无源光网络(PON)。AON网络实现简单,是目前最低成本的FTTH接入方案,能较轻松的实现稳定的双向百兆宽带接入、并具有相对成熟的技术。而其缺点在于系统集成与扩充建设发展具有一定的局限性。从系统分配的角度来讲,PON光网络由于可有效节省主体光纤资源及网络结构层次,即使在长距离的传输中也可为系统提供双向的高宽带通讯能力,因此接入业务服务种类丰富多样且运营维护成本较低,适用于用户区域分布较散且在每个区域中用户集中密集的小面积地区。宽带PON技术与AON相比,具有标准化程度高,业务透明性好,节省主干光纤和OLT光接口等特点。宽带PON技术的不足之处在于多种技术标准的存在令人们难于选择,何种将成为未来发展的主流标准尚无法明确确定。再者,系统要求光发射模块具有较高功率的激光器并涵盖突发性的收发能力,且必须综合具备测距、信号加密等复杂,这样会使系统构建的设备成本较高,因此对其技术的升级发展还需要我们进一步的深入研究。当然不容否认PON技术的广泛、综合及优化发展将成为光纤接入网络的必然建设趋势。

4光纤接入网的环路结构

在光纤接入网络中其实现环路接入的三类结构分别为FTTN、FTTH与FTTC。无论何种接入结构,在网络的现实服务及发展进程中其均具有相应的服务及应用优势,且在开展全面业务、促进系统经济建设的进程中,各类网络接入结构均起到了关键性的影响作用。例如FTTN的优势在于其光纤系统进一步广泛推向于网络用户,并建立了统一的接入平台,为用户提供了丰富的话音服务、数据高速传输服务及生动的视频服务,同时在众多业务的开展中并不需要全面对接入环路与分配网络进行重建,大大降低了服务、建设工作的复杂性。依据业务需求我们可在不同的光纤节点处增加一个功能插件以便依据用户需求为他们提供适应性业务服务。在业务驱动及网络重建令各光纤节点开始移至路边或家庭之前,FTTN便可通过叠加作用并利用铜线进行网络分配,从而节省了不必要的重复建设。该类网络结构为了提供更好的宽带及视频业务服务,节点及住宅之间的布设距离应设置为1.2km至1.5km之内。目前我国的各类光纤节点服务距离可达到3.6km以上,因此在每个服务区内应至少安装三个FTTN节点,以实现高效的业务服务目标。FTTC光纤的优势要比FTTN更多,主要体现在采用FTTC进行重建网络环节时,可有效消除电缆传输环节可能存在的误差,令光纤更加深入到每位用户网络中,并减少一些潜在的网络不安全问题及由于误操作引发的性能恶化问题。目前FTTC是较健全、可充分部署的重要网络结构,可在将来的发展进程中不断演变为高端FTTH网络。同时该结构同样也是新建与重建区最佳性能配比与最经济的网建设计方案。当然其结构中也包含明显的缺点,即需要提供铜线材料的供电系统,这会令单独供电单元的布设代价相当高,且在持久停电的状态下也无法满足长期的业务服务需求。基于这一网络结构劣势又创设了第三种网络结构即FTTH,将其作为供给光纤于每家每户的最终网络服务形式,该结构将整体铜线设施中的馈线、引线及配线剔除,并令维护管理工作大大简化,提升了光纤网络的服务使用寿命。

5结语

综上所述,基于PON的FTTH技术具有丰富的可叠加性、可改造性与创新适应性,可通过灵活的配置、优化的服务以及对现有接入网络的平滑改造升级充分满足用户日益增长的数字业务、图像、语音与多媒体业务需求,令光纤通信网络进一步向用户侧延伸,并最终实现光纤到户的全光宽带接入,更适合未来的发展需要。

参考文献

[1]顾华生.光纤通信技术[M].北京邮电大学出版社,2009(10).

[2]曾雪云.我国光纤通信技术发展的现状和前景[J].科技资讯,2010(34).

[3]卜明新.基于光纤通信交互式远方自投装置的研发与应用[J].电力系统保护与控制,2009(22).

[4]潘远翠.宽带光纤接入网的发展与技术[J].达州职业技术学院学报,2005,(Z1).

光纤通信技术的特征篇6

随着当前我国的信息技术的发展,一些先进的技术在实际生产生活中都得到了比较广泛的应用,在通信工程领域的发展中通过对传输技术的应用就能将通信工程的发展水平得到进一步提升。通信工程主要是实现通信信号传输的重要工程,在当前的社会发展过程中起到了重要作用,所以将传输技术应用其中就比较重要。基于此,本文主要就通信传输技术的类型及传输技术的应用特征进行分析,然后就通信工程中传输技术的应用及发展趋势进行详细探究,希望有助于通信工程的进一步发展。

【关键词】

传输技术;通信工程;发展趋势

信息技术的进一步发展对人们的通信要求也有了相应提升,所以通信技术的发展就比较重要,由于我国的通信行业的发展水平对人们的日常通信设备的使用有着影响,所以在现阶段的发展过程中如果对通信工程不能得到优化,就不能满足用户的实际需求。通过传输技术的有效应用就能对通信工程的发展起到积极推动作用,对整体的通信行业发展也有很大帮助,加强对这一领域的理论研究就有着实质性意义。

一、通信传输技术的类型及传输技术的应用特征分析

1.1通信传输技术的类型分析

对于通信传输技术有着多种类型,通信工程中根据传输信道的不同能够分成不同的传输技术,主要是无线传输技术和光纤传输技术。其中的光纤通信技术层面是通过光作为载体的,然后在光纤作用下实施信息的传输,这就和传统通信方式有着不同,在具体的传输原理上来看是将需要发送的信息在发送端变成电信号,然后调制到激光器所发出的激光束上,再依照着电信号频率对激光束强度实施调整,通过光纤将信号发送出去[1]。光波在光纤中的传输以及光信号的泄露也不会造成信号窃听,光纤芯是比较细的所以这些芯所组成的电缆直径就会很大,通过光缆实施信息的传输在占用的空间上也会减少。另外,还有是无线传输技术,主要在天波以及地波和视距传播方面比较多,无线传播过程中的主要特征就是在灵活性层面表现的比较突出,并有着比较高的机动性。由于这一优势就使得其在通信方法的运用上也比较广泛。

1.2传输技术的应用特征分析

对于传输技术其自身有着比较突出的特征,首先在产品的体积小特征上较为突出,在市面上所出现的各种类型传输产品在外形上在向着更小化方向发展,比较典型的就是3G手机以及光纤接收器等应用产品,从外形上已经逐渐的变小。这就对生产的成本得到了很大程度的减少,在产品的使用简便性方面也较为突出,小巧化的同时在传输功能上也不断增加。这对工程师的网络维护工作的开展也有着一定促进作用[2]。传输技术的应用中功能多样化特征也比较突出,这是多业务结合的结果,能将以往的独立设备完成功能全部集中到整的设备中,在多样化功能的作用下能将设备的利用效率得到有效提升,对产品的性价比也能得到有效提升,对能源的使用量也能得到有效减少。还有是体现在产品的一体化层面,在以往通信设备方面只能单纯用于信息以及信号的传送方面,倘若是实现除传输外其他的功能,就要对通信产品一体化进行加强,这就需要对通信设备附加值进行有效提升。而一体化的特征也使得在监控管理系统中的作用发挥比较突出。

二、通信工程中传输技术的应用及发展趋势探究

2.1通信工程中传输技术的应用分析

对传输技术在本地骨干线网的应用过程中,本地传输网是小容量的传输,其主要是分布在城市或者是较为发达的地方。在本地传输网方面主要是通过管道形式进行敷设的,而本地传输网及长途干线传输网相比较而言,在备份以及升级和管理维护等层面都存有较大优势,并且在性价比层面也会较高[3]。故此对本地网传输技术的应用就比较重要。其中在有限光纤资源的合理利用层面就较为突出,通过SDH以及ASON传输技术的有效结合就能形成比较强大的ASON网络。另外,将传输技术在长途干线传输网中的应用,从早期的SDH系统的应用有着比较突出的同步复用的能力和灵活电路上下以及十分强大的网管系统,在应用的时候是得到大众看好的,但随着不断的发展对于长途的传输网应用,由于每个MSC间的距离相对比较远,所以在SDH的应用上就会存在着相应的弊端,为此这就需要新的传输技术加以应用。在EDFA商业化发展进程中SDH中继设备大量省去实现了长距离的网络传输,在成本上也得到了有效降低。在考虑到ASON节点的灵活调度和宽带容量层面的特征体现,就能够构成WDM以及ASON结合的组网方式,然后在凭着WDM自身高效率和大容量等传输能力就能形成强大的网络系统。对于光纤传输技术的应用层面,光纤传输的主要介质是光纤,其在信息量上相对比较大,这就说明所使用的电缆要能有很小尺寸就可实现目标,并在传输光缆中的信号不需增强或者是更新的工作。而在光纤实施传输数字信号以及模拟信号基础上能有效满足传输视频需求。工业以及商业领域中对光纤传输技术的应用已经比较广泛,而在使用光纤传输技术方面能够采取语音视频以及数字电视信息,并在诸多层面得到了应用,例如在交通运输和其他的商用通信方面的应用都起到了比较突出的作用[4]。在对无线传输技术的应用过程中,主要是通过电磁波进行的信息传输工作,这一技术在综合成本上相对比较低,并有着很强的稳定性能。而在无线监控系统方面则是无线传输技术以及监控技术两者的结合,可将信息从不同地点现场进行传递到无线监控中心,并能有效形成视频数据库在检时也比较方便化,无线传输的可扩展性相对比较优越,所以在实际中的应用也相对比较广泛。

2.2通信工程中传输技术的发展趋势探究

通信工程在社会发展中的作用比较突出,将传输技术在其中加以应用能将通信工程的发展水平得以提升,在未来的技术不断发展下就能够有新的进步。一新的技术也会得到广泛应用,其中的自动交换光网技术的应用将会成为发展趋势,在自动交换光网技术上是光传输网和同步数字序列基础上实现的新技术,是为能将数据业务的快速增长进行延长所提出的,其在本地骨干网以及城域网中都有着比较广泛的运用。自动交换光网技术自身也有着比较强的优越性,并能有效结合波分复用系统技术容量大的特征以及数字同步体系保护性能实现网络自身搜索资源及自我发现功能。未来的通信工程传输技术会向着一体化方向发展,一体化的发展目标是今后通信工程的重要发展趋势,是把原始速率不适合单机版结合来形成不同通信领域的设备一体化,从而来展开通信管理以及监督等。在一体化的发展目标实现下就能够对通信的成本得到有效降低,对资源的共享目标也能得到有效实现[5]。同时通信工程的传输技术发展也会向着多功能化方向迈进以及设备产品的小型化方向发展,在人们对通信要求的不断提升下,就对通信设备产品哟组合更多的要求,所以在设备产品的小型化方面将成为现实,而多功能的发展目标也会在技术的带动下得到有效实现。

三、结语

总而言之,为能够将通信工程得到进一步发展就要能够将传输技术的应用得到充分重视,要能从多方面考虑传输技术的应用特征以及应用方法,对于现代化的技术发展来看,最为重要的工作重点是将通讯技术得到优化升级,之后对传输技术的完善性目标得以实现。只有充分保障传输技术的作用发挥才能从整体上提升通信工程的发展水平。

作者:孙泓光 单位:中国电子科技集团公司第五十四研究所

参考文献

[1],张颖,张琼,黄远.关于数字化的电信网络技术的探究[J].电子测试.2014(S1)

[2]宿强.论传输技术在通信工程中的应用及发展方向[J].黑龙江科技信息.2015(30)

[3]陈学文.探讨通信工程技术的重要性[J].民营科技.2015(10)

[4]王建滨,靳守军.浅谈当前通信工程传输技术特点及应用[J].科技创新与应用.2015(26)

光纤通信技术的特征篇7

1光纤通信技术内涵

光纤通信技术主要是借助高频光波,借助光纤的通信媒介进行信号的传递。在实际应用体系建立后,相关技术人员要利用光纤技术进行通信操作,也要着重了解光纤通信技术的特征。不仅能保证低损耗,也能提高整体传导速度,确保其自身具有很强的抗电磁干扰能力,实现信息和数据传输项目的实际需求。而从19世纪到当下,光纤通信技术也实现了多样化发展,不仅传播速度有所提升,整体容量也翻了一万倍之多,真正实现了技术和市场内行业的融合,也为新技术的推广和应用提供了非常有效的发展背景。

2光纤通信技术要点分析

在对光纤通信技术进行综合性分析的过程中,要对技术模型的运行要点进行统筹分析,确保技术处理效果和应用模型的有效性,也为管理体系的综合性升级奠定坚实基础。2.1光纤通信技术要点之光纤连接技术光纤通信技术在实际管理模型建立过程中,需要借助相关问题进行统筹处理,正是基于此,光纤通信体系中,光纤连接成为了信息高速管理和运转的重要组成部分。光纤连接技术能一定程度上提高信息的传播速度预计传播方式,在满足人们对信息需求的基础上,保证信息处理效果符合预期。需要注意的是,在光纤通信技术中,宽带主干线路的传播效果是非常关键性的项目,对于用户最后光纤连接方式产生影响。正是由于光纤通信技术的普遍性和有效性,人们能在借助光纤通信提高上网速度的同时,真正体会高速信息的传播效果。由于光纤通信技术的接入口位置不同,其实际应用结构也分为FTTB模型、FTTC模型以及FTTH模型等,其中FTTH模型能实现光纤到户,借助光纤宽带的优势和特征,为用户提供更加具有实效性的管控模型,能在保证宽带连接技术需求的基础上,实现整体管理效果的综合性优化。2.2光纤通信技术要点之波分复用技术光纤通信技术中,波分复用技术是现行应用较为广泛的技术模型,主要是针对不同的光波频率,借助单模光纤低损耗区的宽带资源,建立健全完整的处理机制和控制措施,并且结合低损耗趋势,将其发展为不同通道。其中,将光波作为光纤信号的传递媒介,实现整体信号传输和管理模型的综合性升级,并且借助复用技术对不同波长承载信号的光纤结构进行分析,由于不同波长的光载波信号具有自身的独立性,在实际应用体系建立后,能借助一根光纤实现多线路信号传递。

3通信系统中的光纤通信技术分析

正是基于光纤通信技术的多元化发展模型,在实际管理机制和项目应用体系建立过程中,针对具体问题要进行综合性分析。本文以铁路运输项目为例,对其通信系统中应用光纤通信技术的路径进行了集中分析和阐释。值得一提的是,在铁路通信系统中应用光纤通信技术,能在优化传播速度的同时,保证传播质量符合需求。目前。铁路运输通信系统中,光纤通信技术主要分为以下三个阶段。第一阶段是PDH阶段,最开始使用的PDH技术铺设的是短波光纤,实现了二次群系统的开启和维持。例如,大秦铁路通信系统中,就将八芯单模短波光纤应用在重载双线电气化项目中,主要使用的设备是36Mb/sPDH二芯结构,实现了车站和区域网络通信的便捷化升级,为设备管理结构的综合性优化奠定坚实基础。正是基于此,也实现了铁路通信系统的跨越式发展,从传统的通信模式转变为光纤通信结构。由于这一成功转型,实现了整体技术结构和项目的综合性升级,也为通信系统的综合性升级奠定坚实基础,实现管理机制和信息传递效果的综合性优化。第二阶段是SDH光纤通信系统运行阶段,由于整体系统相对于其他系统更加的完善,在实际管理机制运行过程中,能有效弥补传统管理机制中的不足,也实现了整体铁路通信技术的全面升级,在实际技术应用体系中,SDH光纤通信技术能保证信号的稳定性,不仅仅能简化网络体系中的支路字节,也能创造不同设备互联网的互联。SDH光纤通信系统能实现更加系统化的自我管理,保证信息传输和通信的完整程度,建立健全更加系统化的完整管控模型,确保通信功能和安全得以全面提高和系统性优化。先进的SDH光纤通信技术将有效替代传统技术模型,保证应用效果的稳定性。第三阶段是DWDM光纤通信系统,在技术建立过程中,技术特性逐渐增强,能借助单模光纤宽带分析实现损耗降低的目的,并且保证发送端光发射机同时发射不同稳定度和精度的波长光信号,在信号放大后,实现信号传输,借助信号分解功能,保证技术优势得以全面升级。在实际应用体系建立过程中,DWDM技术能一定程度上提高通信传输速度,并且保证信息传输容量符合标准,为信息升级和项目管理提供便利,也为铁路信息服务管理系统的综合性优化奠定坚实基础。技术最大的优势就是能满足网络用户的实际需求,并且能实现信息的更稳定化传播和升级,保证信息管理效果和同时优化信息服务价值。

4结语

总而言之,在对光纤通信技术进行综合性分析的过程中,要结合管理模型和控制措施进行统筹分析,保证管理体系的完整性和稳定性,也为技术结构的发展以及进步提供动力,确保技术应用效果和管理体系的综合性升级,实现通信技术模型的综合性优化。在光纤技术不断发展的基础上,克服相关问题和困难,满足市场需求的同时,实现光纤通信技术的可持续发展。

作者:曲艳 单位:郑州联勤保障中心

参考文献:

[1]张钺,赵毅.光纤通信技术在工业电视上的应用[C].第二十六届中国(天津)2013,IT、网络、信息技术、电子、仪器仪表创新学术会议论文集.2013:200-203.

[2]邱琪,宋玉娥,阳树宗等.空间站信息系统与光纤通信技术[J].电子科技大学学报,2013,29(04):365-368.

[3]张韬,尹项根,刘革明等.GPRS技术在馈线自动化通信系统中的应用[C].中国高等学校电力系统及其自动化专业第二十一届学术年会论文集.2015:1610-1613.

[4]刘锋,潘永湘,毛芳仁等.基于GPRS配电网自动化通信系统终端的设计工程与实现[C].2014全国电力系统自动化学术交流研讨大会论文集.2014:178-182.

[5]李国武,张雁忠,黄巍松等.基于IEC61850的分布式能源智能监控终端通信模型[J].电力系统自动化,2013,37(10):13-18.

光纤通信技术的特征篇8

1光纤通信技术的定义。

电力通信中光纤通信技术,就是采取光导纤维作为传输介质对各种不同信号进行传输的形式,光纤通信技术承载量相当大,且安全可靠,在人们生活与生产中的应用效益足已证明其使用价值不可限量。光纤通信技术通常采用电气绝缘体进行制作,在制造过程中均采取多芯组成光缆,这样既可使通信的质量得到有效保证,又缩小了信息传输过程中所占据的空间。

2光纤通信技术的优势。

光纤通信技术同传统的通信方式进行相比,在技术方面有很多闪光点,同时在应用中也发挥着它不可代替的作用,光线通信技术在当前的应用中包括有三大类。

(1)波分复用技术

该技术主要是选取异同信道光波的形式。在进行实际操作过程中,通常绝大多数采取单模光纤损耗低区,然后与宽带资源相互结合,最终让其分成多个不同信道,在一般情况之下进行耦合与分离不同的光波时需要采取分波器。

(2)光纤传感技术

该技术在进行传输相应的信息时需要采取传感器,能够理解为传感器扮演着一个中介的角色,该种方式的能量消耗与传统方式相比之下,消耗相对较小,通常其包含有功能型与非功能型。

(3)光纤接入技术

该技术是目前实际应用中相对较广的一种,它能够对各种与窄带业务的问题与事故加以有效处理,而且该技术还可以非常高效地对各种不同的多媒体图像及数据信息进行有效解决。

二、光纤通信技术在电力通信系统中的实际应用

电力通信系统中应用光纤通信网是一个纷繁复杂、难度相当大的工程。随着社会经济的不断发展,电力通信水平也面临着一轮全新的挑战,而当前极具发展潜力的光纤技术被普遍应用于其中,其发挥的作用不言而喻。

1光纤复合相线。

光纤复合相线主要是指在输电线路相线中光纤单元复合的一种电力光缆。它可以预防架空线路遭受限制或阻碍,以此避免遭到雷击破坏,并且运行的相线也可更好地保证地线以绝缘方式正常运行,更加节省电力电能。

2光纤复合地线。

电力系统的传输过程中,在地线里带有部分光纤单元。不但它们可以尽情发挥地线的功能,也具有光纤材料的各种优点,无需特别的保护和维修,方便、稳定且安全。但是该种线路依然存在一些不足之处,就是要投入较大的建设成本。所以该种类型的光纤广泛应用于改造旧线路与建设新线路上。其能预防外界力量的破坏,可以对电线系统加以保护;再者也能够充分地利用传播中的数据信息,进而可实现架空地线的各种不同标准与需求。

3自承式光缆。

该种类型的光缆拥有异同的分类,比如:全介质自承式与金属自承式。全介质自承式光缆的质量小,直径小,密度也相对小,其构造具有全绝缘性,并且它的光学特征和功能还相对比较稳定,能在控制停电中所出现的损失有一定的优势,是一种拥有功能特殊的光纤原料。金属自承式的光缆结构比较简明又单纯,且所投入的成本也比较低廉,也不用把热容量或短路电流等问题纳入到整个系统运行中进行考虑,正由于该种类型的光缆具备诸多优点,所以使得它们被广泛地应用到实际中。

4电力特种光缆。

该种通信光缆属于特征与性能相对特别的一类,其支架的建设主要依靠线路杆塔资源作为基础。其含有的种类主要有:MASS/ADSS/OPGWOPAC等,其中ADSS/OPGW从目前来看应用方面相当普遍,这是由于自身构造与安装形态相对复杂、特殊,该种光缆可有效避免遭到外界力量的破坏。该种光缆自身的材料成本相对昂贵,但由于该种光缆是在沿着电力系统自身的线路杆塔上展开施工的,所在也可以有利于对成本投入的节约。ADSS类型的光缆可以在强电场与长跨距中得到很好的应用,不会给铁塔造成负面影响,而且是一种质量相对较轻的绝缘介质,该种光缆的优点是维修和维护相当方便,安装过程中无需切断电源。而OPGW光缆其安全系数相对较高,很难盗取,它的具体的优势在于使用周期长、传输信号的损耗度低,重建频率与维修率较低,而其不足之处表现于难以经受雷击。

三、光纤通信技术在电力通信中的发展方向

1新型光纤的应用。

目前IP的业务量节节攀升,电信网络也需不断创新与发展,而光纤正是其发展的根本所在。当前都是远距离信号传输,传输质量有很高的要求,原来的单模光纤很难满足发展需求,因此研究与开发新型光纤是电力系统迅速发展的需要。随着现在干线网要求的逐步提高与城域网建设的不断发展,无水吸收峰光纤与非零色散光纤该两种新型的光纤已经在社会各界得到广泛应用。

2使用光接入网。

随着网络技术的进步与创新,网络的传输与交换也逐渐推陈出新。而智能化网络具有数字化、高度集成、主宰网络的优势,其将是网络发展的必然趋势。在现在网络的接入通常采用双绞线,双绞线即便其传输质量表现较为卓越,可还是稍逊色于光纤的传输效果。若运用光接入网的话,就会降低维护与管理网络的成本,乃至能够开发光透明网络,让真正的多媒体得以实现。

3光联网的未来。

若光联网得到应用与发展,光网络将拥有巨大的容量、网络节点很多、网络范围非常广,并且网络的透明度也随之有所增加,可将各种不同的信号加以连接,提高网络的灵活性。部分欧美发达国家已在光联网上投入了很大的资金、人力与物力,我国目前也在该方向进行探索与研究。光联网在将来的通信中光联网将会发挥其巨大的效用,促进电力通信的迅猛发展。

四、结语

光纤通信技术在全球各个角落发挥了它应有作用,其应用价值巨大无比。随着高科技智能网络化时代的来临,基于电力通信中的光纤通信技术,将会更多地应用在社会各个领域,特别是发展迅速的计算机技术,更会在电力通信行业中展现出其卓越性。

上一篇:九年级学习方案范文 下一篇:工作计划工作思路范文