机电管理论文范文

时间:2023-11-17 06:19:45

机电管理论文

机电管理论文篇1

(一)机电设备的管理、维修部门职能不够完善选煤厂都有机电维修工,其主要的职能也是对机电设备进行有效管理、及时维护与检修,但是,大多数选煤厂的管理人员往往将注意力集中于生产上,对于设备的管理职能并未充分行使。此外,机电设备是一种复杂的设备,其型号不同,购置的过程,验收、安装等一系列环节都存在着不同程度的管理上的问题。有时,一部分选煤厂并未完全按照机电设备的正规使用方法去使用设备,管理部门也未对此进行监督和提醒,违反了相关的使用规范,这些管理上的问题都将给选煤厂带来潜在的安全问题。

(二)机电操作人员整体素质偏低当前阶段,我国某些选煤厂中的机电管理操作人员的操作技能仍不能达到一定的要求,对于设备的属性不是十分了解,新技术的使用技巧也不能完全掌握,仍然保持着传统的简单的操作方法,因此机电设备存在的某些故障不能得到很好的解决。机电维修工大多以年轻的工人居多,其相对来说缺乏具体的实际操作经验,安全生产的意识较为淡薄,有时仅仅按照操作习惯进行工作,就导致出现了一些违规操作。选煤厂对于机电操作人员的培训工作往往都停留在表面,不会根据员工的实际工作水平有针对性地进行培训,因此很难真正实现提高工作人员操作能力的目的。职工的文化水平相对较低,因此在培训时,对于一些技术含量较高的理论知识,他们并不能很深入地理解,也就无法在实际的操作中进行应用。理论与实际脱轨就进一步造成职工学习兴趣低下,形成恶性循环,机电管理操作人员素质偏低问题是影响我国选煤厂发展的又一制约因素。

二、改善选煤厂机电设备管理与维护工作的有效措施

(一)实现机电设备标准化管理,提升机电管理部门的管理能力选煤厂是煤炭产业中的重要加工单位,但是其内部的机电设备的管理和维护工作却不同于矿井。选煤厂中所使用的机电设备处于较为复杂的运行环境之中,其工作的性能也与其他设备不同,因此,要提高选煤厂的标准化生产水平,丰富管理人员对设备的检修和维护等技术理论,同时结合其他企业的先进管理理论,提升管理人员的综合素质。此外,还应该注意的问题是,要充分调动厂内员工的工作积极性,使管理人员与具体的操作人员关系和谐,二者之间相互学习、相互监督,共同促进管理工作的标准化。选煤厂想要实现标准化管理,不能只是着眼于厂内,还要坚持“引进来、走出去”的战略,不断汲取其他厂区的先进的维护和管理技术,并与本单位的实际情况相结合,应用到具体的工作中去,以弥补本厂中管理工作上存在的不足。同时,为企业的管理制定详细的工作目标,进一步提高选煤厂的设备管理水平。众所周知,机电设备的标准化管理是实现选煤厂安全生产的重要前提和基础,因此,选煤厂应适当授权于具体负责人,使其充分掌握相关设备的工作状态,以便加强对设备的管理和维护。要实现标准化生产的目标,需要制定与之相适应的具体措施作为保障。真正实现管理和维护上的标准化还要定期考核,严格监督。制定具体的标准准则,从而推动标准化工作的全面开展。

(二)严格执行相关规章制度,协调组织调度工作任何行业的发展都离不开规章制度的保证,对于选煤厂中机电设备的维护与管理工作来说,亦是如此。想要做到系统的管理和科学的维护,就需要有严格的制度要求,以衡量管理和维护的结果是否与规定的内容相符。因此,建立完善的机电管理制度至关重要。有些厂区尽管规章制度等内容十分详细,但是执行力度是一个难题,制度所规定的操作行为和步骤并未得到真正的实行。对此,需要厂区机电设备维护管理人员加大检查力度,督促维修人员尽职尽责,将安全生产的思想付诸实际工作中。

(三)丰富职工理论知识,提高其操作水平选煤厂中,对机电设备的操控是十分重要的工作,其维护、检修等工作内容也相对复杂。因此需要每个员工具有较高的技术水平,严格按照规章制度操作,这样才能确保机电设备的正常运行。对于设备需要每隔一段时间进行一次检修,发现问题立即进行维护,将故障及时消除,保障选煤厂的安全生产。要丰富员工的理论知识就需要加强对员工的技术培训,首先要培养员工的基础技能,使其能够应对较为普遍的技术问题。其次,让其学习更深一层的维护技术和管理方法,取长补短,更好地完成机电设备的管理与维护工作。还应培养员工将掌握的理论知识与实际问题充分结合,做到具体应用,这样才能增强其操作能力。

三、结束语

选煤厂中实现机电设备的系统管理和全方位的维护,可以最大程度上保证选煤厂的高效平稳运行。设备的维护是一项环节较为复杂的工作,关系到企业的安全生产,应该严格按照规定的程序和步骤进行操作。设备的管理也是一项技术性较强的工作,只有设备管理部门充分行使其职能,才能提高设备的运行效率,最终在安全生产的前提下,使得选煤厂获取更大的经济效益。

机电管理论文篇2

关键词:发电机阻抗测试加窗插值FFTDSP

发电机转子绕组匝间短路是电力系统中常见的故障。当此类故障发生时,转子电流增大,绕组温度升高,限制发电机的出力,严重时会影响发电机的正常运行。匝间短路通常通过测量发电机转子绕组的交流阻抗和功率损耗来判别[1]。传统的测量方法是采用多个测量仪器仪表(如隔离变压器、调压器、电压表、电流表、功率表以及电流互感器等),在现场组装后进行测量。这种需要很多种测量仪器组建测量系统的方法存在试验设备笨重、费时费力、整理数据繁琐、测量准确度不高等缺点。

随着数字电路和数字信号处理技术的不断发展,新的微处理器和算法不断涌现。据此研制了基于双微处理器的发电机转子交流阻抗测试仪。该测试仪采用了MCU+DSP的双微处理器系统为硬件平台,充分发挥了数字信号处理器计算能力强和单片机控制功能强的优势。软件设计中,经过大量仿真实验研究,采用了加窗插值FFT算法,使得测试仪的整体精度,尤其是相位的计算精度得到了提高。

图1

1系统硬件结构

1.1概述

本仪器的硬件核心是单片机(AT89C52)和浮点数字信号处理芯片(TMS320C32),再加上一些芯片后构成了一个双微处理器的测控系统。该系统由单片机完成键盘控制、液晶显示、打印和数据存储等功能;由数字信号处理器实现信号采集和数据处理功能,两个处理器通过一片双口RAM交换信息,使用一片可编程逻辑芯片完成整个系统的逻辑操作。整个系统包括输入模块、系统模块、数据采集和处理模块、存储模块、显示模块、打印模块和通讯模块。系统硬件结构如图1所示。由于DSP具有强大的计算功能,而使用单片机进行控制又比较简单、方便,因此,这种双微处理器系统的设计不仅充分发挥了DSP和单片机的优势,而且结构清晰、独立,易于开发和调试。

1.2各模块功能介绍

(1)输入模块:包括传感器和信号调理电路两部分。

(2)系统模块:以单片机(AT89C52)为核心,实现对整个系统的协调和控制,包括读取数据、键盘管理、控制显示、打印、存储和通讯等功能。

(3)数据采集和处理模块:以数字信号处理器(TMS320C32)为核心,进行数据采集、自动量程变换控制、数据处理以及给单片机发送结果数据。

(4)存储模块:由串行E2ROM(ATMEL24C64)构成。用于存储该次的测量结果。

(5)显示模块:使用MSP-G240128DYSY-1W型液晶显示器完成系统显示功能。

(6)打印模块:使用通用的TpuP-A微型面板式打印机完成系统输出打印功能。

(7)通讯模块:提供工业用的RS232串行通讯接口,可实现上位机与下位机的串行通信。

2测量原理与算法分析

2.1测量原理

本测试仪通过测量发电机转子的阻抗和功率损耗来判断匝间短路故障是否发生。直接测量的量是电压和电流信号,通过获取的电压和电流信号来计算功率损耗、交流阻抗、电阻和电抗等参数。基本测量公式如下:

其中,u(n)和i(n)分别为第n点的电压和电流采样值,N为采样点数,φ为电压和电流的相位差。

2.2算法分析

在实际采样过程中,由于电网频率的波动,其基波频率不能完全准确地获得,因而采样通常是在非同步情况下进行的。在非同步采样下,传统的FFT存在泄漏效应和栅栏效应,使得算出的频率、幅值和相位误差较大。为了减小非同步采样对FFT的影响,提高测量精度,本设计采用基于Blackman-Harris窗的插值算法。参考文献[2]、[3]对这一算法进行了详细的推导。

设一采样信号的序列x(n)为:

式中,fm为信号频率,Δt为采样间隔。

x(n)的傅里叶变换表达式为:

由于电网电压的基频变化范围一般为49.5Hz~50.5Hz,并且在本设计中,每次测量采样16个周期,每周期采样128个点,故N=128×16=2048。因此,式(2)中DFT的频率分辨率为:

Δf=1/(Δt·n)=1/[(0.02/128)·2048]=3.125Hz

x(n)经过加Blackman-Harris窗后,其DFT表达式可以表示为狄利克来核的代数和:

式中,a0=0.35875,a1=0.48829,a2=0.14128,a3=0.01168。

如果采样频率不是fm的整数倍,在频谱中就会产生栅栏效应,即实际信号的各次谐波分量并未正好落在频率分辨点上,而是落在某两个频率分辨点之间。假设fm在lΔf和(l+1)Δf之间,l为整数,即:

fm=(1+λ)Δf0≤λ<1(4)

在本设计中,由于只需求得电压和电流的基波分量,因此:l=fm/Δf=50/3.125=16。

这样,│X(l)│和│X(l+1)│中必有一峰值点。当λ<0.5时,│X(l)│达到最大值;当λ>0.5时,│X(l+1)│为最大值。

由(2)式可以得到:

令θ=l+n,并将(4)式代入,可得:

X(l+n)=AmD(n—λ)(6)

x(n)加Blackman-Harris窗后的频谱在整数采样点的数值为:

设定系数

由于在测量采样时,采样点数N取得较大(N=2048),而且λ<1,因此可以作近似≈1。这样可求得如下方程。

a=—(2λ6—12λ5—941λ4+3844λ3+35041λ2—77802λ

—390632)(λ+3)/[(2λ6—971λ4+40837λ2—430500)(λ—4)](9)

已知a时,由上式将位于[0,1]区间内的解λ解出后,代入式(4),可求出准确的频率fm,再由式(7)可求出复振幅[2]为:

Am(l)=Xmw(l)/{0.35875×D(-λ)-0.5×0.48829×

[D(-1-λ)+D(1-λ)]+0.5×0.14128×[D(-2-λ)+D(2-λ)]-0.5×0.01168[D(-3-λ)+D(3-λ)]}(10)

│Am(l)│即为振幅值,相位计算公式为:

ψm(l)=arctan[Im(Am(l)]/[Re(Am(l)](11)

由式(11)即可分别求出电压和电流基波的相位,从而求出电压和电流的相位差。将相位差带入电阻和电抗的计算公式中,即可求得电阻和电抗的值。

3实际运行结果

本实验的实验设备包括:CF-500A型单向交流功率源、Agilent34401A型6位半数字万用表、VC980型四位半数字万用表。实验数据如表1所示。

表1实验数据

测量次数12345678

电压实际值(V)19.7630.0539.5119.4859.4139.5079.6789.41

电压理论值(V)19.6629.9939.4349.4559.4369.4779.5189.40

电流实际值(A)0.370.560.730.911.091.281.471.65

电流理论值(A)0.3650.5570.7320.9121.0941.2801.4661.647

阻抗实际值(Ω)53.6654.1254.3754.5054.3054.2054.1954.28

阻抗理论值(Ω)53.8453.8754.2254.3254.2754.2354.2854.31

电阻实际值(Ω)50.1850.2650.3150.3250.2850.3450.3050.31

电阻理论值(Ω)49.9650.0050.3250.4150.3650.3350.3750.40

由表1可知,电压和电流有效值的最大引用误差分别为:

根据国家标准GB776-76《测量指示仪表通用技术条件》的规定,本仪器测量电压有效值的准确度等级为0.1级,测量电流有效值的准确度等级为0.2级。

由表1可知,阻抗和电阻的最大相对误差分别为:

机电管理论文篇3

①为正常材料磨损性消耗成本,简称材料成本,主要包括如日常油脂、液压支架用乳化液(浓缩液)及采煤机截齿等机电设备正常运行所造成的磨损性消耗材料(注本文暂不考虑动力费)。②为排除机电设备故障隐患或故障后而更换备件成本,简称备件成本,如刮板输送机机头链轮故障,需要及时更换链轮备件。为量化各矿井机电设备运行维护成本,作统计对比分析(见表1、图1),根据神东EAM系统数据记录,可分别统计各矿井吨煤机电设备月度平均运行维护综合成本、吨煤机电设备月度平均材料成本及吨煤机电设备月度平均备件成本3个指标,其中吨煤机电设备月度平均运行维护综合成本等于吨煤机电设备月度平均材料成本相加吨煤机电设备月度平均备件成本之和。(1)吨煤机电设备月度平均运行维护综合成本方面,较低的矿井有大柳塔煤矿、补连塔煤矿、哈拉沟煤矿、上湾煤矿、保德煤矿、榆家梁煤矿及乌兰木伦煤矿,而较高的矿井有石圪台煤矿、锦界煤矿、柳塔煤矿、寸草塔二矿、万利一矿及布尔台煤矿,其中最低的上湾煤矿是11.41元,而最高的布尔台煤矿是25.05元。(2)吨煤机电设备月度平均材料成本方面,较好的矿井有大柳塔煤矿、补连塔煤矿、哈拉沟煤矿、上湾煤矿、保德煤矿、榆家梁煤矿、乌兰木伦煤矿及寸草塔煤矿,而较差的矿井有石圪台煤矿、锦界煤矿、柳塔煤矿、寸草塔二矿、万利一矿及布尔台煤矿,其中最低的哈拉沟煤矿是6.81元,而最高的锦界煤矿是15.94元。(3)吨煤机电设备月度平均备件成本方面,管理水平较高的矿井有上湾煤矿、锦界煤矿、榆家梁煤矿、大柳塔煤矿、补连塔煤矿、哈拉沟煤矿、保德煤矿,而相对较差的矿井为石圪台煤矿、布尔台煤矿、柳塔煤矿、寸草塔二矿、寸草塔煤矿,其中最好的上湾煤矿是3.73元,而最高的布尔台煤矿是10.15元。(4)锦界煤矿是个异常现象,其备件成本较低,而材料成本超高,最后导致其综合运行维护成本较高,可以解释为该矿井对机电设备日常例行维护关注较好,甚至存在过维护现象,导致其材料费成本较高,而机电故障率相对较低,更换备件较少。(5)综合分析,吨煤设备故障备件成本较吨煤设备材料消耗成本要低,且两者发展趋势具有相似同步性。2012年度神东矿区月度吨煤设备平均综合维护费用成本为16.20元,设备故障备件成本为5.80元,而日常材料消耗则为10.40元。2008年,神东矿区重组前生产矿井机电设备吨煤机电设备平均运行维护成本较低,特别是大柳塔煤矿、补连塔煤矿、哈拉沟煤矿、上湾煤矿、保德煤矿、榆家梁煤矿及乌兰木伦煤矿,而后重组并入神东矿井生产单位吨煤机电设备平均运行维护费用相对较高。

2机电设备故障统计分析

针对神东矿区2012年度各矿井机电设备故障的统计分析工作量是复杂的,本文根据神东矿区2012年度机电设备运行资料,统计神东矿区2012年度各矿井综采及主运输系统关键机电设备故障数据记录,如综采工作面采煤机、刮板输送机、转载机、破碎机(未包括液压支架故障,一般液压支架结构件或电液控制系统故障不会立即导致停机以致影响到正常生产时间)及主运输设备(顺槽胶带机、大巷带式输送机、主井带式输送机及上仓胶带机)等关键机电设备典型故障数据进行统计分析,统计万吨煤机电设备故障停机时间以代表各矿井2012年度机电设备故障每月平均停机时间。本文机电设备故障统计数据主要根据神东EAM系统机电设备故障记录及机电设备故障追查报告等资料综合统计分析而得,因统计口径不一致,数据可能有差异,。神东矿区2012年度矿井万吨煤机电设备故障月度平均停机时间为0.0673h,万吨煤机电设备故障平均停机时间较小的矿井有大柳塔煤矿、补连塔煤矿、哈拉沟煤矿、榆家梁煤矿、布尔台煤矿、寸草塔二矿等煤矿,而统计数据靠后即平均故障停机时间相对较大的有乌兰木伦煤矿、柳塔煤矿、万利一矿、寸草塔煤矿等煤矿,其中最小的补连塔煤矿是0.0379h,而最大的寸草塔煤矿是0.1145h。

3均衡指数分析

3.1均衡指数定义

矿井2012年度每月吨煤设备运行管理维护费用、每月吨煤设备运行备件成本费用及每月吨煤设备运行材料消耗费用,统计各矿井2012年度各项均衡指数以反映各矿井机电设备运行管理水平的稳定性。4.2均衡指数分析均衡指数Ω越小,表明该统计数据越稳定,即数据变化平稳,不存在大起大落现象。反之则表示该项统计数据变化趋势大,有急剧增大或减小不稳定的数据项。本文定义吨煤设备综合维护费用均衡指数、吨煤设备维修备件成本均衡指数及吨煤材料消耗均衡指数三项均衡指数来表示矿井机电管理水平核心指标直接消耗费用的均衡性,表示矿井机电管理水平在2012年度某层次(高、中、低)相对稳定性。如果某矿井生产单位吨煤设备运行综合维护费用、吨煤设备维修备件成本及吨煤设备日常材料消耗成本三项指标均较小,且对应三项均衡指数也较小,说明该矿井机电设备管理水平保持在较高水平,且保持稳定发展趋势。而若三项分析指标数据较小,但某均衡指数较大,则表明该项机电管理稳定性较差,表明该项机电管理控制指标水平在2012年度内不稳定,可以进一步分析是哪些原因导致指标的不稳定。反之若三项分析指标数据较大,且其相应均衡指数较小,表明该矿井2012年机电设备运行管理水平很差,若某均衡指数较大,则表明该矿井机电管理水平在某层次(高、中、低)不稳定,忽高忽低,也应对该项机电设备考核指标作进一步分析,分析原因以便改进,促进矿井机电设备运行管理水平的提升。备件成本均衡指数较大且较其它两个指标有发散性,这也正体现出各矿井机电设备运行管理水平在设备故障管理上的差异性,而材料消耗成本一般居于中间位置,但是设备总维护消耗费用均衡指数则最小,也表示相对稳定性。结合以上第2节机电设备运行维护费用统计分析及本节均衡指数分析,哈拉沟煤矿、上湾煤矿、补连塔煤矿及大柳塔煤矿机电设备运行维护费用较小,其综合均衡指数也较小,表明矿井机电设备运行管理水平较好,相对来说,其矿井生产均衡性也较好。而均衡指数较大的分别为万利一矿、寸草塔二矿、寸草塔矿及石圪台煤矿,且总维护费用也较大,表明这些矿井机电设备运行管理水平稳定性较差,可以在某些方面作进一步分析,有重大提升空间。

4机电设备综合指数分析

4.1综合指数定义

矿井机电设备运行维护管理综合指数计算公式,即从矿井机电设备故障备件成本直接影响与机电设备故障停机时间间接影响两方面综合分析机电设备运行管理指数。以其指数K的高低综合判别矿井机电设备运行管理水平的高低,即兼顾直接和间接两方面综合考量机电设备运行管理水平。综合指数越大,则机电设备运行管理水平越高,反之则较低,存在重大改进空间。

4.2机电设备运行综合指数

分析直观分析得出榆家梁煤矿、补连塔煤矿、哈拉沟煤矿、大柳塔煤矿及上湾煤矿机电设备运行管理综合水平较高,而以布尔台煤矿、寸草塔煤矿、柳塔煤矿等机电设备运行管理综合指数较低,应作进一步分析。

5结束语

目前煤矿企业正全面探讨精益化发展方式,积极探讨从数量粗放型发展到质量效益型发展过渡,精益化发展理念的提出就是质量效益化发展的体现。本文正是在这一发展观念转变背景下积极探讨分析机电设备管理精益化发展道路与模式,并从煤矿企业机电设备运行管理这一个独特角度分析怎样实现并考核矿井机电设备运行管理向精益化方向发展提供技术支持。本文在讨论评价矿井机电设备运行维护管理水平指数量化分析,从吨煤设备维护成本、故障平均停机时间、均衡指数及综合指数四方面分别对比分析各矿井机电设备运行管理水平,对于目前煤矿企业精益化管理在机电设备管理方面有重要参考作用与意义。

机电管理论文篇4

关键词:微控制器;晶闸管开关;电路板

1引言

在日常生产与生活中,大量电动机都以规定的速度和功率去拖动各种机械。而在军事上,很多应用往往要求旋转天线在各种条件下都要保持匀速转动,这就要求在不同的情况下,电动机能相应调整工作速度,以保持恒定的速度。要实现这一功能,最常用的方法是对电动机的转速进行调节。改变直流电动机的电枢或交流电动机的定子电压,都可以在一定的范围里改变转速;也可用双向晶闸管交流开关或直接选用模拟控制的通用电动机驱动器来取代笨重的电动机、发电机组以及饱和电抗器。本文介绍一个直接由110/240V电源供电的通用电动机驱动电路和一个MCU以及一个双向晶闸管开关来实现控速的设计方法。其中单片机选用Microchip公司的PIC12F675。与用户接口的方式有三种一个是接触传感器;一个是按钮;一个是电位器。笔者在该仿真实验中采用的是电位器。辅助电源从电源电压中变压整流获得。

2设计方案和结构

2.1电路结构

电动机的调速系统是一个闭环系统,其结构图如图1所示。使用时,可通过设置电位器的电阻大小,并经A/D输入单片机来预设速度;单片机通过同步电路与220V交流电源同步,并通过输出脉冲控制晶闸管的通断,从而控制电动机的速度,同时将电动机的速度通过速度检测装置(霍尔开关)反馈给单片机以形成闭环。

2.2单片机电路的功能原理

该设计中单片机电路的功能原理图如图2所示。它由5V直流副电源和220V交流主电源、单片机、双向晶闸管开关和电机整流电路和霍尔开关组成。其中,单片机的脚1(Vdd)接+5V脚8(Vss)接地,其它引脚的功能与设计如下:

(1)GP3用于上电复位。在通电的瞬间,C3通过R2充电GP3以经延迟后低电平触发。延迟的大小和CPU的频率有关,对于PIC12F675单片机,延迟只要大于72ms就可以了。GP3外的电阻可以选1kΩ电容应大于0.1μF。二极管D2的作用是在电源快速反复通断时,保证C3电容能及时放电。

图2

(2)GP4主要用于速度信息的输入。该脚外的电位器R1用于为GP4输入一个电平(GP4在这里的功能是10位A/D转换器)。该输入电平通过A/D转换后,用于给单片机输入一个预设速度。将该速度和实际速度进行比较,并计算出速度的偏差,然后查表或通过算法便可以得到延迟Td。电位器R1的阻值应较大(在100kΩ左右),以减少5V副电源的负载压力。

(3)通过GP2可输入同步信号。由于220V的交流电源频率不是很稳,因此,为了保证延迟Td的精确,应通过R5输入交流信号进行同步。GP2在这里的功能也是A/D转换器,它可将通过R5输入的交流信号转化成数字信号。R5的阻值要大约在1MΩ左右。因为R5直接接在220V的交流电源上,而单片机的输入电流不能太大。

(4)通过GP0可输入霍尔器件产生的电动机转速信号。

霍尔开关是用于磁场检测的半导体传感器,霍尔开关的实际接线图如图3所示,PIC12F675的1脚接5V直流电源,2脚接地,3脚输出频率脉冲给单片机的GP0脚。

在正常工作时,霍尔开关被放置在电动机内按周期强度和方向发生变化的磁场中。其输出电压的大小随着垂直通过霍尔开关半导体薄片的磁场的强度变化,霍尔开关有电流式和开关式两种。电流式霍尔开关输出的是模拟信号,可完全包含磁通量的变化情况;而开关式霍尔开关则由于集成了比较器,因而可直接输出数字信号。本设计采用数字式无疑是最方便的。如果采用电流式,由于选用的是功能全面的自带比较器的PIC12F675单片机,它的GP1脚上输入的一个门限电平(由两个电阻分压得到)通过单片机内部的比较器和GP0脚的转速模拟信号进行比较,也可以实现信号检测。

由于实际的霍尔开关要接在电动机的线圈附近,手工改造电动机相对比较困难。因此,该设计为了方便演示,可以使用一个由555定时器设计的多谐振荡器产生的频率脉冲信号来替代霍尔开关的输出信号。

(5)GP5脚输出的低电平脉冲用于触发双向晶闸管开关,其脚输出低电平脉冲的时间是由延迟Td决定的,要保证和主电源同步才能使相位平稳的前后移动。GP5脚的低脉冲可以使双向晶闸管开关保持导通,直到220V电源反向。

此外,在实际应用中,双向晶闸管开关对触发电路的要求如下:

(1)双向晶闸管开关从截止到完全导通需要一定的时间(一般在10μs下),所以触发脉冲的宽度要在10μs以上,最好为20~50μs。如果是感性负载,由于电流上升比较慢,实际上还需要更宽的脉冲宽度。

(2)触发电路要有足够大的电压和电流。电压应在4~10V,电流要大于10mA,所以可使用5V的副电源。在双向晶闸管开关和GP5之间应接一个0.2kΩ的电阻。

(3)不触发时的电压应小于0.15~0.2V。触发脉冲的前沿要尽量陡,应在10μs以下。

3软件的实现

图4是该设计中转速和检测信号的波形时序图,图5是本设计方案的软件程序流程图。该程序的主要步骤是复位、初始化、设置GP2上升沿中断、设置A/D通道GP4、读取电位器设定的速度值n(n经过A/D)和读取Td预先设定值等。当交流电源变为负半周期时,设置GP2下降沿触发和延迟Td即可输出宽度为Tg的脉冲,同时设置GP0接收中断源请求等。一般当霍尔开关输入为上升沿时中断,计数器计数,而当霍尔开关再输入一个上升沿中断时,计数器停止,并记下数值a,最后在通过比例积分调节算法计算出延迟Td后清除n和a。当交流电源变为正半周期时,在设置GP2上升沿触发、设置A/D通道GP4、等待中断、补偿延迟T0、延迟Td以及触发脉冲Tg后,便可通过GP4读取设置速度n。设计时正负周期的程序循环进行。通过计数器的数值a计算转速s的算式如下:

s=f/a

其中,f是十六位计数器1的频率,为1MHz。

实际上,通过n和a由单片机计算延迟td需要一个准确的算法。数字调节算法一般选择PI算法,这是在工业过程控制中应用最广泛的一种控制形式。其作用在于能够集比例调节的快速和积分调节的清除静差作用于一体,从而使系统的静、动特性都有所改善。

4结论

机电管理论文篇5

关键词:抽油机;节能;电控装置

1概述

自从100多年前,以燃烧石油制品为动力的机器诞生以来,对石油的需求量飞速增长,也为石油工业的发展提供了契机。随着采油业的发展,产生了被广泛使用的油井举升设备——抽油机。

抽油机的种类繁多,技术发明有数百种。从采油方式上可分为两类,即有杆类采油设备和无杆类采油设备。有杆类采油设备又可分为抽油杆往复运动类(国内外大量使用的游梁式抽油机和无游梁式抽油机)和旋转运动类(如电动潜油螺杆泵);无杆类采油设备也可分为电动潜油离心泵,液压驱动类(如水力活塞泵)和气举采油设备。

目前,应用最为广泛的是游梁式竖井抽油机采油系统,如图1所示。由图1可见,该系统由3部分组成,即地面部分——游梁式抽油机,它由电动机、减速箱和四连杆机构(包括曲柄、连杆和游梁)等组成,详细结构见图2;井下部分——抽油泵(包括吸入阀、泵筒、柱塞和排出阀等),它悬挂在套管中油管的下端,可分为杆式泵和管式泵;联接地面抽油机和井下抽油泵的中间部分——抽油杆柱,它由一种或几种直径的抽油杆和接箍组成。

我国的油田不像中东的油田那样有很强的自喷能力,多为低渗透的低能、低产油田,大部分油田要靠注水压油入井,再用抽油机把油从地层中提升上来。以水换油或者以电换油是我国油田的现实,因而,电费在我国的石油开采成本中占了相当大的比例,所以,石油行业十分重视节约电能。目

前,我国抽油机的保有量在10万台以上,电动机装机总容量在3500MW,每年耗电量逾百亿kW·h。抽油机的运行效率特别低,在我国平均效率为25.96%,而国外平均水平为30.05%,年节能潜力可达几十亿kW·h。除了抽油机之外,油田还有大量的注水泵、输油泵和潜油泵等设备,总耗电量超过油田总用电量的80%,可见,石油行业也是推广“电机系统节能”的重点行业。抽油机节能包括节能型抽油机和抽油机节能电控装置的研制与推广两个方面,对此两大技术的研究方兴未艾。介绍和宣传的文章很多,众说纷纭,莫衷一是。厂家的产品性能介绍亦有“王婆卖瓜”之嫌。因此,有必要将目前常见的几种类型的抽油机节能电控装置作一个科学的分析比较,以供用户选用时参考。在全国各油田进行试验或已投运的节能电控装置不下数十种之多,大体上可以分为5种类型,下面分别加以讨论。

2间抽控制器(POC)

由于抽油机是按照油井最大化的抽取量来进行选择的,并且还留有设计余量。另外,随着油井由浅入深的抽取,井中液面逐渐下降,泵的充满度越来越不足,直到最后发生空抽的现象,如果不加以控制,就会白白地浪费大量的电能。对于这种油井,最简单的方法是实行间抽,即当油井出液量不足或发生空抽时,就关闭抽油机,等待井下液量的蓄积,当液面超过一定深度时,再开启抽油机,这样就提高了抽油机的工作效率,避免了大量的电能浪费。

间抽控制的原始做法是派人定时到油井去开停抽油机,即使在发达国家,目前也还有不少油井采用这种人工控制方式,以便解决抽油机的低效和浪费问题。这种做法每天要派人去井场操作好几次,经过长期试验才能摸索出适合各油井的间抽规律,费工费时。于是就引入了定时钟,只须设定开、停机时间,便能自动地进行间抽控制,但是,这仍然无法解决令抽油机的工作能力动态地响应油井负荷的变化,以达到最佳的节能效果,同时,还有可能会影响油井的产量。

为了解决上述问题,通过安装相关的传感器,精确感知油井负荷的动态变化,实现智能间抽控制(IPOC)。为此,可采用各种不同的传感器达到控制目的,下面分别予以介绍。

2.1液面探测器

如果能直接测出井中的液面,那么就可以用它来控制抽油机的运行。当液面高度超过泵时,就启动抽油机;当液面降到泵的吸入口处时,就关闭抽油机,避免空抽的发生。早期的方法是使用永久式的井下压力传感器来检测液面,现代则是利用声波装置从地面上自动监测井下液面深度,但是,由于装置复杂,维修费用高而没有得到普及。

2.2流量传感器

在井口通过流量传感器检测油井的出液量,是实现抽油机控制最直接,也是最有效的方法。但是,由于国内的油井产量太低,有些油井的产量每天只有几m3,甚至不足1m3,合10cm3/s。这么小的流量检测,对于各种类型的流量传感器来讲都是一个难题,再加上井中采出的油液中含有大量的泥沙和蜡块,经常会发生堵塞现象,因而也未能获得推广应用。

2.3电机电流传感器

应当说,电机电流的检测是最方便、最可靠,也是最为廉价的方法。当发生空抽时,下冲程开始

时游动阀并没有打开,光杆载荷为杆柱重量及游动阀上部液柱的重量之和,可平衡掉大部分的配重的重量,电动机只要用很小的能量就可将杆柱送入井底,电机电流较小;当油井中泵的充满度较高时,下冲程开始不久,游动阀即打开,泵中液面托住了游动阀上部的液柱重量,并且使抽油杆柱也浸没在液体中,因而光杆载荷只是杆柱在液体中的浮重,这也就意味着电机将用较大的能量来举起曲柄或游梁尾部的平衡块的重量才能将杆柱送入井底,因而电流就较大。

在下冲程时设置一个设定值,当发生空抽时,实际电流将降至此值以下,控制器就关闭抽油机。也可通过电机的平均电流进行检测,从实际平均电流的下降中也可很容易地鉴别出空抽的发生。但是,电流的检测受到抽油机配重的影响而使实际的电机电流变得很难控制,绝不像某些肤浅的文章中所描述的那样,是近似方波的电流波形。实际的抽油机电动机的扭矩(电流)曲线如图3所示。这种不规则的扭矩(电流)曲线,只有通过抽油机的机械结构和平衡曲线的改变方能改变,而不是通过电控装置可以实现的,因此,这是一个机电一体化的系统工程问题。

2.4抽油杆载荷传感器

普遍采用的方法是通过特制的传感器,对抽油机的光杆载荷进行检测,因为,光杆载荷是井下泵运行情况的最好监视器,并且它不受平衡配重的影响。泵的充盈系数(包括空抽)通过对抽油杆载荷的分析可以很容易地被检测出来。另外,更重要的是抽油杆载荷数据,加上抽油杆位置的信息,正是分析井下工况的“示功图”的必备数据,利用这些信息可对抽油机的运行情况进行全面的分析。

在光杆或游梁上安装测力传感器可以测出抽油杆的载荷数据。光杆测力传感器比较准确,但易于损坏;安装在游梁上的传感器准确度比较低,但比较耐用。国内已有抽油机专用的测力传感器产品。利用载荷传感器的数据绘制的示功图,检测抽空控制设备的工作原理如图4所示。

抽空控制最可靠的一个方法是计算光杆所做的机械功,因为,机械功与被示功图所封闭的面积成正比,所以,空抽表明输入到系统中的能量减少,只须计算示功图的面积或一部分面积即可检测抽空条件。其方法包括在示功图上设定两条垂直线,计算这两条抽油杆位置线之间示功图的面积或曲线下面的面积,如果用示功图里面的面积,可检测出图4中的面积1减少了;如果用示功图下面的面积,则可检测出面积2增加了。

同时,也可像电机电流信号一样,通过计算光杆载荷平均值的办法来检测抽空的发生,较高的载荷平均值表示有可能发生空抽,而较低的载荷平均值则表示油井中液量多。

总之,间抽控制器的优点和经济效益是显而易见的。

1)由于缩短了抽油时间,大大减少了能量消耗。但是,在用人工控制和定时自动控制间抽时,由于惟恐减产,几乎都会发生实际抽油时间比必要的抽油时间长的情形,因而不能完全避免空抽。通过传感器信号实现闭环控制的智能间抽控制器(IPOC),在检测到空抽时立即关闭抽油机,避免了空抽的发生,平均可多节约能量20%~30%。

2)相对于人工间抽和定时间抽来讲,智能间抽控制由于达到了较低的平均液面,增加了产量。因为,较低的液面意味着较低的井底流压,结果较多的液体流入井底,通常可增产1%~4%。

3)由于消除了液击现象,可使井下和地面设备的维修费用减少25%~30%。另外,通过IPOC装置可提前探测到油井故障,从而进一步减少了所需的修井作业量。

4)使用微电脑技术的IPOC装置大大增加了抽油系统的性能信息检测数据,为抽油机的遥控遥测及集中控制创造了条件。

3软起动及调压节能型

由于抽油机的功率档次有限,如30kN,60kN,

80kN,100kN等,而每一口油井的参数都不一样,在选配抽油机时,不可能做到量体裁衣,刚好和抽油机的功率档次相匹配,一般留有一定的功率裕量;各型抽油机在配用电动机时,为了保证抽油机在各种工况下正常运行,也留有一定的功率余量;随着油井由浅入深的抽取,油井的产液量越来越少,抽油机的负荷也相应减小。由于上述原因,就造成了抽油机的实际负载率普遍偏低,大部分抽油机的负载率在20%~30%之间,最高也不会超过50%,形成大马拉小车的现象。而当电动机处于轻载运行时,其效率和功率因数都较低,此时若适当调节电动机定子的端电压,使之与电动机的负载率合理匹配,这样就降低了电动机的励磁电流,从而降低电动机的铁耗和从电网吸收的无功功率,可以提高电动机的运行效率和功率因数,达到节能的目的。

3.1电动机定子绕组/Y转换降压节能

由于低压电动机在正常工作时,定子三相绕组是接法,这样每相绕组承受380V的线电压,电动机可产生额定的输出机械功率。电动机的转矩是与电压的平方成正比的,当电动机轻载(负载率<33%)时,可以将电动机的绕组由接法改成Y接法,使每相绕组只承受220V的电压,即为额定电压的1/,电动机的转矩也就仅为额定转矩的1/3。当负载率>33%时,再将电动机绕组改为接法运行,否则,会因电流过大而烧毁电动机。电动机在进行Y/转换时会产生冲击电流。

Y/接法转换的实现一般采用交流接触器实现,也可以通过晶闸管开关实现,两种方法在节能效果上并无差异,而转换控制电路如何准确掌握转换时的负载率则会对节能效果产生较大的影响。当负载率β<33%时,不能及时进行Y切换,则会影响节能效果,而当负载率β>33%时,不能及时进行Y切换,则会使电流过大,铜耗增加,反而费电,同样影响节能效果。为了不使转换频繁发生,一般在转换点的负载率之间设置一定的回差,通常采用负载率β<30%时进行Y转换,而当β>35%,进行Y转换。

3.2晶闸管相控与调压节电软启动

晶闸管软启动与调压节电的控制框图如图5所示。由单片机控制串联在电动机定子主电路中的晶闸管?触发角α,即可以改变加在定子绕组上的端电压值,从而起到调压节电的目的。其优点是可以动态跟踪电动机的功率因数或输入电功率,达到最佳节能效果;在负载突然增加时也可得到及时的响应,以免电动机堵转;且可兼作电动机的软启动器,同时由于采用单片机控制,具有完善的保护功能。其缺点是造价较高,且由于对晶闸管进行相控,会产生大量的谐波,对电网、电机以及通信系统造成不良的影响,今后这类产品将因达不到电磁兼容的标准而被限制使用。关于电动机降压节电的有关计算和校验,国标GB124971995《三相异步电动机经济运行》中有明确的要求。在采取调压节电时,既要达到节电的目的,又要保证电动机轴上的出力,并有一定的过载系数,否则,当负载波动时电动机将发生堵转而烧毁。电动机轻载降压时,首先是功率因数上升,节约了无功功率。这里必须着重指出:不是所有的降压行为都能达到节能的目的,只有当电压的降低程度大于转差率及功率因数的上升程度时,才能使降压运行的电动机效率得到提高而节能。

经过各种检验计算,电动机降压后的最低电压范围大致为(0.56~0.27)UN。以上数据是以正弦波电压计算的,若考虑到晶闸管调压所产生的谐波,引起电动机的噪音,振动和附加发热等因素,其节能效果还要降低。一台Y1600—10/1730型电动机轻载降压节能效果的计算数据见表1。Y1600—10/1730型电动机的原始数据为:额定功率PN=1600kW,额定电压UN=6.0kV,额定电流IN=185A,额定转速nN=595r/min,最大转矩倍数(最大转矩/额定转矩)=2.22,起动电流倍数(堵转电流/额定电流)=5.53,起动转矩倍数(起动转矩/额定转矩)=0.824,额定效率ηN=94.49%,额定功率因数cos=0.879。电动机额定负载时的有功损耗ΣPN=93.3kW,电动机的空载损耗Po=29.6kW,空载电流Io=46.25A,电动机带额定负载时的无功功率QN=918kvar,电动机的空载无功功率Qo=480.6kvar。

由表1可知,电动机降压节能,主要节省的是无功功率,提高了功率因数,对供电网有利。而有功节电主要节省的是电动机自身损耗的一部分,且随着负载率的上升而锐减:负载系数β=0.1时,有功节电率为15%;β=0.2时为5.3%;β=0.3时仅为2.1%。按照国标GB124971995的规定,综合节电为ΔP+KqΔQ,其中Kq为无功经济当量,其值规定为:电动机直连发电机母线时取0.02~0.04;经二次变压时取0.05~0.07;经三次变压时取0.08~0.1。一般抽油机电动机均经三次以上变压,可取为0.1,也即每节省10kvar的无功功率,可折合为1kW的有功功率计算。由于降压节能时电动机的转速基本上不变,轴上的负载也不变,则电动机的输出轴功率是不会改变的,节省的只是电动机自身损耗的一部分,表1中第7栏综合节电率应为表中第4栏的数据除以当时的负载功率与第5栏的损耗功率之和的结果,并非为节省的综合有功功率与电动机额定功率之比。这是一个概念误区,有些用户在计算节电效益时,往往用电动机的额定功率乘以节电率再乘以运行时间来计算节省的电能(kW·h)数,这是错误的。

表1按最佳调压系数进行调压后节省的电量计算值

电动机负载系数β0.10.20.30.40.50.6

最佳电压调节系统Kum0.3740.530.6470.7470.8330.916

节省的有功功率ΔP/kW24.217.011.06.43.00.86

节省的无功功率ΔQ/kvar386.5300.8224.8157.097.647.2

节省的综合有功功率ΔP+KqΔQ47.435.0524.515.88.863.7

U=UN时电机综合损耗功率∑Pc59.3462.0466.5372.8380.9390.82

损耗节电率/%7956.436.821.7114

综合节电率/%21.69.174.482.2210.35

由表1可知,当负载率为β=0.4时,其综合节电率为2.22%,其节省的功率并非为PN×2.22%=35.52kW,而应当为β=0.4时的负载功率PN×0.4加上电动机当U=UN时的功率损耗ΣPN=72.83kW,来乘以综合节电率2.22%,即(1600×0.4+72.83)×2.22%=15.8kW。有些制造商常在这一问题上误导或欺骗用户,应引起注意。

通过降压对电动机实现软起动的目的,一是减少起动时过大的冲击电流,二是减小全压起动时过大的机械冲击。那么在抽油机上使用降压软起动装置,其效果究竟如何呢?由于电动机的转矩与施加电压的平方成正比,施加电压降低了,电动机的转矩若达不到负载的起动转矩时,电动机是转不起来的。虽然电动机的堵转转矩一般小于额定转矩,但是,当电压降到额定电压的70%时,电动机转矩只有额定转矩的50%,对于起动转矩超过50%额定转矩的负载,是转不起来的。只有当电压升高到电动机的转矩足以克服负载的静转矩时,电动机才能启动。所以,/Y转换起动只适合起动转矩<1/3额定转矩的负载,一般的软起动也只适合起动转矩<50%额定转矩的负载,对于重载起动的负载就降低起动电流来说,软起动器也是无能为力的。

对需重载起动的负载,使用软起动并不能达到减小起动电流的目的,更不能达到节省起动能量的作用;但是,由于软起动器的电压是呈钭坡上升的,虽然在达到起动转矩前电动机并不旋转,但随着电动机轴上扭矩的不断增大,被拖动的负载是慢慢被加力的,所以,用软起动器起动需重载起动的负载时,可以达到减小机械冲击的目的。对于抽油机来讲,使用软起动器,不一定能达到减小冲击电流的目的,但可以达到减小起动时机械冲击的目的,还是有一定作用的。

在某些宣传降压节能产品的文章中,提到在抽油机处于发电状态时,可以通过调整晶闸管的触发角α改善瞬时过电压的问题,事实上也不尽然。当异步电动机由于负载超速而变成异步发电机运行时,是会产生瞬间过电压,使电动机端电压高于供网电压,但由于供电网可以看成是一个无穷大的电源系统,当稳态运行时,电机端电压只是略高于供网电压,以便能量反馈。这时调整晶闸管的触发角α,只能调整电流,即异步发电机的负荷,对于抑制过电压并无效果。

4无功就地补偿节能型

交流异步电动机的无功就地补偿就是将补偿电容器组直接与电动机并联运行,电动机启动和运行时所需的无功功率由电容器提供,有功功率则仍由电网提供,因而可以最大限度地减少拖动系统对无功功率的需求,使整个供电线路的容量及能量损耗、导线截面、有色金属消耗量,以及开关设备和变压器的容量都相应减小,而供电质量却得以提高。

机电管理论文篇6

电厂机械设备管理工作属于电厂运营过程中的关键因素之一。以往,电厂机械设备管理工作主要通过定岗检修或定岗管理等方式对设备进行管理,虽然该方式可以从设备监控、设备操作和设备维修等方面提升工作人员对设备的关注程度和管理程度,但这种管理方式存在比较明显的缺陷。比如,因没有第三方对管理工作进行监控,常出现电厂设备事故或安全隐患等,这是因为传统模式下的账目管理方式存在一些缺陷,导致设备零件供应方面的管理力度较弱,影响了电厂机械设备的管理质量。因此,必须不断完善电厂机械设备管理,改革措施和方针,通过计算机条码技术等当前比较先进的科学技术,研发数据库中的数据,以提升设备管理工作的质量,从而保证电厂设备运营管理的日常维护效率和供电能力。

2电厂机械设备管理方式

2.1完善电厂机械设备管理体系

电厂机械设备管理体系的科学性会对设备管理工作功能的发挥产生直接影响,因此,需要从完善管理体系的角度出发,提升设备的综合管理能力,保证设备功能可有效发挥。我国的各大电厂管理体系之间存在一定的区别,企业必须从自身的实际情况入手,对管理体系进行评测,深层次掌握电厂机械设备管理工作的水平,掌握设备的管理结构和管理方式,了解管理中存在的问题,将测评结果作为主要依据,根据现代机械设备的管理理论,遵循科学性、先进性和体系适应性等多方面原则,对电厂原有的设备管理体系进行完善,促使电厂机械设备管理工作可更加适应电厂未来的发展方向。在上述过程当中,需要明确管理人员的管理内容和管理职责,从职责的角度制订相应的惩罚措施,通过上述方式提升管理工作人员的工作积极性,保证电厂机械设备管理工作不流于形式,从而提升设备管理能力和设备运行效率。

2.2引进管理技术

目前,科学技术的发展速度较快,必须通过不断完善内部管理结构的方式引进设备管理方面的先进技术。计算机条码技术和数据库技术是当前比较先进的管理技术,可以切实有效地提升设备的管理效率。计算机条码技术和数据库技术经过近年来的实际使用,在电厂设备管理中起到了至关重要的作用,已被许多电厂使用。该管理技术的工作流程为:将电厂机械设备编码和所有类型的信息收集在数据库中,并对信息进行逐步检查,全方位控制漏检,不会埋下安全隐患。对于计算机条码技术的使用,需要使用使用条码对机械设备进行标识,将设备的信息收集完整,通过整理、录入等方式输送到电脑中,保证信息的完整性和准确性。针对短时间内变化较大的信息数据,需要保证其实效性。

2.3监控设备的运行参数

计算机技术和各种智能系统发展的速度较快,且在电厂机械设备线监控方面得到了广泛应用。现代化的电厂设备管理工作需要有先进设备的支持,通过在线监控系统,可对系统运行过程中所有设备状态和设备参数进行监控。该设备需要先对设备的运行参数进行收集,依据收集结果判定设备的运行情况。如果设备运行中出现任何问题,则可在第一时间对其进行分析,并制订有针对性的处理方式,也可以发出警报的方式引起工作人员的注意,工作人员需要及时对设备参数进行调整,以保证设备的正常运行。经实际使用证明,该方式可有效减少故障的产生,排查隐患,减少意外事故的出现概率,即使因各种情况出现了意外事故,也可以对事故进行有效控制,从而减少事故带来的负面影响。

2.4完善备件的管理工作

电厂机械设备的部件较多,且设备内部结构十分复杂,容易因内力影响或外部因素导致出现各种类型的故障,进而对设备部件造成损坏。一些关键位置的部件一旦损坏,则会直接影响设备的使用效率。在这种情况下,可通过更换整套设备或更换零部件的方式解决问题。更换整套设备的价格较高,因此,大部分电厂机械设备出现关键位置的损坏时,都会采用更换零部件的方式,且零部件的更换也已经成为工作人员日常维修工作中的关键组成部分。必须强化备件管理工作,保证在出现各种意外情况时,可在第一时间对设备进行更换,缩短停工时间,提高企业效益。要检查机械设备的数量,了解设备的运行状态,对损坏部件进行深度检查,收集零件的损坏情况和容易出现的各种磨损情况,掌握磨损周期,全方位明确部件备件的数量和购入量;通过提高人员工作的能力保证备件的正常使用。电厂机械设备的更新速度较快,且设备职能在不断发展,因此,必须完善日常管理和日常保养等工作,提升工作人员的技术水平,以设备管理技术为主,融入管理理论和运行基础等,从而强化管理工作人员的责任心,满足日新月异的设备使用要求。

3结束语

随着经济的不断发展,各行各业对电力资源的需求量明显提升。科学技术的发展导致电厂传统的工作设备已与最适合社会发展的设备相差甚远,因此,需要通过不断更新设备、完善设备的管理措施,以保证电厂的正常运行,为供电的安全和稳定提供保障,从而提升供电能力,这对电厂适应社会发展、提升设备的使用效率具有重要的意义。在实践过程中,管理人员需要全方位掌握电厂情况,包含设备的数量、性能、作用和运行方式等,并综合电厂的实际情况,掌握科学化的管理方式,构建合理的管理体系,提升设备的使用效率,保证电厂的经济利益,为社会发展作出贡献。

机电管理论文篇7

1.1对成本的管理

煤矿机电设备管理的成本管理具体是指在机电设备管理工作的开展中,要将需要耗费的人力、物力以及财力进行计算,将不必要的花费予以消除,控制建设和管理成本的最小化,有效保障施工煤矿企业的经济效益。

1.2对质量的管理

质量的监管是煤矿机电设备管理的最重要部分,管理人员要制定严格的质量检测标准确保煤矿生产的总体质量。在机电设备购置的选择方面,不可偷工减料,需要科学地选择以保证生产质量。在日常管理中,要严格遵循工作准则,将责任和制度落到实处,及时发现问题、反映问题和解决问题。

1.3对安全的管理

煤矿机电设备的安全管理不仅与设备的使用、日常管理和维护息息相关,也关乎煤矿职工的生命财产安全。因此,煤矿机电设备管理的安全管理需要严格制定并落实安全生产责任制,企业法人和职能部门要对机电安全负责。煤矿企业既要提高工作人员的安全意识,签订安全责任书,也应该加大资金购买设备,将不安全因素予以最大化的削减。

2煤矿机电设备管理中存在的问题

2.1成本管理存在的问题

(1)煤矿机电部门成本管理人员素质较差。专业技术素质差,不能独立果断的处理复杂的技术经济问题,投资预控能力差,大量的工作任停留在事后处理阶段。二是不能组织协调项目各主体间的关系。三是缺乏经济和法律知识,处理索赔能力差,尤其缺乏对国际管理中的FIDIC合同条件的理解。

(2)现行的煤矿机电设备预算方法多为静态、滞后的方法,无法满足日益变化的市场经济要求。虽然各地造价部门也通过定期一些调整系数或补差来达到与当前的煤矿机电设备造价管理信息系统的开发和运用还不能及时提供造价管理人员所需的信息,难以实行与国际惯例接轨的实物法预算编制。

(3)没有完善的设计管理制度,限额设计不能全面推行。据统计,设计阶段的质量和水平会对煤矿机电设备造价产生30%~75%的影响,而施工阶段对煤矿机电设备造价会产生5%~25%的影响。现行的管理体制中,建设单位对于设计单位没有给予足够地重视和监督,没有精心设计和限额设计。

2.2质量管理存在的问题

(1)一些企业追求利益最大化,重视提高利润,降低成本,忽视社会效益。很多煤矿的机电设备老旧且安全设施和保护装置不全,机电设备在井下运输,存放过程中如不足以封存或采取措施进行保护,就会造成设备的服饰和损坏,由于煤矿企业的偷工减料,以及管理部门的重视度不高,严重的质量问题时有发生。

(2)工作人员素质不高。一方面是煤矿行机电设备部门的一线工人不具备完善的质量意识和相关的知识,只有一些基本的操作技能,企业没有提供完善的职业技能培训,员工无法通过有效地渠道提高自身的工作能力。另一方面是在整个行业中存在着管理人员和技术人员较少,而且从业人员综合素质不高的现象,甚至有管理人员和项目经理对煤矿机电行业的规范、标准、法规和法律不了解。

2.3安全管理存在的问题

(1)煤矿机电设备市场尚有管理空白点。目前我国机电设备市场竞争激烈,为了竞标成功,不少商家不惜恶意压价,以至于忽略在安全生产方面的经费支出。商家成功拿到工程后,却无经费购置安全生产的必要设备、器材、工具,从而导致了施工现场的混乱,增加了安全事故发生的可能性。

(2)煤矿机电队伍的整体素质有待提高,在行业主管部门的日常检查中,经常可以发现工地上机电人员对一些机电设备的简单故障也无法及时排除,延误故障处理的最佳时期,起不到对安全生产管理的指导作用,更谈不上应用极端及参与现代化设备管理。。通过对全国各大煤矿施工现场的调查情况分析,基层监管单位人员是内招工学校分配等方面,文化水平较低,素质不高,技术人员所占的比例较小,基本上都是农民工,特别是高中级以上技术人员所占比例更小。工作不胜任的情况较为严重,新的科技成果难以推广,安全管理难度高。

3煤矿机电设备管理问题的解决措施

3.1建立高素质、高水平的管理

队伍机电单位应建立有效地人才竞争机制,提高管理单位的现代化水平,增强机电设备管理单位对人才的凝聚力和吸引力,以灵活多样的形式,如委托代培、定向培养、智力引进、岗位兼职等方式引进专业性管理人才,吸引有能力的年轻人加入到管理的行列中来,改善管理队伍的人才结构。

3.2加大监管力度,消除管理盲区

(1)建立健全的人员培训机制。凡进入煤矿的所有职工必须选择接受培训教育,一律持证上岗,建立起煤矿机电设备管理人员的学习网络。(2)加大力度规范煤矿行业。所有煤矿施工单位必须有证照经营,对于无照擅自从事采矿业务的须予以严格查处;对使用其他企业资质证书、营业执照承揽工程的,一经查实须按无照经营查处。

3.3加强机电管理信息化建设

实现效率最大化建立机电信息化管理网络,既规范机电设备的管理,又规范了人的管理,堵上了各种漏洞。煤矿机电设备管理在各生产环节有着举足轻重的地位,直接影响到煤炭生产能否正常进行。推广使用计算机管理,引进煤矿机电设备信息化管理系统网络软件,对全矿设备进行全面的跟踪管理,充分考虑各单位、各部门、各人的参与和配合,充分听取各项工作方面的建议,从而保证进度计划所包含的内容全面、可行。

3.4制定出台合同

落实责任问责集体合同法的实施是保障劳动者合法权利的重要环节。目前我国煤矿工人力量较弱,无法形成一个与资方平等协商的格局。同时现行的法律条例也存在着规定分散、原则性过强、缺乏可操作性权威性,并且没有明确规定未签订集体合同的法律责任问题。因此,提高集体合同法的立法层次,争取早日制定、完善并出台成为必要。

4结束语

传统的机电设备管理方法已经不能适应当前形势的发展,但最有效的机电设备管理工作在煤矿起步较晚,仍然处于粗放式的管理状态,因此,我们必须认清形势、认真对待,加大对机电设备的管理,加快用新技术、新的管理理念来减少机电事故的发生,从而提高我国煤炭工业发展水平。

机电管理论文篇8

1.机电管理从业人员素质低。近几年在新疆跨越式发展的过程中,新疆的矿山企业的机电设备也在飞速发展,大量高端先进的机械设备和控制系统在不断的被引进,但与之配套的从业人员缺极为短缺,在诸多矿山企业已经出现了“急缺机电不缺采矿”人才的现象,这进一步说明了机电设备管理工作在矿山企业中的重要地位,因此,提高机电管理队伍的综合素质是解决目前机电管理工作问题的重要举措。

2.管理手段单一,效率低。机电设备的管理是一个系统性和专业性都很强的工作。目前,机电管理工作大多都是通过对机电设备表面的观察完成检查工作,但矿山设备种类繁多,且相互间还有一定的联系,检查人员只是孤立的观察某个设备的运转情况,未能系统的考虑设备间的相互影响。对于观察的结果大多也只是简单的记录,并未进行深入的统计分析,使得检查和管理工作流于形式,未能对机电设备存在的安全和故障隐患做出科学的判断和预测,从而增大了事故发生的概率,降低了设备的使用寿命。

二、提高机电管理水平的方法

1.细化管理制度,强化管理观念。煤矿机电管理的总目标应是使设备安全经济合理运转,追求设备寿命周期费用最优化,使设备综合效率最高。细化管理制度是改善矿山机电管理的首要任务,应建立立体式管理体系,从具体薄弱环节,日常检修,整体设备质量三个层次分别实现重点突出、指标明确和全面提升三个目标;将管理者经济利益与管理成效挂钩,建立明确的奖惩措施,激励机电队伍的自觉性;细化设备的管理档案,掌握设备技术性能,根据维修检修记录规划机电大修资金的使用,形成机电设备从购置、使用、维护、大修、报废流程化的管理制度。

2.加强机电队伍的培训工作。管理效果的优劣主要在于人员的自觉和素质。要管好、用好、修好机电设备,必须有掌握先进专业技术知识的人才,才能发挥先进设备的优势。业务技术培训是机电管理的一项重要的基础工作。受培训的人员,既要学习基础知识,又要学习当前管理、使用和修理设备需要的专业技术知识。为提高从业人员的自觉学习性,企业应建立激励机制,突出职称和经济待遇间的关系,促使技术人员的自我提高,同时还应通过外聘专家教师,定期为技术人员进行授课,一方面可以提高具体的技能,另一方面开拓视野,使其具有良好的工作价值观。

3.采用信息化管理,杜绝管理漏洞。网络信息技术的快速发展,已为设备管理提供了诸多的管理平台。煤炭企业机电管理在网络信息资源应用重点是充分利用网络技术监测设备运行状态,利用数据库技术收集和整理设备信息,利用软件工程技术分析数据,并利用web技术公布和共享机电设备管理信息,实现机电大型设备集中控制,采掘、供电、排水、提升、运输等机电设备信息化管理。值得提出的是目前随着手持终端的不断发展,移动检修终端设备成为可能,已有一些矿井开始使用二维码扫描机对矿井设备进行管理,极大的提高了设备管理的规范化。

4.引进高水平机电设备,降低事故发生概率。煤矿机电设备大多为重型设备,矿井机电事故屡见不鲜,此类事故大多是由于工人操作时的不谨慎造成,例如,维修皮带机的技术人员可能会应其他不知情的人员开启皮带造成伤害等,若在皮带机下安装红外感应传感器,当有人员活动时关闭电源即可避免事故的发生。自动化和智能化的矿山机电设备是安全生产的重要延伸,配合高素质的管理队伍必将对煤矿安全高产高效提供有利保障。

三、结语

煤矿机电管理是矿山企业管理中的重要环节,通过分析现有问题提出相关建议:

1.以管理制度为抓手,建立科学管理体系,细化具体措施,达到强化管理观念的目的。

2.提高机电技术人员的综合素质,通过加强培训,开阔眼界,重视职称等手段改变技术工人的职业价值观。

3.充分利用信息化技术,实现矿山企业机电设备管理的的标准化、公开化、系统化,实现高效、无漏的管理措施。

4.加大矿山企业机电设备的投入,引进智能化自动化高的设备,鼓励技改现有设备,确保机电的本质安全

总之,机电系统的安全高效运行是煤矿企业经济效益的根本保障。根据不同矿企机电设备管理的水平和技术人员的构成特点,可以借鉴以上思路突出重点的改善机电管理制度,达到安全高效生产的目的。

上一篇:机械工程概论论文范文 下一篇:机电设备安装论文范文