电力工程及自动化论文范文

时间:2023-03-05 23:10:35

电力工程及自动化论文

电力工程及自动化论文范文第1篇

《西安电力高等专科学校学报》是一本有较高学术价值的:季刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

《西安电力高等专科学校学报》是一本由西安电力高等专科学校主办的综合类学术期刊。该杂志主要刊载电力工程及自动化、电气工程、能源与动力工程、计算机科学与技术、信息与通信工程等学科领域的原创性研究论文、技术报告、综述、评论等学术成果。旨在推动中国电力工程、计算机科学等学科发展,为相关领域的专家、学者及各高等院校师生提供学术交流和讨论平台。

该杂志的读者主要是从事电力工程、自动化、电气工程、能源与动力工程、计算机科学与技术、信息与通信工程等领域研究的高级工程师、专业技术人员、研究生和科研院所的师生以及相关的学者和专家等。

《西安电力高等专科学校学报》的受众群体主要包括以下人群:1. 电力工程相关领域的专家学者:该杂志涉及电力工程及自动化、电气工程、能源与动力工程等多个学科的研究,对于这些领域的专家学者来说,能够及时了解领域内的最新研究成果和技术发展趋势。2. 高级工程师和技术人员:该杂志刊登了相关领域的原创性研究论文、技术报告等,涉及电力工程、自动化、计算机科学等方面的内容,适合从事相关领域工作的高级工程师和技术人员参考和学习。3. 研究生和科研院所师生:该杂志涵盖了电力工程、计算机科学等多个领域的研究成果,对于研究生和从事相关领域研究的师生来说,能够深入了解领域内的最新研究动态和前沿技术。4. 相关领域的学者和专家:该杂志的内容覆盖了多个领域,包括电力工程、自动化、计算机科学等,对于这些领域的学者和专家来说,能够及时了解领域内的最新研究成果和前沿技术。5. 教育机构的师生:该杂志是一本学术期刊,对于从事电力工程、自动化、计算机科学和其它相关领域教学和研究的教育机构师生来说,能够提供重要的参考和学习资料。

电力工程及自动化论文范文第2篇

关键词:智能化技术;电气工程;自动化控制

引言:

在现代化的今天,依旧应用传统的自动化控制技术来控制电力工程,无法满足电气工程发展的需求。此种情况下,应当利用智能化技术来优化和创新电气工程自动化控制,这可以大大提高电气工程自动化控制效率,推动电气工程良好发展。可以说,智能化技术是推动电力工程自动化控制水平提高的有效手段。那么,智能化技术如何有效的应用于电气工程自动化控制中呢?本文笔者将在下文围绕此问题展开分析和探讨,希望对于促进电力工程良好发展有所帮助。

一、电气工程自动化控制中智能化技术的特点

电气工程自动化控制中智能化技术的特点主要表现在以下几方面。

(一)智能化技术的自动化水平高

相对于传统电力工程自动化控制来说,运用智能化技术的自动化控制可以在无人控制和操作的情况下,有序的、有计划的运行。这是因为利用智能化技术来控制和调节电气设备,是按照设定的情况来标准的、规范的控制调节电气设备,这会使电气设备以最佳的状态来运行,如此就可以科学、合理的控制电力工程,使之安全、稳定、有效的运行。

(二)智能化控制器无需操作模型

利用智能化技术而构成的智能化控制器,其具有紧密系数高的特点,在具体的控制电力工程的过程中,可以相对精确的、详尽的掌握电力工程相关数据。以此为依据,对电力工程进行科学的、合理的、有效的控制,使其正常、稳定的运行。利用智能化控制器的应用,无需依靠操作模型来进行电气工程控制,这大大提高了电力工程自动化控制效率。

(三)智能化技术的数据处理能力较强

与传统电力工程自动化控制相比,在电力工程自动化控制中应用智能化技术,可以使增强自动化控制水平,使其能够针对不同对象,进行相应的数据分析和数据处理,合理控制,提高控制效果。但是有些控制对象具有多样性,不容易控制,及时利用智能化技术也不能够实现控制对象全面化。所以,在未来发展电力工程自动化控制时应当注意此种方面的强化。

二、电气工程自动化控制中智能化技术应用的优势

智能化技术作为科学技术的产物,将其应用于电气工程自动化控制中,可以对信息进行收集、分析、处理、反馈,优化和调整电气工程自动化控制,促进电气工程良好发展的同时,节约人力资源。可以说,电气工程自动化控制中应用智能化技术具有多种优势。主要表现为:

(一)智能化函数近似器应用性更高

因为智能化技术的应用,可以说人工智能在电气工程自动化控制中充分发挥作用。也就是根据电气工程自动化控制的对象,智能化函数近似器会选用适合的函数计算方法来计算控制对象相关的数据,得到精确度高和真实的数据结果(如图一所示)。以此为依据,科学、合理的调控电气工程,可以提高电气工程的质量和效率。

(二)智能技术更易于调节

在电气工程自动化控制中应用智能化技术,可以实现人工智能控制器对电气工程数据进行收集和分析,进而合理控制电气工程。此种电气工程自动化控制方式,即使没有相关专家作指导,也能够有效的完成电气工程的控制,为使电气工程良好运行创造条件。

三、智能化技术在电气工程自动化控制中的应用

综合上文电气工程自动化控制中智能化技术的特点和优势,可以确定智能化技术有效的应用于电气工程自动化控制中,可以大大提高自动化控制水平,为推动电气工程良好发展做铺垫。

(一)智能化技术能够诊断电气工程存在的故障

电气工程系统运行过程中,电气设备会受到环境因素、自身因素等因素的影响,使其出现故障,影响电气工程系统运行效果。为避免此种情况出现在电气工程系统中,智能化技术的有效应用,可以电气工程进行全面的、详细的检测,找出故障的电气设备。在此基础上对故障设备的相关数据进行收集、分析、反馈,找出解决故障的有效方法,为使故障的电气设备再次有效应用创造条件。

(二)智能化技术对电气设备优化设计

电气工程自动化控制的过程中,经常需要对电气设备进行设计,确保所设计的电气设备可以有效的应用,为促进电气工程有效应用提供条件。但是,要想设计出,满足电气工程需要的电气设备是比较困难的。因为电气设备设计是非常复杂和繁琐的,设计人员不仅要掌握专业的知识,还要具有较强的设计经验,在设计中详细的分析电气设备的功能和作用,在此基础上科学、合理的设计,才能够确保电气设备可以有效应用。但智能化技术应用于电气设备设计中,可以利用遗传算法、智能化CAD技术等来辅助电气设备设计,这可以在一定程度上优化电气设备的设计,为设计出功能强、性能佳的电气设备创造条件。

(三)智能化技术在电气工程自动化控制中的智能控制

智能化技术应用到电气工程自动化控制中,可以促使自动化控制向自动操作化、自主化、高效化、智能化的方向发展。之所以这么说,主要是电气工程自动化控制中应用的智能化技术,可以针对控制对象实际情况,提出行之有效的控制方案,进而对自动化控制系统进行适当的调节,使其可以按照控制方案来控制电气工程各个方面,提升电气工程水平,为促进电气工程良好发展创造条件。

结束语:

在我国科学技术不断发展的当下,传统的电气工程自动化控制已经无法,满足电气工程的发展。此种情况下,应当在电气工程自动化控制中科学、合理的应用智能化技术,促使智能化技术在电气工程自动化控制中充分发挥作用,诊断电气工程存在的故障、电气设备优化设计、电气工程自动化控制中的智能控制,提升电气工程自动化控制水平,推动电气工程良好发展创造条件。所以,智能化技术科学、合理的应用于电气工程自动化控制中至关重要。

参考文献:

[1]甘雷.智能化技术在电气工程自动化控制中的应用探讨[J].《电子技术与软件工程》 2014(20).

[2] 耿英会.智能化技术在电气工程自动化控制中的应用[J];科技创新导报;2012(02).

[3]张九根;马小军;;培养建筑电气与智能化技术的人才――电气工程及其自动化专业人才培养模式教学内容和课程体系改革的研究与实践[A];第二届全国高校电气工程及其自动化专业教学改革研讨会论文集(下册)[C];2004.

电力工程及自动化论文范文第3篇

1引言

我国在电力领域的发展突飞猛进,为社会做出了不可磨灭的贡献,具有极其重要的社会经济地位和作用。这离不开电力自动化技术的普及和推广实践应用。然而,我们还需要深入地对电力工程实践应用中存在的问题,进行分析和研究,并运用更为高效的举措,以获得更佳的运行效率[1]。

2电力自动化技术的概念及意义

在我国计算机网络技术和通信技术迅速发展的背景下,电力自动化技术以此为依托,通过通信网络传输介质,实现对电力运行信息的实时采集、分析和处理,并且还可以为电力系统的电力调度提供有力的数据依据,从而更好地协调不同区域的电力运行状态,提升电力系统的运行效率,极大地保障了电力工程的整体质量,优化了电力运行相关参数,更好地提升了电力工程的安全性和稳定性,对于我国的电力行业发展起到了较大的推动作用[2]。在电力工程领域,需要顺应时代的需求,实现自身的改革创新,以确保电力需求。因而,电力自动化技术就成为了提升电力工程质量和安全的有力保障和支撑,在电力自动化技术的实践应用之下,可以较好地减少电力工程的成本费用,获得更好的成本效益比。同时,在电力工程中应用电力自动化技术,还可以更为及时且完整地实现对电力数据的统计和共享,在自动化技术的操作界面之下,工作人员可以以实时数据为基础,采用针对性的调节对策,从而最大程度上避免人为失误和偏差,更好地强化对电力工程项目的监控。在电力工程的电力技术应用中,还可以更加迅捷地处理电力系统的运行故障,及时地发出预警信息,使工作人员快速获取故障异常信息,从而在最短的时间内采用有效的故障处理措施,更好地提升电力工程的安全性和可靠性。电力技术在电力工程中的实践应用还可以使维护工作更为便捷,这主要是由于电气自动化技术与计算机终端相连,在自动化操作系统的平台界面之下,电力维护人员可以根据系统提供的信息,对电力设备的运行参数进行分析,并采用适宜的维护措施,更好地保障电力设备运行的正常和稳定。

3电力自动化技术的应用分析

电力自动化技术在电力工程的发展进程中,成为了一种成熟而先进的应用方式和技术,它可以满足人们的不同电力需求,并广泛应用于不同领域之中,充分发挥出电力自动化技术的应用实践价值和作用。具体来说,主要有以下几个方面的应用。

3.1电力自动化技术应用于变电站

由于电力自动化技术是以计算机网络技术、通信技术为依托和支撑,因而可以较好地实现对变电站设备的实时优化和调节,较大程度上缓解工作人员的压力。变电站的工作人员可以运用自动化技术,实现对变电站设备的实时监控和检测,获取相关变电站设备的运行参数,确保变电站设备的有效性能。同时,在电气自动化技术的应用条件下,变电站的传统设备装置还可以为新的设备装置所取代,在更为先进、更为完善的设备装置利用前提下,可以更好地实现对变电站设备的智能化、可视化的监测,从而实现变电站运行的诸多任务,更好地提升变电站的运行效能。

3.2电力自动化技术应用于电网调度

在电力工程的运行过程中,工作人员要根据计算机屏幕显示器等设备,实现对电网的调度工作和任务。在成熟、先进的电力自动化技术实践之下,电网调度工作人员可以借助于计算机设备,实现对电网运行状态的实时监控,能够更为准确、全面地获取电网运行的参数信息数据,并且在获取电网运行数据信息的同时,实现对电网运行信息数据的传输、分析、处理等工作。这无疑显现出传统电网调度所无法比拟的应用优势,在传统的电网调度方式之下,工作人员无法准确、及时地获取电网运行设备的运行状态信息,出现一定程度上的电网运行数据信息的延迟,这就使工作人员无法及时获知电网系统的运行异常和故障,使电网系统存在安全隐患,为电力企业带来无谓的损失。而在电气自动化技术的应用实践之下,可以通过人机互动界面,实现人机良好互动,并及时而完整地获知电网运行相关信息,电气自动化技术可以实现对信息数据的实时采集、分析、处理和故障预警,从而更好地实现对电网系统运行故障的处理,减少电网系统中存在的安全隐患,更好地提升电网系统的运行效率。

3.3电力自动化技术应用于分散测控系统

在电气自动化技术的应用之下,分散测控系统成为了电力系统中相关电力信息的输出系统,在这个模式之下,可以使工作人员更好地实现对电力运行的实时监控,更好地确保电力系统的运行稳定与安全。

3.4电力自动化技术应用于计算机操作系统

电力自动化技术也逐渐引入到计算机操作系统之中,在计算机操作系统与电力自动化技术相融合的方式之下,可以使工作人员更好地实现对电力运行信息的确认和反馈,最大程度上减少电力运行信息的误差。

4电力工程中的电力自动化技术应用

4.1现场总线技术

电力自动化技术在电力工程中的应用之中,可以采用现场总线技术,实现对电量相关数据的采集、传送和数学模型的自动化计算,从而实现正确的判断,它并非是对现场整体的监控,而是针对关键性的、针对性的电量信息数据进行分析和控制,在这个多向、多站、数字化的信息网络之中,现场总线技术可以极大地提高前置机和上位机的协调性,使两者配合默契,并在电力仪表的应用控制环境下,不断完善和优化,更好地推动电力系统的发展。

4.2主动对象数据库技术

在电力工程中的电力自动化技术,还要运用先进的主动对象数据库技术,它借助于计算机存储技术,实现对电力系统运行的实时监测和控制。传统的数据库技术已经无法满足现代电力系统的运行发展趋势,因而,要深入研究主动对象数据库技术,要不断创新和开拓,实现对电力系统的自动化监督,提升数据库数据的传输速度和质量,从而确保电力工程的监测、控制的实际需求。

4.3电力自动化补偿技术

在电力工程的电力自动技术之中,电力自动化补偿技术也是非常重要而关键性的技术。它可以通过智能化、自动的无功补偿方式,利用动态补偿及固定补偿方式,在科学电压限制条件技术的应用实践之下,运用投切开关,实现对电容器投切的智能化自动控制,从而实现缺相保护的功能,更好地提升自身对负载变化的适应性。

5结语

综上所述,我国经济在快速发展的态势下,电力行业也处于不断发展的上升趋势,这也是与人们日益增长的电力需求相适应的,为了满足人们的用电需求,电力行业需要大胆尝试创新,要充分运用电力自动化技术,更好地提升电力工程的安全性、稳定性和灵活性,建构和完善完备、便利的信息体系,从而推动我国电力行业的可持续发展。

【参考文献】

【1】陈惠兰.电力工程中的电力自动化技术的实践分析[J].山东工业技术,2015(17):117.

【2】杨午.电力工程中的电力自动化技术应用[J].电子技术与软件工程,2015(17):153.

电力工程及自动化论文范文第4篇

中图分类号:F407.61 文献标识码:A 文章编号:

电力工程中电气自动化技术

1. 全控型电力电子开关逐步取代半控型晶闸管 50 年代末出现的晶闸管标志着运动控制的新纪元。它是第一代电子电力器件,在我国至今仍广泛用于直流和交流传动控制系统。由于目前所能生产的电流/电压定额和开关时间的不同,各种器件各有其应用范围。 GTR 的二次击穿现象以及其安全工作区受各项参数影响而变化和热容量小、过流能力低等问题,使得人们把主要精力放在根据不同的特性设计出合适的保护电路和驱动电路上,这也使得电路比较复杂,难以掌握。 MOS 控制晶闸管( MCT )是一种在它的单胞内集成了 MOSFET的品闸管,利用M OS 门来控制品闸管的开通和关断,具有晶闸管的低通态电压降,但其工作电流密度远高 IGBT和 GTR ,在理论上可制成几千伏的阻断电压和几十千赫的开关频率,且其关断增益极高。

2. 变换器电路从低频向高频方向发展随着电力电子器件的更新,由它组成的变换器电路也必然要换代。应用普通晶闸管时,直流传功的变换器主要是相控整流,而交流变频船动则是交一直一交变频器。当电力电子器件进入第二代后,更多是采用PWM 变换器了。采用PWM方式后,提高了功率因数,减少 了高次谐波对电冈的影响,解决了电动机在低频区的转矩脉动问题。

3 交流调速控制理论日渐成熟 1971 年,德国学者 F , Blaschke 阐明了交流电机磁场定向即矢量控制的原理,为交流传动高性能控制奠定了理论基础。矢量控制的基本思想是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。它需要检测转子磁链的方向,且其性能易受转子参数,特别是转子回路时间常数的影响。加上矢量旋转变换的复杂性,使得实际的控制效果难于达到分析的结果。 1985 年德国鲁尔大学的 Depenbrock 教授首次提出了直接转矩控制的理论,接着 1987 年又把它推 广到弱磁调速范围。大致来说,直接转矩控制,用空间矢量的分析方法,直接在定子坐标系下分析计算与控制电流电动机的转矩。采用定子磁场定向,借助于离散的两点式调节(Band 一 Band 控制)产生 PWM 信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。

4 通用变频器开始大量投入实用从产品来看,第一代是普通功能型 U / F 控制型,多采用 16 位 CPU ,第二代为高功能型 U /F 型,采用 32位DSP或双 16 位CPU 进行控制,采用了磁通补偿器、转差补偿器和电流限制拄制器.具有挖土机和“无跳闸”能力,也称为“无跳闸变频器”。这类变频器!目前占市场份额最大。第三代为高动态性能矢量控制型。 5 单片机、集成曳路及工业控荆计算机的发展以 MCS-51为代表白 8 位机虽然仍占主导地位,但功能简单,指令集短小,可靠性高,保密性高,适于大批量生产的 PIC系列单片机及CMS97C系列单片机等正在推广,而且单片机的应用范围已开始扩展至智能仪器仪表或不太复杂的工业控制场合以充分发挥单片机的优势另外,单片机的开发手段也更加丰富。在集成电路方面,需要重点说明的是集成模拟乘法器和集成锁相环路及集成时基电路在自动控制系统中运用很广。

二、智能电网概述 目前,全世界范围内的气候变化越来越频繁,且由于人口的剧增,能源的供应也越来越紧缺,因此,智能电网在全球中不断地被关注。在几年前,美国政府为了恢复经济的良好运行,将智能电网的建设作为核心策略,来解决由于能源引起的危机,并利用它来促进其他产业的健康发展。在我国,智能电网的建设更是一项紧急的任务。

三、电力工程技术在智能电网建设中的总体应用

第一,电源领域的应用。电力工程技术能够为智能电网的各种设备提供不同的电源。具体包括直流、变频以及恒频的交流电源等。例如,在蓄电池充电中,一般是采用直流电源,在变电所的操作中,既可以采用直流电源,也能用交流电源,而在大型或者小型的计算机中,可以采用高频的开关电源。

第二,输电中的应用。由于智能电网要求具有较高质量的电能以及较为稳定的电网工作状态,而实现这些要求需要电力工程技术中的谐波抑制技术以及无功补偿技术的支持和配合。另外,电力工程中也不断出现新的装置,这些功能和智能电网的建设要求相符合,因此,能够在智能电网建设中加以应用。 第三,发电中的应用。电力工程技术是一种现代的新技术,它通过电力和电子设备,实现电能的转化以及控制,大大降低了能量的消耗量,同时还能减少机电设备的使用,工作效率也因而提高。

三、电力工程技术在智能电网建设中的具体应用

第一,电能的质量优化技术。该技术在智能电网建设中的应用,需要建立在电能的质量等级划分以及评估方法体系的完善的基础上,对供用电的接口所具备的经济性能进行分析,从而建立起用户经济性以及技术等级这两个评估体系,并借助法律法规的不断完善,来促使智能电网的建设往经济且优质的方向发展。

第二,柔流输电技术。该技术是将清洁度高的新能源等输入电网中的主要技术,它是在微处理以及微电子技术,电力技术、电子技术以及相关的通信和控制技术的基础上形成的能够对交流输电实现灵活控制的技术。

第三,高压直流输电技术。当前的直流输电系统中,很多环节都采用交流电,但是输电过程是用直流电的。采用该技术能够利用控制换流器,实现整流或者逆变的工作状态。能够应用在远距离或者近距离直流输电工程中,还能为一些孤立的地域例如海岛供电。

第四,能源转换技术。未来社会中的能源发展方向应该是实现低碳经济能源。也就是将能源的消耗量以及对环境的排放和污染控制在最低水平上,低碳经济能源的核心是在能量的转换上采用先进技术对其进行创新,实现能源的高效利用。目前,太阳能与风能等自然能源已经成了世界上利用最多的用于能量转换的能源。

四、关键的电力工程技术在智能电网建设中的应用

第一,串联补偿中的工程应用。伊冯500kV TCSC项目是国家发改委批准的部级科学研究项目。该项目是由C-EPRI Science & Technology Co.,Ltd建立,将伊冯500kV TCSC项目的限定功率由1460000kW提高至2500000kW,用于该项目的TCSC设备,都是由中国独立设计、发展、组装和调试的。这个设备的成功运营表明中国已经精通了适应高寒地区的全套大容量可控串补的技术,并实现了HV TCSC的工业化应用。

第二,并联补偿的工程应用。C-EPRI Science & Technology Co.,Ltd完成了无功补偿设备的关键技术的研究,这一设备是中国装机容量最大的无功补偿设备,而且成功将无功补偿技术用于运营之中。联众不锈钢公司将无功补偿设备运用在实际中。这些设备有效解决了由设备中的脉动负载引起的电力质量问题。因此设备可确保工程安全运营,联众不锈钢公司每年有2千万的经济利益。

第三,常规电力技术的工程应用。北京大型航空公司的电力负载对电压骤降和短期的电源中断造成的短暂电力质量问题很敏感。根据这家公司的实际情况,C-EPRI Science & Technology Co.,Ltd.安置两个常规的电力设备,通过常规的电力技术解决电力质量问题。在成功运营后,这些设备有效地消除了电力质量问题。

电力工程及自动化论文范文第5篇

【历史沿革】

电气与自动化工程学院前身为原北洋大学电机工程系,创建于1933年。至1937年北洋大学电机工程系已初具规模,有了第一届毕业生。抗日战争爆发,电机系随学校西迁陕西,经历了坎坷的八年抗日战争。抗日战争胜利后,1946年北洋大学于天津西沽原校址复校。在极其艰难的条件下,经过全系师生共同努力,北洋大学电机工程系不但得以恢复,且有了一定的发展。

1951年,北洋大学与河北工学院合并成为天津大学,两校的电机工程系合并为天津大学电机工程系。1952年经院系调整,天津大学迁到七里台新建校址,原南开大学电机工程系调归天津大学,合并后成立了电力工程系和电信工程系。1955年,电信工程系奉调北京成立北京邮电学院。

1960年,电力工程系与第三机械系合并,建立电机与动力工程系。

1971年,内燃机专业调离本系,而将原属精密仪器系的热工仪表及自动化装置专业调整到本系,系名改为“电力及自动化工程系”。1978年热工教研室调离该系,与内燃机专业一起成立热能工程系。

1997年6月,学校决定将原电力及自动化工程系、热能工程系的工程热物理专业及地热研究与培训中心合并,组建为电气自动化与能源工程学院。

2002年4月,学校将热能与制冷工程系、地热研究与培训中心两个单位整建制的调整到机械工程学院,7月,经学校批准学院更名为电气与自动化工程学院。

【学院概况】

学院现设2个系(电气工程系、自动化系),5个中心(现代电工电子技术中心、电气与自动化实验中心、电工电子实验中心、楼宇自动化中心、电力研究与培训中心),3个研究所(电力电子应用技术研究所、电力及自动化工程研究所、天津大学机器人与自主系统研究所)。自1933年成立以来,经过几代人的共同努力,目前拥有“电气工程及其自动化”和“自动化”2个本科专业,拥有“电气工程”和“控制科学与工程”2个一级学科,均为博士、硕士学位授权一级学科,并分别设有博士后流动站。在学院所属的8个二级学科(电力系统及其自动化、电机与电器、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、控制理论与控制工程、检测技术与自动化装置和模式识别与智能系统)中,电力系统及其自动化、检测技术与自动化装置为国家重点学科。学院每年本科生招生规模330人左右,研究生300人左右。

【学科特色】

学院研究方向特色鲜明,其中电力系统规划、评估与优化,电力系统安全性与运行控制,分布式发电与微网,电力系统保护与控制,新型电机及其控制技术,电器系统优化与节能,高电压与绝缘材料,新型传感器与流动参数检测,自动化装备与过程控制,智能系统检测、建模与控制,智能信息处理与应用,航空制导技术,机器人控制技术,新能源动力汽车控制技术等研究方向在国内外均具有一定影响力。未来学院还将结合国家重大需求和国际科技前沿,努力推进学科建设和科研发展。

【师资队伍】

学院拥有一支高效、精干、勇于开拓的师资队伍,现有中国工程院院士1人,俄罗斯工程院院士1人,国家“”引进人才1人,长江学者创新团队1个,长江学者特聘教授2人,长江学者讲座教授1人,“973”首席科学家2人,国家杰出青年基金获得者2人,国家百千万人才2人,教育部新(跨)世纪优秀人才14人,天津市“”引进人才2人。

【科学研究】

学院现拥有各类科研和教学实验室20余个,其中包括:智能电网教育部重点实验室、天津市电力系统仿真控制重点实验室、天津市过程检测与控制重点实验室、教育部新型飞行器联合研究中心(先进制导与控制分中心)、天津市配电系统规划及自动化技术推广中心,以及与国内外知名企业共建的楼宇自动化中心(与美国霍尼韦尔公司共建)、电力研究与培训中心(与华北电力公司、天津电力公司、河南电力公司、天津大港电厂等单位共建)、天津大学——三菱电机自动化实验室(与三菱电机(中国)公司共建)、天津市电力新能源与智能配用电技术工程中心(与天大求实公司共建)、天津市锻压装备技术工程中心(与天锻压力机公司共建)等多个科研和实训平台。多数实验室和研究平台可对在校学生和企业开放,用于培养学生的创新能力和解决企业的实际问题。80年来,学院始终秉承“实事求是”校训,以培养高素质人才和发展科技为己任,取得了累累硕果。近5年来,共完成科研项目400余项(包括两项国家973项目,10余项国家863、支撑计划课题项目等),获2012年国家技术发明二等奖、2010和2011年两项国家科技进步二等奖,2009年中国高校十大科技进展以及其他各类省(部)级科学技术进步奖20余项,发表科技论文1500多篇。科研经费连年增长,2012年全院承担的科研项目经费已超过5000万元。

【合作交流】

学院先后与国家电网公司经济技术研究院、能源研究院、北京四方集团公司、广东白云电气集团公司、日本SMC株式会社、加拿大维多利亚大学新能源研究所等签署全面合作协议,在科研合作、人才培养、基地建设方面开展全面深入的合作,并同多个国际跨国企业开展了广泛的科研项目合作。学院牵头负责中美四院(工程院和科学院)、中瑞两国智能电网国际合作,并先后成功主办了第七届国际多相流测试技术会议、IEEE PES ISGT-Asia2012国际会议、2010和2011两届中-瑞智能电网论坛、2011年中-美-加智能电网论坛等多项重要学术活动。

电力工程及自动化论文范文第6篇

关键词:电力工程;二次系统;系统接地;抗干扰

1、引言

随着电力系统自动化水平的提高,变电站内采用的弱电设备及系统越来越多,如数据采集系统、通信系统、控制和继电保护系统等。变电站中的二次系统处在一个强电磁环境中,工频电流、电压和系统短路故障、开关操作、雷电侵扰、交直流混联以及多种放电现象等的通过不同途径引发的各种干扰,将不可避免地影响二次系统的正常工作。随着变电站一次系统电压的升高、容量的增大,电磁干扰更加严重如果不采取有效措施防御,容易造成继电保护装置的误动或拒动,造成监控系统的混乱、死机等现象,对电网安全构成严重的威胁。

为此,本论文将主要针对电力工程中二次系统的接地及其抗干扰问题展开分析探讨,以期从中找到合理有效的电力工程二次系统的接地抗干扰设计方法,并以此和广大同行分享。

2、电力工程二次系统干扰来源及其危害分析

变电站综合自动化系统运行中,电力系统发生短路故障,变电站内进行一次系统的操作,变电站遭遇雷击时的雷电流通过架空线路传入变电站的母线,运行、检修人员使用步话机,以及由于各种原因产生的静电放电,现场使用一些不符合电磁兼容标准的试验仪器和和电子设备,当然也有微机型继电保护装置及二次回路自身原因形成的干扰等,都构成影响继电保护及安全自动装置安全可靠工作的干扰源。

这些干扰不可避免地通过感应、传导和辐射等各种途径引入到二次设备中,当干扰水平超过了这些电子设备的耐受能力时,将导致这些设备不正确动作。更重要的是在系统发生故障情况下,这些重要的设备将因干扰的影响发生不正确动作行为,直接影响到系统的安全稳定,其后果将可能是十分严重的。因此,解决微机型监控系统和保护及安全自动装置的抗干扰问题就成了一个不可回避和不容忽视的重要问题。

随着综合自动化系统的应用,使变电站无人值守成为可能,并得到广泛的应用。这样,综自系统通讯的可靠性日益显现出其重要性,干扰的引入会导致通讯系统工作不正常、信号误报或整体通讯瘫痪,变电站失去相应的监控,极大影响变电站综自系统的运行。

3、电力工程二次系统的接地及抗干扰分析

3.1 电力二次系统接地保护策略分析

1) 建立独立的继电保护二次接地系统,将完全独立的继电保护二次接地系统与变电站的接地网用绝缘瓷瓶完全隔离后,在近控制室或保护室一侧与变电站主接地网一点连接,即开关场部分和保护室部分均与主地网绝缘。

2) 将开关场端子箱处沿电缆沟铺设100平方毫米的铜排或是铜缆至保护室,并将安装在保护室的二次接地系统(也是使用100平方毫米的铜排构成)用绝缘瓷瓶完全隔离后,在近控制室或保护室一侧与变电站接地网一点连接,即开关场部分不与主地网绝缘。

3) 将开关场端子箱处沿电缆沟铺设100平方毫米的铜排或是铜缆至保护室,与保护室的二次接地系统(也是使用100平方毫米的铜排构成),在近控制室或保护室一侧与变电站接地网一点连接,即开关场部分和保护室部分均不与主地网绝缘。

4) 所有的接地铜排要求不小于100平方毫米的铜排。

5) 在电流互感器和电压互感器的引出接线端子盒到接线端子箱的连接电缆使用屏蔽电缆。

6) 隔离刀闸的控制电缆使用屏蔽电缆。或隔离刀闸就地控制箱到端子箱的连接电缆使用屏蔽电缆。

7) 屏蔽电缆的屏蔽层接地工艺符合要求,不能造成电缆绝缘损坏,起不到抗干扰的作用。

8) 发电厂厂用系统的低厂变、馈线、电动机等保护柜内的微机保护使用屏蔽电缆。

9) 对用于防止电压互感器二次过电压保护的放电间隙的定期检定。

3.2 二次系统接地过程中的注意事项

系统的接地应当注意以下几点:

l) 参照设备的接地注意事项;

2) 设备外壳用设备外壳地线和机柜外壳相连;

3) 机柜外壳用机柜外壳地线和系统外壳相连;

4) 对于系统,安全接地螺栓设在系统金属外壳上,并有良好电连接;

5) 当系统内机柜、设备过多时,将导致数字地线、模拟地线、功率地线和机柜外壳地线过多。对此,可以考虑铺设两条互相并行并和系统外壳绝缘的半环形接地母线,一条为信号地母线,一条为屏蔽地及机柜外壳地母线;系统内各信号地就近接到信号地母线上,系统内各屏蔽地及机柜外壳地就近接到屏蔽地及机柜外壳地母线上;两条半环形接地母线的中部靠近安全接地螺栓,屏蔽地及机柜外壳地母线接到安全接地螺栓上;信号地母线接到信号地螺栓上;

6) 当系统用三相电源供电时,由于各负载用电量和用电的不同时性,必然导致三相不平衡,造成三相电源中心点电位偏移,为此将电源零线接到安全接地螺栓上,迫使三相电源中心点电位保持零电位,从而防止三相电源中心点电位偏移所产生的干扰;

7) 接地极用镀锌钢管,其外直径不小于50mm,长度不小于2.0m;埋设时,将接地极打入地表层一定深度,并倒入盐水,一般要求接地。

3.3 电力工程二次系统抗干扰接地对策

1) 屏蔽接地

各种信号源和放大器等易受电磁辐射干扰的电路应设置屏蔽罩。由于信号电路与屏蔽罩之间存在寄生电容,因此要将信号电路地线末端与屏蔽罩相连,以消除寄生电容的影响,并将屏蔽罩接地,以消除共模干扰。

2) 设备接地

一台设备要实现设计要求,往往含有多种电路,比如低电平的信号电路(如高频电路、数字电路、模拟电路等)、高电平的功率电路(如供电电路、继电器电路等)。为了安装电路板和其它元器件、为了抵抗外界电磁干扰而需要设备具有一定机械强度和屏蔽效能的外壳。

设备的接地应当注意以下几点:

① 50 Hz电源零线应接到安全接地螺栓处,对于独立的设备,安全接地螺栓设在设备金属外壳上,并有良好电连接;

② 为防止机壳带电,危及人身安全,不许用电源零线作地线代替机壳地线;

③ 为防止高电压、对低电平电路大电流和强功率电路(如供电电路、继电器电路)(如高频电路、数字电路、模拟电路等)的干扰,将它们的接地分开。前者为功率地(强电地),后者为信号地(弱电地),而信号地又分为数字地和模拟地,信号地线应与功率地线和机壳地线相绝缘。

4 结语

电力系统的二次回路数量多,系统复杂,所处的工作环境亦复杂多样。系统的各种继电保护装置、自动装置和各种监控系统随着微机产品的大量应用,对工作环境条件的要求也越来越严格,变电站中的各种干扰是影响这些系统正常运行的主要因素。接地一方面是保证电力系统正常运行的必须条件,同时也是抗干扰的一项重要措施。本论文对于电力工程二次系统的接地方法及其抗干扰措施都进行了分析,具有一定的实用性,因而是值得推广的。

参考文献:

[1] 江苏省电力公司.电力系统继电保护原理与实用技术[M].北京:中国电力出版社,2006.

[2] 孙竹森,张禹方,张广州.500kV变电站电磁骚扰和防护措施的研究(一)[J].高电压技术,2000, 26(l):16-18.

[3] 王保仓.电力二次系统接地及抗干扰方法研究[D].南京:东南大学,2006.

作者简介:

电力工程及自动化论文范文第7篇

关键词:电力系统;工学一体化;教学设计

作者简介:赵美莲(1976-),女,山西朔州人,南京工程学院电力工程学院,讲师;陈跃(1963-),男,江苏南通人,南京工程学院电力工程学院,副教授。(江苏南京211167)

中图分类号:G642.41     文献标识码:A     文章编号:1007-0079(2012)06-0076-02

“电力系统分析”是电气工程及其自动化专业学生掌握电力系统基本概念、基本分析和计算能力的一门重要基础课程,是电类专业学生从基础技术理论课程走向专业技术课程学习的知识桥梁。该课程以电力系统潮流计算、故障计算和稳定分析为核心,紧密结合不断涌现的电力系统新技术,内容涉及面广多,涵盖了电机学、电路、电磁场、自动控制等多学科知识,包含了线性方程、非线性方程、微分方程等大量数学理论推导。学生学习该课程往往感觉难度较大,不易掌握内容的重点和难点。

随着电力工业的快速发展,“电力系统分析”课程教学面临着极大挑战,学生既要掌握扎实的专业理论知识,又要学会理论与应用相结合,具备运用知识的创新能力。传统的以教师为中心的单一教授法已成为制约教学质量提高的瓶颈,需要在方法上创新模式,适应学生个性和职业发展的需要,激发学习潜力,培养学生学以致用的创新能力,以满足技术、经济和社会发展对高级人才的综合素质要求。

一、工学一体化的教学意义

教与学,二者是一对辨证统一体,其行为是一种需要将刻板的理论知识与生动的实际应用有机结合的艺术活动。让学生具备学以致用的创新能力,这就是“工学一体化”教学的目的与意义。

学生要具备学以致用的创新能力,就是要实现其从获取知识到运用知识和创新知识的能力提升。显然,学生上课认真听课、仔细做笔记只能做到有知识,很难做到有能力。在教学中,要不断强化学生的主动参与意识,授之以渔,让学生成为教学活动的主体,学会主动思考和深化运用,提高创新知识能力。

电类学科具有很强工程应用背景,其专业学习的最终目的是要将技术成果转化为生产力,直接推动电力工程建设,因而特别强调对学生创造性思维和能力的培养。学生不仅要具有扎实的基础知识理论,而且要具备发现问题然后运用知识解决实际工程问题的能力。工学一体化教学的本质之一,就是要全面培养学生善于独立思考、勇于开拓创新的综合素质。因此加强理论与实践相结合的工学一体化教学,对于电类专业显得尤为必要和重要。

二、以往的教学困境

“老师在黑板上讲得天花乱坠,学生在下面呼呼大睡。”这是在教学调查中学生对传统课堂的形象描述。在传统教学模式下,教师是传道授业解惑的单一主体,学生完全处于被动接受知识的地位。教师在黑板上讲解教材中规定的纯理论知识,且往往是概念释义和理论算法推导,与实际应用需求脱节现象较为严重。课堂缺乏生动性和吸引力,学生很容易感到枯燥乏味,进而渐渐产生厌学情绪,这无疑不利于提高教育教学质量。更有甚者,不少学生的学习目的相对片面,仅为应付课程考试而学,死记硬背一些概念和原理,浅浮于知识的表面理解,谈不上深入分析所学知识去解决实际问题,很难具备学以致用的创新能力。

教学中也会安排一些实验课作为课程实践环节,但这些传统的实验课常常是“走过场”。学时少且实验内容相对固定,一般都是要求学生按照教师的示范或指导书的步骤去按部就班地操作,简单地验证一些基本原理和现象,学生无法参与过程设计,严重制约了学生创新思维能力的提高。

三、工学一体化的教学设计

“电力系统分析”课程包括电力系统稳态分析和电力系统暂态分析两部分,教学内容多,任务量重,教学时间安排也相对较长,如何获得良好的教学效果是我们一直在深入思考的问题。经过长期的教学实践探索,我们设计了一套“兴趣培养―理论教学―工程实践”多层级交叉融合的“电力系统分析”课程工学一体化教学法。在教学过程中,注重运用现场教学、案例教学、讨论式教学等多种手段,将理论知识融于实际应用,让学生在教与学的互动过程中,发挥主观能动性,灵活运用所学知识,创新性地完成各类应用操作,达到学以致用的教学效果。

1.兴趣培养

虽然学生在学习“电力系统分析”之前,一般都已经学习过“电路”、“电机学”等基础课程,初步掌握了同步发电机、异步发电机、变压器等电工电器设备的基本知识,但是大多数学生对电力系统的体系结构和生产运行缺乏整体性概念。课程伊始,如果就直接讲授教材中的各种算法和理论推导,学生往往会很难理解和接受。

伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”这就是说一个人一旦对某事物有了浓厚的兴趣,就会主动去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪和体验。因此,在开始该门课程教学时,十分注重培养学生的课程兴趣。良好的开端是成功的一半,引导学生建立起学习电力系统的专业兴趣,激发其专业求知欲。感性认识是引导学生逐步建立学习兴趣的一种好方法。在教学过程中,主要采用了以下两种方法:

(1)声像教学。电力系统的生产、运行过程以及电力设备结构都十分复杂,很难用黑板或语言来讲授清楚,学生抽象地听讲,很吃力,无法直观理解。教学中,充分利用现代多媒体技术手段,通过声像结合、图文并茂的方式,形象地展现教学内容,特别是对一些电网运行控制环节和设备运行状况,让学生便于理解和感悟,起到了事半功倍的效果。通过声像教学,让学生一方面能够初步了解到电力系统的整体概况与生产过程,建立起对电网运行的系统感知;另一方面也能够了解到该专业的一些最新技术成果和示范工程建设,比如当今社会各界高度关注的特高压和智能电网知识,建立起“我是电力人”的兴趣感和自豪感。

(2)认识实习。大多数高校在该课程教学设计上都设置了认识实习环节,并计入学分,但时间安排上不是很科学,往往都在毕业实习前。为了及时增强学生对电力系统生产及其运行设备的直接感性认识,结合课程教学需要,与当地的电力生产运行部门(生产教学基地)联系,适时组织一些现场参观的认识实习,让学生现场参观发电厂、变电站和电力调度中心,亲身感受电力系统的实际生产运行过程。

2.课堂教学

在传统的教学模式下,学生在课堂中往往只顾及做好笔记,抄录基本概念、理论和算法推导,难以形成独立思考行为,更谈不上活学活用。因此,如何引导学生成为教学活动中的主人翁,勤于思考,善于发现问题解决问题,逐步培养其学以致用的创新能力,是提高课堂教学效果的关键。我们主要采用了以下2种手段来提升课堂教学质量:

(1)开放式课堂教学。开放式课堂教学是针对传统教育中以“课堂为主、教材为主、教师为主”的封闭性教学弊端而提出的。通过改革单一教学方法和教学手段,构建开放式的课堂教学,让学生成为教学中的活跃主体。一方面,增强教与学的互动性,即教师在讲解过程中允许学生提问,开展现场讨论。通过讨论,深化学生对知识点的理解和掌握。另一方面,柔性延拓“40分钟”课堂时间。一般高校专业课程的课时安排往往都会相隔2-3天,时间较长,为此,在每一次课堂结束时,首先将下一次课堂主要内容提炼为若干思考问题,引导学生课后独立思考,发现问题。然后在下一次上课之前,安排学生谈谈学习和思考的认知,发表自己的言论,教师做好引导工作,针对学生的发言,肯定他们说得正确的地方,也指出他们理解上的偏颇,并在接下来的课堂讲授中及时地进行有针对性的解惑。

现有教材大都是收集汇编了与课程相关的基本原理知识和成熟的技术成果,且偏重于理论阐述和算法推导,对专业领域的前沿技术和最新科技研究成果介绍甚少。为此,在教材的基础上,对讲义进行了适当的必要补充,重点内容包括电力专业最近10年来重大科技研究与重点示范工程应用成果,以及未来5-10年关键技术的发展方向。扩大学生的专业知识视野,让其及时了解电力系统的重大事件和重大科研成果,感悟该专业的技术成就和未来的发展方向。这一教学做法深受学生们的喜欢,既激发了他们的专业兴趣,又有效地强化了专业教育。

(2)组织课堂Seminar。课堂Seminar的教学目的是为了培训学生分析问题、解决问题、陈述观点、团队合作、参与讨论及论文写作等多方面的综合能力。让学生既勤于独立思考又善于团队合作,在相互讨论中锻炼逻辑思维能力,发现问题,然后综合运用所学知识去解决实际问题,逐步培养学以致用的创新能力。

具体地,我们在教学中的主要操作方法包括:结合课程重点知识的特点,开展小组内学生讨论(深入讨论)和小组间学生讨论(一般讨论);记录讨论情况,作为最终成绩评定因素,以此来激励学生参与讨论的积极性;在讨论过程中教师应适度参与,特别是对于学生无法讨论清楚的知识点或学生回答错误的地方,应由教师回答;对于学生的讨论教师应具有“包容心”,特别是面对一些“幼稚”甚至错误的观点时,更不可挫伤学生的积极性。

3.课后论文撰写

对课堂Seminar的教学延伸,就是鼓励和引导学生阅读与电力系统专业领域相关的各类学术期刊,提高他们的自我学习和阅读能力。主要推荐的学术期刊包括IEEE Transations on Power System,CIGRE汇刊、中国电机工程学报、电力系统自动化杂志等。结合课程教学内容,指导学生对一些重点知识进行深化学习和分析,撰写科技论文,表达自己学术观点,逐步培养他们的科研分析能力,这对有志于考读研究生的学生来说十分有帮助。

4.课程毕业设计

本环节的教学目的是进一步强化学生学以致用的创新能力培养。在课堂讲授内容结束后,要求学生将所学的电力系统基本原理转换为可应用的计算程序或软件,在运用知识的过程中深化对原理和方法的理解,让学生具备解决实际问题的能力。学生可以根据自己感兴趣的知识点,选择诸如潮流计算、短路计算、有功功率控制、无功电压调节、静态/暂态稳定分析等内容,完成相应的应用程序设计,深度推进理论分析与工程应用相结合的工学一体化教学。这种综合性设计实践,学生能充分彰显个性和发挥创新才华,因而受到了他们的积极响应和广泛好评。

四、考核方法

考试既是检验学生学习效果的一种手段,也是检查教师教学成效的重要途径。为此,设置一种科学合理的考核方法,也是教学改革中十分关键的环节之一。我们的主要做法是:不以期末闭卷考试成绩作为唯一的评定标准,将考核方式从简单获取知识量考核向知识和能力的综合评价转移,实施一套“平时考勤+课堂讨论报告+课程论文+闭卷考试”多指标综合加权评定的考核方法。该方法更加强调了对学生综合能力的真实测评,能有效地将应试学习转变为开放式的兴趣学习,真正实现素质教育和创新能力培养目的。

五、效果与总结

为了适应经济社会快速发展对高级人才培养的新要求,以培养学生学以致用的创新能力为目的,形成了一套“兴趣培养―理论教学―工程实践”多层级交叉融合的“电力系统分析”课程工学一体化教学法,实现了将理论知识讲授融于实际应用实践的良好互动,且教学形式生动,内容丰富,解决了传统的教学模式下费时费力且效果不佳的问题。教学实践证明:该方法使得学生不但较好地掌握了电力系统专业基础理论知识,而且显著提升了电力工程的实践应用能力,取得了良好的教学效果。

参考文献:

[1]雷霞.关于提高电力系统自动化课程教学效果的思考[J].高等教育研究,2011,(2).

[2]梁小冰,黄萍,韩昆仑.电气工程及其自动化专业的“工学一体化”人才培养模式[J].中国电力教育,2008,(9).

[3]赵玲.电气工程及其自动化专业应用型人才培养综合教学改革探索[J].上海电力学院高教研究,2004,(1).

[4]谢少军,周波,刘建业,等.电气工程及其自动化专业综合性课程设计的设置[J].电气电子教学学报,2003,(6).

[5]李滨,祝云,黎静华.《电力系统分析》课程实践教学环节的设计[J].中国电力教育,2008,(15).

电力工程及自动化论文范文第8篇

关键词:电力工程;管理系统;功能;成效

引言:

随着经济的快速发展,电能需求量是逐日递升,由此,各种类别的电力工程也是扎堆上马。

就性质而言,电力工程不论大小,均事关民生,其重要程度是不言而喻的,因此,做好对电力工程的科学管理极其重要。

但是,电力工程管理又是一项复杂的系统工程。从技术层面讲,它涉及到设计管理、进度管理、物资管理、验收管理等;从资金层面讲,它又关系到预算管理、造价管理、结算管理以及财务管理等;此外,还有档案管理、合同管理等等大小事务。

总之,电力工程管理是电建企业所面临的一个重点和难点。为了提升管理水平,顺应现代化发展需要,电建企业开始将目光投放到将信息化技术和电力工程管理相结合的层面上来。

一、电力工程管理系统建设必要性

应该说,经过几十年的发展,电建企业在对电力工程的管理方面,已经形成了一整套规范、严谨和完备的项目管理制度,这套制度可以保证:所有项目从立项、到采购、到施工、到报验、乃至结算和归档,整个过程都有章可循、有法可依。但问题是,截止目前,所有这一切繁琐的工作大都采用传统方式展开――即依靠各环节的员工费力协调和组织(主要方式是打电话和发邮件),这样就造成了以下不利局面。

⑴“信息孤岛”严重、重复劳动突出

由于缺少统一、集成的信息化管理平台,电力工程的相关资料和文档必然是散乱分布在不同部门之间,且相互不能共享。这会带来三个问题:

①由于资料不全(或者是齐全但凌乱),相关领导对整个工程的某种决策可能出现偏差。

②广大工程管理人员将大量精力花在了查找资料、传递文档、通知消息等方面,极大降低了工作效率,进而造成工程进度的拖延。

③一般来说,不同部门对某项材料的格式要求可能会不一样(但内容并无多少差异),这就带来“同样数据,多次制作”的局面,造成了劳动力的浪费。

⑵管理过程的规范程度将因人而异

虽然电力工程管理遵照一定范式进行,但由于内容较多,不同人员在执行起来不一定都能全部兼顾到位,若无计算机系统的约束和管控,长期以往,将造成相关流程的空置。

基于以上⑴、⑵的分析,我们有理由认为:在电力工程管理中,引入系统整合的思想,进行相关信息的深度集成,对确保电力工程的进度、提高电力工程的质量、实现电力工程的整体效益等有着非常重要的意义。

二、电力工程管理系统的发展现状

由上一节论述可知,电力工程管理较为繁杂,也是大有管理潜力可挖的地方。因此,一些具有战略眼光的电建企业陆续建起了相关信息系统来管理电力工程并取得了实实在在的成效。

这些系统虽然形态各异(有些对所有项目都适用,有些只针对某一电压等级,有些是为专门的具体项目而建设等),但在技术架构和模块化分上都是大同小异的。

(一)技术架构

就电力工程管理系统的本质而言,其主要的作用是:通过特定软件平台,完成相关信息的收集和分类,实现相关业务(包括文件流转、文件审批等)的“一站式”服务,保证管理流程的自动化以及管理工作的透明度,并依靠系统提供的统计分析功能,为工程项目的管理提供一定的辅助决策。

因此,其技术架构必须如下:

⑴采用工作流技术,即将电力工程管理中各道流程的组织逻辑和发生规则进行数学建模,并按此实施计算。

⑵采用多层级结构和引擎技术编程,实现不同业务的重组和数据汇总的分析,并具备系统扩充和流程再造的能力。

⑶采用三层B/S架构,即后台数据库层、中间业务层和前台客户界面,可实现数据库远程维护,提高信息安全性。

⑷采用自定义配置技术,即可实现表单的灵活修改。

⑸整个系统的基础是具备对关键指标查询的能力,且能根据关键指标的情况给出辅助决策。

⑹系统应具备与多方接口的功能,以方便与相关管理平台的进一步整合。

(二)功能模块

电力工程管理,说到底就是将大量现有业务流程进行改进优化,并利用计算机手段使各种管理规定相辅相成,以此促进工程管理水平的不断提升。

因此,其功能模块的划分和当前实际采用的流程并无本质区别,也不应有冲突。

当然,不同的电力工程管理系统基于不同的划分原则,是有着不同的布置结构的。下面分别进行说明。

⑴以系统所应达到的具体功能为基准来进行系统布局。

这类系统将电力工程管理工作分为六大块(也可看作6个具体目标),分别是:项目概况管理、组织与协调管理、文档管理、质量管理、进度管理和安全控制。每个大块下又有许多细化的分项目标。下面挑重点进行说明,

①项目概况管理:主要包括标书管理与合同管理,合同管理又分为施工合同、采购合同、设计合同、监理合同管理等。

②文档管理:主要包括文件夹管理与文件管理,其中文件夹管理含文件夹的新增、修改、删除等子模块,文件管理含查询、下载、删除、新增、修改等子模块。

③质量管理:主要包括进度计划制定、进度计划审核、开工报告管理、工程量报表管理等环节。

⑵以系统所应达到的抽象功能为基准来进行系统布局。

这类系统将电力工程管理的细节任务逐一列出,然后根据不同的使用途径归入不同的抽象目标之下。

⑶此外,针对小项目(如10kV及以下的农网项目)的管理系统结构有所简化,它一般只包含项目管理、施工管理、预结算管理、合同管理、进度管理等模块。

以上对电力工程管理系统的现状进行了一个详细的说明,下面则着重分析该系统的功能和成效。

三、电力工程管理系统的功能成效

根据上一节内容,我们了解了电力工程管理系统的构成和组成,在此基础上,我们选择两个重点模块来进一步分析该系统的功能成效。

1.设备(物资)管理

设备管理主要是针对工程实施过程中物资需求计划及工程材料增补等方面的管理,它主要包括:单项工程材料计划、退补材料管理、物资需求计划、材料料单管理、废旧物资管理等子项,能实现以下功能:

首先进行单项工程的材料计划编制,然后进行上报和审批。待审批结束,系统会根据工程材料计划表自动生成一个物资材料计划表,并将对应物资作入库操作。然后,施工单位凭领料单(依据工程材料计划表从系统打印)到仓库领取。在施工工程中,若遇到需要增补材料的情况,则随时编制材料增补计划,并进行上报和审批,之后按正常手续领料。当然,若工程材料有多余,系统也能提供方便的退料服务并打印相关单子。

另外,系统还能对施工结束后不能再使用的材料(包括折下的)进行一个记录证明,从而将材料管理的触角延伸到废旧物资的管理。

很明显,经过以上的系统运转,设备(物资)管理模块能最大程度地保证工程物资使用到位并杜绝浪费。

2预结算管理

预结管理包括工程预算、工程结算和财务决算等三个子项。它主要实现以下功能:首先进行工程预结算编制,包括工程量录入、预结算图纸绘制、材料关联等操作;然后系统会自动生成各类预结算数据,包括预算费表、安装估价表等报表并上报;最后,在工程施工完成后,系统可按施工前相关数据生成竣工验收所需的基本资料,如验收申请、杆位明细表、整改报告书、缺陷处理、质量评定、验收意见表等,并编制工程结算材料价格,自动生成财务决算报表等。

由⑴、⑵可知,电力工程管理系统的引入,让电力工程的管理驶上了科学、高效的快车道。

经过不断的总结和持续的对比,我们归纳出电力工程管理系统具有以下无可比拟整体优势:

⑴系统紧扣当前电力工程管理体系的要点和方法,对项目管理中涉及的各个环节(如立项、设计、物资、施工、验收、预决算等)进行全方位覆盖,如实掌控安全、质量、造价、工期等要素。

⑵除了对电力工程管理的各个方面进行横向展开外,还进行纵向合成。这样一来,能够最大程度并且一目了然地获取相关工程的相关资料,从而有利于从整体上对整个工程进行一个深度把握,为作出正确的决策奠定技术基础。

⑶由于系统内部的强关联性,使得“同样数据,一次输入”变为现实,这就极大地减少了工作量,且易于保持相关数据的一致性和准确性(数据来源越少越一致越准确)。

⑷采用流程化操作,能督促相关人员监管到位,保证电力工程管理的不留死角,从而提高管理的规范性和科学性,提升电力工程的质量。

⑸通过对各个模块的功能和权限设定,以及使用数字签名的方法,能有效避免往来事项处理不及时、相互推诿的问题。

⑹系统拥有业务数据导出功能,能方便地将重要数据导出到Excel等常用办公软件中,以方便二次报表的制作。

四、结语

电力工程管理是一个庞大的系统,它涵盖项目规划、项目储备、项目立项、项目概预算、工程计划、勘察设计、施工过程、竣工验收、结算决算等一系列繁杂的操作;它还涉及大量文档资料的传递、合并、加工和归档等工作。

如何做好电力工程的管理已关系到一个企业的竞争力的提升。

实践证明,电力工程管理系统成功运用了计算机技术、数据库技术和网络技术,它通过图形和数据相结合的设计方式,能轻松实现对工程项目的各个环节的流程化、规范化、标准化、协同化管理,并为领导决策层提供参考依据。

因此,从深化管理创新、加强技术创新、提高工作效率的层面来讲,电力工程管理系统应该得到广泛推广,并在推广过程中不断融合最新元素,使之成为电力工程管理的典范平台。

参考文献:

[1]杨乾.电力工程管理系统现状及功能成效分析[J].大科技,201,10.

[2]林杨,大连供电公司电力工程项目管理系统,硕士学位论文,大连理工大学,2007.

电力工程及自动化论文范文第9篇

关键词:电力系统;自动化技术;应用

引言

随着我国电气自动化控制设备普及程度的不断提高,电气自动化控制设备的可靠性严重就显得尤为重要了,对电气自动化技术进行探究,不但可以提高电气自动化控制设备的质量,还可以提高电气自动化控制设备生产企业的企业形象,同时还能提高电气自动化控制设备的市场竞争力和市场占有率。

电力系统自动化通过应用各种自动检测装置,进行控制和决策,同时对电力系统的元器件和电力全系统进行远程监控、控制、协调,保证电力系统能够稳定可靠运行,为生产生活提供高质量的电能供应。电力系统自动化要求实现电力供应稳定、安全、可持续的自动化目标,另一方面,电力事业的进一步发展,对自动化的要求也越来越高,电力系统自动化是电力系统发展的必然要求,既可以降低电力系统运行的成本,又能提高电力系统的运行效率。电力系统的节约化和自动化是电力系统可持续发展的根本目标。

1 电力系统自动化要求

电力系统自动化对电力系统元器件、元器件之间的协调、电力设备的使用寿命提出了要求。电力系统自动化要求能够对电力系统局部和整个电力系统运行参数进行实时的搜集和监测;同时电力系统元器件应经济、实用、安全,为电力系统进行控制和调节提供依据,很多自动化系统能够直接实现对电力系统元器件的调控;电力系统自动化还需要实现对电力系统各部分、各层次之间进行协调,自动化系统已经成为电力系统经济、安全运行的保证;电力系统自动化可以减少大量繁杂的人工劳动,减少人力强度,提高劳动效率,同时由于系统故障能够及时排除,系统的安全性提高,事故大量减少,并实现电力系统寿命的延长。电力系统自动化技术,有效地避免了大面积停电事件的发生。

2 电力系统自动化新技术的应用

随着自动化对工作效率的有效提高,在生产生活中发挥着越来越重要的作用,主要体现在电力系统智能化控制技术、变压器设备在新监控、微机实时保护系统等方面。

2.1 电力系统智能化控制技术

随着科技的进步,电力系统自动化技术经历了几个主要的发展历程。首先,通过传递函数进行单输入输出进行控制时期;随后,线性最优化控制盒非线性和多机进行协调控制时期;最近几年,智能化控制时期。随着智能控制功能的越来越强大,在新兴的电力系统中有着越来越广泛的应用,电力系统智能化控制技术在多机系统的静止无功发生器控制、人工神经网络励磁、快关综合控制系统等相关领域得到了大量应用。

2.2 实现对变压器设备在线监控

随着我国经济的快速发展,对电能的需求量越来越大,电网的规模不断扩大,电力系统的容量也得到了极大提高。电力系统的稳定安全运行已经成为社会经济生活正常进行的保障,对人们的生产生活有着重大影响,对电力设备的性能提出了越来越高的要求。因此,供电企业必须保证电力系统稳定可靠运行,减少故障的产生。电力系统中,通过对电力设备进行检修可以提高设备的可靠性,降低设备故障率。电力设备进行检修主要通过检查和修理。对电力设备检修的形式通常有检修故障、状态检修和定期检修。对电力系统进行实时监测,能够全面了解设备的工作状态,同时根据设备运行的参数进行设备变化趋势预测,可以提前对故障进行排除,在发生故障时也可快速进行修理。

2.3 电力系统微机实时保护系统

微机保护能够提高电力系统的可靠性,同时微机保护又有着高实时性和高扩展性的特点,电力系统中的微机保护系统有着通信能力强,人机交互界面友好等优点。随着我国电力自动化的发展,电力系统中使用的微机保护装置越来越多。

电力系统微机保护不仅需要较高的硬件设施,对嵌入式软件要求也比较高,在电力系统微机保护中使用实时操作系统,能够同时对多任务进行高效管理,也有着很好地可移植性和扩展性,有效提高了电力系统自动化控制效率。现在,电力系统中使用了越来越多的电力系统危机保护装置,电力系统中使用的RIOS可以有效提高电力自动化系统的可靠性和及时性。实时性问题是电力系统自动化继电保护的首要问题。电网事故通常发生在瞬间,一旦稳定措施发生延迟,将无法发挥自动化保护装置的作用,也将产生许多其他安全问题,很容易对电力系统产生严重破坏。电力系统自动化保护需要对设备数据进行实时监测,同时也需要能够对数据进行分析,及时进行处理。嵌入式技术既可以对设备数据进行监测,又可以在很短的时间内对数据进行处理,快速做出反应。RTOS能够对应用程序进行分解,还可以同时开启监控进程,对系统中运行的各个程序进行监控,当出现异常情况时,UNIX中对出现问题的程序进行终止,还可以调用另外的进程实现问题修复功能。由此可见,电力系统中RTOS使系统自动化可靠性很大程度提高。此外,由于电力系统开发采用的C语言或者C++语言有着较好的灵活性,在模块化设计中,某一模块发生损坏,可以通过模块的更换进行问题排除。

3 电力系统自动化的发展前景

电力系统应用自动化技术有着及时、安全、可持续、稳定等优点,通过自动化技术的应用,能够实现系统长期、可靠、稳定、可持续运行。目前的电力系统已经不如通过计算机进行监控的新阶段,通过对传统技术设备的改进,可以早日实现电力系统自动化。

我国社会经济的发展,对电力的需求越来越大,对电力系统提出了更高的要求,也促进了我国电力事业的发展,电力系统自动化越来越朝着智能化和最优化方向发展;微型机和远程通信越来越多在电力系统自动化中应用,成为电力系统自动化控制手段的发展方向。通过DMS系统,可以提高电力系统的管理水平,也迎合了电力系统发展的趋势,有效保护了电力设备,大面积停电等事故大量减少,电力系统更加安全可靠;另一方面,电力设备自动化程度的提高,也使得变电站的值班和操作方式发生了很大变化,现在的变电站很多采用无人值守管理方式。电力系统通过数据共享,通过微机保护,可以实现硬件监控和保护的共享,减少了大量冗余工作和人工成本,真正实现了精兵简政的目的。也有助于实现电力系统节约化和自动化的根本目标。

4 结束语

科学技术是提高生产效率的重要途径,自动化技术有着自身特殊的优势。电力系统自动化发展使得电力系统运行更加稳定高效,保障了电力系统的安全运行,为经济社会建设做出了重要贡献。控制技术、计算机技术和信息技术的相互融合和发展,电力系统自动化水平将更加智能化,运行更高效,并逐渐形成电力系统自动化的相关标准,促进电力系统整体发展水平。

参考文献

[1]白艳伟,薛辰斌,赵晓强,等.计算机技术在电力系统自动化中的应用分析[J].中小企业管理与科技(上旬刊),2013,12:277-278.

[2]刘进,张绍文.电气自动化技术在电力系统中的应用解析[A].北京中外软信息技术研究院.第二届世纪之星创新教育论坛论文集[C].北京中外软信息技术研究院,2015:1.

[3]武洋.浅析电力系统自动化控制技术[A].北京中外软信息技术研究院.第二届世纪之星创新教育论坛论文集[C].北京中外软信息技术研究院,2015:1.

[4]王平.电气自动化技术在电力工程中的应用[A].《现代教育教学探索》组委会.2015年11月现代教育教学探索学术交流会论文集[C].《现代

教育教学探索》组委会,2015:1.

[5]丁 .电力工程中的电力自动化技术应用研究[A].北京中外软信息技术研究院.第三届世纪之星创新教育论坛论文集[C].北京中外软信息技术研究院,2016:1.

电力工程及自动化论文范文第10篇

【学科特色】

学院目前已建成较为完整的学科体系,包括电气工程博士后流动站,电气工程一级学科博士学位授权点,高电压与绝缘技术、电力系统及其自动化、脉冲功率与等离子体技术、电力电子与电力传动、电力建设与运营和电工理论与新技术6个博士学位授权点,高电压及绝缘技术、电力系统及其自动化、电力电子与电力传动、电工理论及新技术、测试计量技术及仪器、脉冲功率与等离子体技术6个硕士学位授权点,电气工程专业学位工程硕士点,教育部第一类特色专业电气工程及其自动化本科专业。

学院专业设置体现了电气工程与自动化相结合、强电与弱电相结合、电力与电子技术相结合、软件与硬件设备相结合、理论研究与技术应用相结合、理论与实践结合的特点,旨在培养经济和社会发展需要的强弱电兼顾的复合型高级人才。

【科研平台】

学院现有“高电压与绝缘技术”、“电力系统及其自动化”及“电力电子与电力传动”3个省部级重点学科和湖北省电气工程一级重点学科,“国家电工电子实验教学示范中心”、“国家工科基础课程电工电子教学基地” 等教学平台以及“雷电防护与接地技术教育部工程研究中心”、“高电压与绝缘技术重点实验室(部级)”、“武汉雷电防护设备质量监督检验中心(省级)”、“高电压大容量开关电器研究开发平台”和“武汉大学智能电网研究院”等科研平台。

学院下设高电压技术研究中心、电力系统研究中心、电机与电力电子研究中心、基础教学与实验研究中心。教育部防雷与接地工程研究中心、武汉大学智能电网研究院以及湖北省雷电安全防护与检测中心(筹)等单位挂靠电气工程学院。学院内部通过团队管理模式开展教学和科研工作,已形成了高电压及绝缘技术、电力系统分析、智能电网、电磁场分析与高压电器、电气设备状态监测及故障诊断、电能质量以及柔性电力技术等多个特色鲜明的科研团队,同时设有电气工程学科平台课程、电工电子、电机学、电磁场、信号与系统、计算机与通信、电力系统分析、电力系统运行与控制、高电压与绝缘技术、电力电子与新能源、电气工程创新与实践等11个教学团队。

学院建有国家工科基础课程电工电子教学基地、电工技术训练中心、电力工程专业训练中心、高电压实验大厅、户外220kV试验变电站、电力系统动模实验室、RTDS数字仿真实验室、新能源发电平台、智能电网示范平台。其中与电子信息学院等共建的电工电子教学基地为部级电工电子示范中心,电工技术训练中心面向全校开设电工实践技能训练。

【学科实力】

学院现有双聘院士3人,长江学者特聘教授1人,国家杰出青年获得者1人,国务院学位委员会学科评议组成员1人,教育部高等学校教学指导委员会委员2名,有9名教授享受政府特殊津贴。近三年,学院承担了部级、省部级和企事业单位委托的科研项目600余项,获得科研经费高达2.1亿元,获省部级及以上科技进步奖15项,发明专利26项,出版教材和专著18本,1000余篇,其中三大检索收录556篇,被SCI收录论文35篇,并有一大批科研成果转化为现实生产力,有些科研成果已达到国际领先水平。

【人才培养】

学院致力于培养德、智、体全面发展,具有创造、创新、创业理念和能力,能够从事与电气工程有关的规划、设计和建设,高电压交直流输电、变电、配电和供电技术,电力系统调度运行维护、自动控制及保护,电能转换与优质、高效应用,智能电网与新能源的开发利用,以及电子、通信与计算机技术应用等电气信息工程领域工作的厚基础、宽口径、高素质、强能力的复合型高级工程技术人才。学生主要掌握电工与电子基础理论、系统分析与控制理论、电气工程基础理论、高电压技术,电力系统技术、电能变换技术、信息和通信技术以及计算机应用等方面较为宽广的工程技术基础和系统的专业知识,掌握适量的人文社会和经济管理知识。要求学生具备电气信息工程领域技术分析、系统运行与控制技术的基本能力,具有较强的创新意识。

学院每年招收计划内博士研究生40余名,硕士研究生220余名,本科生340余名。从2006年起,学院与新加坡南洋理工大学合办了“3.5+1.5”本硕联合培养教育项目,前三年半在武汉大学学习,后一年半在新加坡南洋理工大学学习,毕业可获得武汉大学工学学士学位和南洋理工大学硕士学位,目前已有153名同学参加了此项目;2012年又先后与日本上智大学、英国斯特拉斯克莱德大学签订了“2+2”本科生培养项目,学生前两年在武汉大学学习,后两年在日本上智大学或英国斯特拉斯克莱德大学学习,毕业可获得双方学士学位。

学院高度重视培养学生的创新能力和实践能力,大力支持并多方指导学生参与科研和实践项目,鼓励学生积极参与“挑战杯”科技作品大赛、大学生数模竞赛和电子设计大赛等多项大型赛事,借以多元化的教学培养方式来夯实学生的基础理论知识,激发学生的科研兴趣,提升就业竞争力,做好人才梯队建设。此外,学院重视学生德育教育,开展“小亭爱心支教”等志愿活动,培养学生强烈的社会责任感和奉献精神。

电气工程学院毕业生就业率以及就业质量长期处于稳定良好的态势,2012年一次性就业率高达96%以上。学生多就业于国家电力、能源、国防、IT行业及其他工业部门,从事工程规划、设计、生产、运行、控制、试验、科研、开发应用等方面的技术与管理工作。

上一篇:护理专业本科毕业论文范文 下一篇:本科护理专业毕业论文范文