结构可靠性可视化分析技术及其应用

时间:2022-09-27 12:46:54

结构可靠性可视化分析技术及其应用

摘要:介绍了结构可靠性分析理论、方法以及可视化相关技术。以有限元软件ANSYS为平台,开发了结构可靠性可视化分析系统,并对某汽车后桥的可靠性进

行了分析。

关键词:有限元;可视化;可靠性

中图分类号:TU74文献标识码: A 文章编号:

随着现代产品的结构日趋复杂,功能日臻完善,对可靠性的要求也越来越高,达到高可靠性的难度也大大增加,因此产品的可靠性评定等问题,已受到各产业部门的重视。为了保证机械产品的可靠性,人们往往采用基于工程经验的安全系数法进行设计,有可能导致可靠性不足或过于保守。为了使设计更符合实际,应该在常规方法的基础上进行概率设计。

目前国内许多用户在进行可靠性分析时,都是用人工处理有限元程序的计算结果文件,这样做不仅工作量大,而且相当繁琐,计算结果也不易直观观察. 针对这一情况,有效地开发出一种以有限元软件为平台的可靠性可视化分析系统,

自动处理有限元的分析结果,计算出结构各个构成单元和体系的可靠度数值,方便设计人员及时发现并改进结构的局部缺陷,提高可靠性。

因此在最新的理论方法基础上,开发一个结构可靠性分析及仿真软件,能计算常用产品的可靠性,并将分析结果可视化输出将具有十分重要的意义。

1 结构可靠性分析基本原理

1.1 结构可靠性分析的基本概念

结构的可靠度是产品在规定时间内和规定条件下,完成规定功能的概率。

设为影响结构功能的n个随机变量,R(t)为可靠度函数,则结构的可靠度可表示为:

(1)

如果把失效概率记做F(t),显然有:

(2)

可靠性计算以概率理论为基础,考虑到直接应用数值积分方法计算结构失效概率的困难性,工程中多采用近似方法,为此引入了结构可靠指标的概念。对于 Z服从正态分布的情况,可靠指标的表达式为:

(3)

1.2结构可靠性常规计算方法

随着结构可靠性理论研究和工程结构设计方法的发展,近似概率设计方法已进入实用阶段。目前,通常采用一次二阶矩法、JC法、响应面法、梯度优化法及蒙特卡罗法等近似方法来计算结构的可靠度。其中一次二阶矩法、JC法需要较多的迭代求解且计算精度很差,响应面法随使可靠度计算得到简化,计算精度有所提高,但对于大型问题及随机因素较多的情况,效率较低。蒙特卡罗法为得到较高的计算精度需数万次的循环求解,耗时过多。

随机有限元法是进行结构可靠性计算的另一种思路,它是随机分析理论和确定性有限元法结合的产物。随机有限元法可分为两类: 一类是统计的方法,如蒙特卡洛法。另一类是分析的方法,就是以数学、力学分析作为工具,找出结构系统的响应与输入信号之间的关系,并据此得到结构内力、应力或位移的统计规律,及失效概率或可靠性。这一类随机有限元方法常见的有摄动随机有限元法、纽曼随机有限元法和验算点展开随机有限元法,本文采用计算效率较高的可靠性指标优化算法计算结构的可靠度。其基本原理如下:

根据结构可靠性指标的几何含义,可靠性指标的获得就是在功能函数面G(Y)上寻找一个点使该点与坐标原点的距离最短,由此可以得到可靠性指标计算的优化模型如下:

(4)

求解这一优化问题的方法很多,其中较为简便且高效的一种方法是梯度优化算法.其采用如下的显式迭代计算格式计算得到验算点:

(5)

式中: 表示第j次迭代计算的验算点;是的梯度向量;是沿负梯度方向的单位向量。经过几个循环的迭代,序列逐渐收敛于极限状态面上距离最近的点,即设计验算点,再根据公式得到结构的可靠性指标。本文即采用这种方法计算结构的可靠度。

2 结构可靠性可视化技术实现

2.1 图形用户界面有限元软件

现在数值模拟技术在上程中得到了广泛的应用,一批国际著名的有限元软件,如ANSYS,ABQUS等,已成为解决现代工程问题必不可少的上具。这些软件将有限元分析、计算机图形学等技术紧密结合,使用方便,计算精度高,并具有如下特点:

a.通用的数据接口。可与AutoCAD、Pro/ E等知名的CAD/ CA E软件共享数据。

b.友好的图形用户界面。用户通过这些界面可以方便地交互访问程序的各种功能、命令;建立或修改模型及计算结果等。

c.开放的二次开发功能。通过系统提供的语言编程可对有限元模型中相关的参量(如应力、应变等)实现定义参数、数学运算等操作。系统甚至还允许用户利用高级语言(如Fortran语言)编写子程序,与系统连接,以增加程序的灵活性。

由于目前知名的通用有限元软件大都具有如上特点,因此使用这些有限元软件对产品结构进行应力分析后,再结合随机有限元理论及有限元软件的二次开发功能,便可确定出模型上各单元的失效概率,并可视化显示。

可见,有限元软件为实现结构的可靠性可视化技术提供了有力的平台。

2.2结构可靠性可视化实现方法

如图1所示,结构可靠性可视化实现方法可分为如下几个步骤。

a 把CAD/ CAE系统下生成的几何模型传入有限元分析软件,并对其进行应力分析。

b根据应力计算结果,结合模型材料、尺寸数据及其概率分布,采用可靠度优化算法,利用ANSYS开放的二次开发功能编写求解可靠度的程序求出模型下各节点的可靠度及其概率分布。

C,二次开发ANSYS界面,使可靠度计算结果以云图的形式显示出来。

图1可靠性迭代程序框图

3结构可靠性可视化技术应用实例

采用上述的可靠性可视化技术,用VC开发了以ANSYS为平台的可靠性分析可视化分析模块。用户利用ANSYS对模型进行应力分析后,调用该模块便可以计算模型上的各节点的可靠度及其概率分布,并将计算结果以云图的形式显示出来。

图2(a)为用ANSYS对某汽车后桥进行静力分析的结果。图2(b)为利用本文开发的可视化模块计算的后桥失效概率分布云图。文中汽车后桥的材料为8mm厚的09SiVL钢板; 汽车的名义装载量m1=4.0t,满载时后桥负荷m2=6.0t,载荷作用于弹簧座处。

(a) 应力分布(b) 失效概率分布

图3某汽车后桥应力、失效概率分布

从图2不仅可以全面地获得该后桥的可靠度分布信息,而且还可以直观地了解结构“全场”的各项可靠性指标。根据这些计算结果,设计师可对该后桥的安

全性进行全面的评估及优化设计。

4 结论

介绍了图形用户界面有限元、结构可靠性理论及可视化实现方法。开发了基于ANSYS软件的可视化分析系统,对汽车后桥进行了可靠性可视化分析。本文的工作对工程中的结构可靠性可视化设计具有现实意义。

参考文献:

1.吴世伟.结构可靠度分析[M],北京:人民交通出版社,1988

2.武清玺.结构可靠性分析及随机有限元法[M],北京:机械工业出版社,2005

3.王国强. 实用程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社.1999.

4.贡金鑫.工程结构可靠度计算方法[M],大连:大连理工大学出版社,2003

上一篇:浅析建筑色彩 下一篇:高层住宅外墙保温板施工技术应用