基于微流控芯片的循环肿瘤细胞的分离、检测技术

时间:2022-09-13 07:33:53

基于微流控芯片的循环肿瘤细胞的分离、检测技术

摘要: 循环肿瘤细胞(Circulating Tumor Cells,CTCs)是自肿瘤原发灶或转移灶脱落进入外周血液循环的肿瘤细胞,是肿瘤远处转移的标志。CTCs有助于癌症的早期诊断、判断疗效、个体化治疗方案制订及诊断预后。随着检测技术的不断改进,CTCs检测成为临床研究的热点,其中,微流控芯片以其高通量高效率以及低成本的特点迅速发展并被广泛研究应用。该课题对CTCs最新检测方法的研究以及未来的发展趋势进行综述,特别剖析结合微流体技术和纳米技术的微流控芯片是如何被应用于循环肿瘤细胞的分离、富集以及检测的,评估各种方法的优缺点,并探讨未来循环中流细胞检测技术的难点和方式。

关键词:循环肿瘤细胞;微流控芯片;细胞检测

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)09-2093-02

近年来,恶性肿瘤导致的死亡率在所有疾病的死亡率中位居前列,而肿瘤细胞具有的侵袭和转移能力正是恶性肿瘤的高致死率的诱因 [1]。循环肿瘤细胞(Circulating tumor cells,CTCs)是自肿瘤原发灶或转移灶脱落进入外周血液循环的肿瘤细胞,是肿瘤远处转移的一种标志。因此,基于循环肿瘤细胞的肿瘤转移的检测就显得至关重要。

微流控芯片以其低成本、易操作、便携式、低损伤、高准确性成为当前各类CTCs检测方式中最热门的一种方式。基于微流控芯片的相应方法的成功实现及运用,不仅将对肿瘤早期检测和预后的判断有重大意义,而且对临床治疗的指导也有很大价值。

1 CTCs概念

根据目前的研究,CTCs被定义为因诊疗操作或自发由实体肿瘤或转移灶释放而进入外周血循环的肿瘤细胞。进入循环而未被清除的肿瘤细胞通过微迁移、黏附以及相互聚集形成一定体积的微小癌栓,并在相应条件下发展为转移灶[2]。

CTCs在外周血中的数量极少,通常在每106~107个白细胞中才能寻找出仅有的数个肿瘤细胞,因而要进行CTCs检测通常必须先进行细胞富集,以提高检测灵敏度。细胞富集可通过肿瘤细胞的特异性标志物或者细胞形态特征如细胞密度和体积等来实现。其中免疫磁性分选法是目前最常用的CTCs富集方法。当前较为常用的CTCs分离检测手段则有CTCs微流控芯片技术、流式荧光检测仪、CellSearch检测、膜过滤法、密度梯度离心法。

2 微流控芯片的制备工艺和研究

目前,微流控芯片主要以PDMS为芯片材料,以玻璃为基底材料。其中PDMS具有非常理想的材料特性,尤其表现在作为构建微流控芯片的主要材料时。

近年来,由于PDMS易于加工成型,图形效果好,光学透性好且兼容荧光检测等,低毒性、加工容易,且容易和自身以及其他多种材料封接,对温度等环境的要求也不多等诸多优点,因此受到了各方广泛关注。首先,PDMS因为弹性好,在脱模过程中,加工出来的PDMS微通道在保持模具完整无损的情况下,能够轻松剥离出来,从而实现模具的重复利用[3]。另外,PDMS柔性好,易于吸附在其他材质的衬底之上,而且PDMS与相对粗糙的表面接触非常紧密,经过处理后,与基底封接效果好,键合工艺简单,浇铸法制备PDMS结构具有较高的成型质量。PDMS的电绝缘性也很好,因而被运用于各种主流毛细管电泳芯片的制作;PDMS对温度等也很不敏感且具有化学惰性,与大部分待检测液体都不会发生反应,因而具有很高的生物兼容性,满足大量不同生物实验的要求。迄今为止,以PDMS为主要加工制备材料的微流控芯片已被广泛应用到医学和生命科学等领域。

3 不同微流控芯片技术的原理及方式

3.1 基于循环肿瘤细胞大小的微流控芯片技术

利用肿瘤细胞与其它血细胞的大小以及刚度不同的物理性质可以对循环肿瘤细胞进行分离。根据肿瘤细胞与血细胞直径的不同,设计一定直径的滤孔,可以实现循环肿瘤细胞的分离。ISET联合激光扫描细胞计量仪(lasereanningeytometry,LSC)的原理即是利用肿瘤细胞通常比外周血液中其它细胞大的特性,采用孔径为8μm的滤膜,将肿瘤细胞从血液中分离出来,通过不同荧光标记细胞来进行进一步鉴定,应用LSC对已经过荧光抗体标记的细胞进行扫描并识别,进而可以准确计算出血液中含有的微量肿瘤细胞。常用的荧光抗体有抗CK抗体。经过研究表明,此方法已成功被运用于从乳腺癌、前列腺癌以及肺癌患者的血液中检测出CTCs。此方法较之CellSearch系统而言,其细胞富集过程相对容易,它不依赖抗原抗体反应而是直接过滤外周血进行肿瘤细胞富集,不但不破坏肿瘤细胞的形态学特征而且减小了肿瘤细胞的丢失,同时它能将丢失了上皮细胞特征的肿瘤细胞分离出来,并且应用激光扫描细胞计量仪对所检测到的阳性细胞进行进一步目测确认,确保了CTCs检测的准确性。然而,采用CellSearch技术与采用此方法检测的CTCs数目之间存在一定的不一致性,可能原因是有假阳性结果出现所致。而且此种方法选择的膜孔径为8μm意味着此方法只能分离直径大于8μm的肿瘤细胞,但目前没有研究能证实所有的肿瘤细胞都大于8μm,这导致该方法分离的准确性会受到质疑。

3.2 基于循环肿瘤细胞介电性的微流控芯片技术

由于肿瘤细胞是正常细胞变异了的细胞,因而它的电学性质方面较之正常细胞也会有所差异。DEPArray技术即是一种基于肿瘤细胞独特的介电性质的新型分离方法。相关针对淋巴肿瘤细胞的阻抗进行测量的研究,根据实验数据来评估细胞的介电性,发现恶性肿瘤的一个显著特点即是具有较低的特异性膜电容,鉴于这种特性,以上两种细胞的分离在控制介电泳的频率在1MHz以上时即可实现,并可保持这两种细胞的活性。DEPArray方法将嵌入了控制电路的硅衬底应用于已富集的样本中,通过改变电场来激发微电极,细胞从而被吸引或排斥,而不同大小和形态的细胞在分离过程中会受到介电力作用,而电场的变化相应改变细胞整体受力情况。在整个分离过程中,在一定的流速下,由于细胞在入口处低频电信号的作用下受到排斥的介电泳作用力,细胞的流动导致电极激发频率增加从而浮力减小,因而细胞在对应其介电特性的位置下沉停止。有研究表明已成功从血液中分离出乳腺癌细胞。介电泳方法简单易操作,他对单个细胞的分子鉴定以及评估肿瘤特异性和实现个性化疗法的监测具有广泛前景。但是该方法具有一定的局限性,因为不同种类的肿瘤细胞的介电性质存在差异,对应的电信号频率也不同。而且此种方法不能进行肿瘤细胞的计数,只能进行肿瘤细胞的分离,因此要确保细胞为肿瘤细胞则需要与其他细胞计数方法联合使用。比如曾有研究人员利用单克隆抗体将循环肿瘤细胞富集在微流控芯片上,通过改变电导率的方法对捕获到的循环肿瘤细胞进行计数等。

3.3 基于亲和配体功能化的微流控芯片技术

2007年,美国强生公司与麻省医院癌症中心合作研发了一种可以检测出外周血中微量肿瘤细胞的微流体硅芯片,称为CTC-Chip。该微流体硅芯片的表面布满了上万个被抗体包被的位点,当血液流过该芯片时,上面的抗体与肿瘤细胞进行特异性结合,肿瘤细胞就会因抗原抗体反应而被粘附在芯片上。此种方法能从血液中近10亿血细胞中检测出单个肿瘤细胞[4]。其原理主要是将肿瘤细胞与连接上皮细胞粘附因子EpCAM抗体的磁珠进行特异性结合,结合后再应用强力磁体将这些循环肿瘤细胞从血液中提取出来并进行生化染色,进而可以准确辨别循环肿瘤细胞。2010年,该机构成功研发第二代CTC-Chip,称为HB-Chip。虽然利用微流控芯片虽然可以成功地将活的循环肿瘤细胞成功分离出来,但因为细胞在操作中被固定在装置上,所以难以再次利用。总之,CTCs芯片技术为对肿瘤转移进行更为精细的分析提供了一个平台。

3.4基于纳米颗粒的微流控芯片技术

纳米技术在近年来得到飞速发展,并已大量运用到包括医学、药学及机械制造业等领域。其中由于纳米颗粒具有独特的光学、电学及机械等性质,在解决检测方面的问题发挥了重要作用。结合纳米技术的循环肿瘤检测分离方法利用某些纳米颗粒独特的生物以及光学特性,在检测过程中,与循环肿瘤细胞相连,作为具有特异性的光学标记物,用以实现信号的放大,因此避免了肿瘤细胞的检测信号不强的问题。另外,利用纳米孔内部连接相应肿瘤标记物的抗体,当纳米孔内有肿瘤标记物通过时,抗体与抗原特异性结合,引起阻抗相应的改变,肿瘤标记物的浓度则可通过检测阻抗的变化确定。借助纳米材料的上述优点,未来针对检测中应用纳米技术的研究里,会有很多方面可以提高。

4 基于微流控芯片的循环肿瘤细胞检测面临的问题以及未来发展

综合上述各种方法,相关循环肿瘤细胞的新检测方式不断出现,虽然它们各自具有检测优势,但仍存在一系列问题,影响循环CTCs的敏感性、特异性以及检测准确度等。例如依赖抗原抗体的免疫学检测法有高度的特异性而缺乏足够的敏感性,非免疫学检测法则有敏感性高而特异性不足的问题。目前,还有没有一种100%特异性的肿瘤生物标记。这些都增加了对CTCs的检测难度,需要在未来的研究中得到进一步的解决。

虽然CTCs检测存在很多问题,但是大量临床试验表明,CTCs检测在实体肿瘤早期诊断检测、转移判断、疗效判定和预后评估等方面具有重要临床意义。装置微型化是目前CTCs检测装置的研发趋势,而这其中微流控芯片就是典型成果。综上所述,在现有技术的基础上,充分结合不同领域领域的优势,实现多方面的综合检测,提高检测技术的复杂度并确保检测结果的准确性,完成高效率、高精准度以及低成本的检测过程是未来基于微流控芯片的CTCs检测领域的研究重点。

5 结论

微流控芯片检测循环肿瘤细胞(CTCs)作为一种具有高度可重复性和可行性的新型诊断工具,在肿瘤转移的早期诊断、检测以及预后鉴定等方面的作用是显著的。该文深入探讨了该领域的最新进展,分析了当前各种检测方式的优劣势。可以看出,大部分的检测过程都不是采用单一方式。单一方式有缺陷,需要结合多种方式才能准确分离CTCs。为了使循环肿瘤细胞分离的方法更便捷,在研究过程中可以结合多种检测方式,实现多功能多模式的检测。各种检测方式的组合,必定可以起到事半功倍的效果。随着各种研究方式和检测技术的改进,包括敏感性和特异性的不断提高,微流控芯片检测分离循环肿瘤细胞(CTCs)必定会在临床肿瘤诊治中得到广泛推广及应用。

参考文献:

[1] Cristofanilli M, Medndelsohn J. Circulating tumor cells in breast cancer:Advanced tools for “tailored”therapy [J]. Proc Natl Acad Sci,2006(46):17073-17074.

[2] Paterlini-Brechot P, Benali NL. Circulating tumor cells(CTC)detection:clinical impact and future directions[J]. Cancer Lett, 2007:180-204.

[3] Review:Xiaoshen Dong, Katherine R.Alpaugh, Massimo Cristofanilli. Circulating tumor cells(CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis[J].Chin J Cancer Res, 2012:402-407.

[4] Mostert B, Sleijfer S, Foekens JA, Gratama JW. Circulating tumor cells(CTCs):detection methods and their clinical relevance in breast cancer[J]. Cancer Treat Rev ,2009:463-474.

上一篇:PLC与变频器组成的交流速度―位置控制系统设计 下一篇:大体积混凝土浇筑温度裂缝产生的原因和控制