浅谈汽车主动安全控制系统

时间:2022-09-04 09:29:41

浅谈汽车主动安全控制系统

摘 要 随着汽车工业的飞速发展和高速公路的迅速延伸, 汽车的行驶速度越来越快, 对汽车行驶安全性的要求也愈来愈高,改善汽车的制动性能始终是汽车设计、制造部门的重要任务。汽车的安全性能分为主动安全性能和被动安全性能。汽车电子制动力分配控制系统EBD属于汽车主动安全控制系统的一种。它是在汽车防抱死制动系统ABS的基础上发展起来的。配合ABS很好地提高了汽车的安全性能。因此本文首先从汽车主动安全控制系统着手,对主动安全性能和被动安全性能的区别,主要的主动安全控制系统进行简述。然后对EBD进行详细的介绍。从研究EBD的意义,到EBD与ABS的关系,再到EBD的组成和工作原理。最后,在此基础上总结了EBD的发展过程和研究现状,对EBD目前最新的研究有了一定的认识。

关键词 主动安全控制系统 EBD 电子控制器分级控制

中图分类号:G718.1 文献标识码:A 文章编号:1002-7661(2016)03-0008-02

一、汽车主动安全控制系统概述

1.汽车主动安全控制系统的涵义

汽车主动安全控制系统指以提高汽车的主动安全性能为主要目标的控制系统。可理解为“防患于未然”。重点是将车轮悬架、制动和转向的性能达到最好的程度,尽量提高汽车行驶的稳定性和舒服性, 减少行车时所产生的偏差。比如为了避免汽车紧急制动时车轮抱死发生危险事故而设计的ABS防抱死控制系统。我们要和被动安全控制系统区别开来。

2.主动安全控制系统与被动安全控制系统的区别

汽车的安全性能分为主动安全性能和被动安全性能。主动安全性能是指车辆防止事故发生的能力,主要依靠车辆底盘性能和相应避免事故发生的装置,例如制动、防滑、防燃、防撞、限速、报警、照明等。被动安全性能是指车辆在事故发生时大幅减低碰撞强度的功能,以最大程度保护乘客,尽可能避免重大伤亡事故。其主要依靠车身的抗变形和相应的安全措施,如车身强度、吸能结构、座椅强度、内部设施强度、安全带、逃逸出口、阻燃防毒内饰、消防设施等。被动安全控制系统提高了汽车的被动安全性能。比如当汽车发生交通事故后安全气囊的自动开启就属于被动安全控制。

二、汽车电子制动力分配系统EBD概述

1.研究EBD的目的 汽车制动稳定性直接影响到汽车安全,而制动稳定性与制动时车轮是否抱死以及前后车轮的抱死顺序密切相关。前轮抱死车辆将失去转向能力,后轮抱死则会发生侧滑甚至甩尾,后果更严重。理想的前后桥制动力分配曲线(简称I线)如图1所示,它只与汽车的总重及质心位置有关,因此空载和满载时的I曲线是不同的。实际上前后桥上的制动力分配是由前后制动器的大小决定的,因此它只能是一条直线即%[线。

传统的汽车制动系统通常都通过在前后轴制动管路间增加一个比例阀来限制后轴的制动力,以避免制动时后轮先发生抱死侧滑,从而获得如下图所示的制动力分配曲线,但后桥的附着利用率仍然不是最好,其附着损失见图2中阴影。

EBD 采用电子技术替代传统的比例阀来控制汽车液压制动系统的前后桥制动力分配,其基本思想:尽可能增大后轮制动力,由传感器监测车轮的运动情况,一旦发现后轮有抱死趋势,电子控制器控制液压制动器降低制动压力。由于 EBD 调节频率高、调节幅度小、控制精确,可使%[线始终位于 I 线下方且无限接近于 I 线(图3所示)。因此 EBD 在保证制动稳定性的同时,使后轮获得了最大制动力,从而提高了整车的制动效能。

2.EBD与ABS的关系及优点

随着汽车工业的飞速发展和高速公路的迅速延伸, 汽车的行驶速度越来越快, 对汽车行驶安全性的要求也愈来愈高, 改善汽车的制动性能始终是汽车设计、制造部门的重要任务。汽车制动防抱死系统(ABS)和电子制动力分配系统(EBD)在汽车上的开发成功, 使汽车的制动性能得到质的飞跃。ABS解决了汽车紧急动时附着系数的利用,并可获得较好的制动方向稳定性及较短的制动距离,然而它不能解决制动系统中的所有缺陷。在车轮滑移率还没有达到ABS的控制范围时,作用在四个车轮上的制动压力同时一致增大,然而前后车轮上的垂直载荷发生了转移,前后车轮达到最佳滑移的时间并不一致,这时ABS系统对地面附着力的利用并没有达到最大。因此ABS就进一步发展衍生出了电子制动力分配系统(EBD)。EBD是ABS的一种辅助系统,在ABS系统的基础上增加了功能。装载有EBD的汽车性能要远高于只有ABS的汽车,见图4。

EBD 相对于 ABS 并没有任何硬件上的附加,而只是控制程序、功能上的优化与增强,甚至可以说 EBD 是 ABS 衍生出的辅助功能,通过改进,增强ABS 电脑软件控制逻辑,使运算功能更复杂,在一些汽车的产品说明书上就是以“ABS+EBD”来标明。汽车工程师们除了在编著电脑运算程序时需增加一定的控制程序之外,并没有过多的硬件投入。EBD 在制动时能根据车辆各个车轮的运动状态,智能分配各个车轮制动力大小,以维持车辆在制动状态下的平稳与方向。而且,即使 ABS 失效,EBD 也能保证车辆不会出现因甩尾而导致翻车等恶性事件的发生。 EBD 在汽车制动时即开始控制制动力,而 ABS 则是在车轮有抱死倾向时开始工作。ABS 与 EBD 都是对作用在车轮上的力矩进行控制,能防止车轮相对于路面发生滑动,以充分利用路面的附着系数,防止因左右道路附着系数不同而造成附加转向力矩引起车辆方向失控。虽然 ABS 能够保证后轮的稳定性,但是 ABS 作用时的舒适性差。而 EBD 只采用滑移率,相对 ABS 来说 EBD滑移率门槛值更低一些(如图5所示)。

制动压力调节的升压及降压梯度明显低一些,且优先考虑持压。其结果是制动液消耗少,且由于电磁阀工作少,液压泵不工作,因而噪声小,制动舒适性好,故有“高舒适性的后桥 ABS”之称。EBD 的优点还在于在不同的路面上都可以获得最佳制动效果,缩短制动距离,提高制动灵敏度和协调性。EBD 另外一个特性就是它的随动性。当车辆的载重或乘员数发生变化时,EBD 仍能根据各个车轮车速传感器采集的信号,主动、适时、合理地进行制动力的“智能”分配,从而保证制动过程中车辆的直线行驶状态和车身的稳定性,让危险夭折于萌芽状态。

三、EBD的研究现状

目前对EBD 的控制大都采用逻辑门限法等单一控制方式,难以消除复杂制动条件对控制系统的影响; 或采用轮速、压力等多种传感器获取信号,通过大量试验进行匹配研究,开发周期长。而EBD 产品为提高性价比,往往只用轮速传感器来获取制动信息,这给EBD 控制设计增加了困难。汽车制动初期,各轮正压力、地面附着系数、摩擦力等都不尽相同,使得各轮速、滑移率等都有不同程度的变化,但很难为这些变化建立完整模型。从轮胎与地面接触的力学特性着手,对EBD 的控制任务进行划分,用不依赖于精确模型的分级控制解决EBD 较为复杂的控制问题。在运行级,设计了基于单轮参考滑移率和轮减速度的模糊智能控制器来计算各轮的预分配制动力。在组织协调级,设计出基于模糊推理的整车制动力协调控制器,根据各轮参考滑移率的差异对各轮预分配制动力进行调整。

上一篇:倡导实验教学,培养学生探究能力 下一篇:从论证角度看当前小学数学课堂讨论