浅析多分量地震勘探技术的原理与实际应用效果

时间:2022-05-30 06:11:37

浅析多分量地震勘探技术的原理与实际应用效果

摘要:多分地震勘探技术是利用地震波的多向性,即横波、纵波、转换波等的采集和分析,以此形成相应的线性图,并通过纵横波的联合反演来分析和判断地下地质结构特征和岩层特性的一种新兴的地震勘探方法,能够相应弥补纵波勘探的不足,是目前国内外地震勘探专家正在努力研究的一个方向。

关键词:多分量技术 勘探原理 实际应用前景展望

一、多分量地震勘探技术概述

40年前,地球物理学家开始对多波地震勘探进行研究,特别是在学者证实了裂隙诱导各向异性的特征和横波分裂的存在后,地震波的各向异性就成为了学术界研究的方向和热点,同国外相比我国的地震各向异性的研究起步较晚,在进入到改革开放后才逐步发展起来。具体到多分量地震勘探技术来讲,近10多年来,主要集中在以下领域的研究拓展:

1、多分量地震勘探原理

多分量地震波的勘探原理是利用地震产生的横纵波对勘测的区域进行回波信息采集。大量的多波技术研究仍然是针对转换波采集,激发采用常规纵波震源,接收采用多分量数字检波器,以获得纵(P)波和转换(P-S)波。地震波在岩层中以球面形式传播,当遇到岩层物性界面的时候就会一部分反射,一部分发生折射进入前方的介质。反射和折射回来的信号被高灵敏度的多分量数字检波器采集并传送至中央处理器,此时就可以根据地震波在不同介质中的传播特性差异来进行分析,并利用综合解释系统来反演地下地质结构。

针对煤田勘探来讲,由横波速度比纵波速度慢可看出,对于厚度较小的同一岩层,横波从某一岩层顶传播到其岩层底所需的时间比纵波长。由于煤层厚度一般不大,因此,根据横波来分辨煤层的能力要比纵波强。理论与试验表明,综合应用纵波和横波资料可获得更准确的反映构造和岩性的参数,

2、多分量的数据采集

多波多分量地震研究首先要解决的是信息采集技术,其采集的重点是对转换波测量。目前,在三分量野外数据采集设备的研究和发展方面,已经取得了突破,多道遥测数字地震仪和多分量数字检波器相继问世。为了解决陆上静态校正问题,研究出多波微测井等技术。3D/3C地震观测普遍采用的是宽带方位块状检测系统,如今已经出现了针对转换波勘探的商业用软件。此外,针对海洋地震的三维四分量海底电缆也已经得到了广泛的应用。

3、多分量的数据处理

采集完成后就需要对多分量数据进行处理,通常资料处理包括了:整个波场的处理,如对波场进行分离;P波的时间、深度域的分析处理;P-SV波的时间、深度域的分析处理。转换波处理与P波处理十分相似,但也存在着不同,因为转换波的射线路径是不对称分布的,所以不能用P波处理技术完全分析。另外,横波的静校正量要大于纵波,这就会对VP/VS和近地表方位的各向异性分析产生影响;因为波场存在耦合,所以不能对横纵波进行绝对的分离,从而影响处理的效果

二、多分量地震勘测技术的应用实验

以某地区的多分量二维地震勘查区为例。

1、数据的采集

为了勘测该区域的地质构造及煤层赋存情况,对该区域进行了常规二维地震勘探后又在预选区域进行了多分量地震数据采集技术应用实验。区域内的地表主要为田地、林地;激发岩层性质为黄沙、黄胶泥、泥灰砂等。按照多分量地震勘探的方法和技术要求进行多条二维地震测线数据采集。

在实验开始前首先进行了施工方案的前期论证,根据实验区域的纵波资料和测井资料设计地质模型,进行多分量地震数据的正演工作,然后根据纵波、转换波产生机理差异,进行纵波和横波联合观测系统的设计。在参考目的层深度的前提下,利用理论计算形成纵横波的反射系数与排列长度的曲线关系,从而设计出相应的最大排列长度。根据不同层面上确定的最佳数据接收窗口,可以知道纵波炮检范围在0-3000m,转换波炮检的距离为400-4500m,在此基础上设计了若干观测系统和施工参数,并进行了现场试验,以此甄选出最佳的观测系统。

如图1所示,其中一条D01测线接收的三分量地震记录。从能量分析上看,Z分量所形成的能量最强,X分量次之,Y分量能量为最小。从X分量上看,标示出的T06、T1、T2、T4层转换波最为明显,资料的质量也较高。

图1:D01测线三分量地震原始记录

2、多分量地震勘探生成的资料的处理和解释思路

对多分量地震资料的处理和解释的基本流程:1)制作合成的地震波资料记录,因为纵波在垂直方向射入不能产生转换波,所以主要根据横波测井资料制作不同的炮检距的记录,然后进行动态校对处理,最后利用叠加得到转换波的合成资料。处理情况如图2。

图2:转换波地震记录

2)波形识别与层位的对比,在合成地震记录的标定基础上,确定纵波和转换波所控制的层位。和常规的纵波地震资料相比,多分量地震资料首先应当对波形进行识别然后再对多波层位进行标定。主要采用的技术措施就是利用多波的极化特征、速度传播规律、频谱特性、振幅差异、炮检距离等相关特性对采集到的波形进行识别和分析。层位对比是纵横波资料联合解释及对岩层性质参数提取的关键问题。

3)对时间进行压缩,根据控制层位置将转换波压缩到与纵波相一致的时间尺度,通过压缩时间的对比,可以获得相应的纵波和横波之间明显的对应关系。

4)对所属的剖面属性进行计算,即对纵波、横波振幅比剖面或者泊松比等属性剖面进行计算。从图3中可以看出D01测线部分多分量时深剖面图。

图3:经时间压缩后的D01测线多分量剖面

从剖面上看,转换波剖面与纵波剖面相比,所反映的地下地质结构变化不大,但转换波剖面对目的层中的岩溶管道裂隙及一些微小构造异常等反应的较清楚。根据纵波速度与岩层构造中的孔隙度、孔隙中的流体性质有关,纵波在含气、流体层中传播,速度有所降低,导致成像不好,能量减弱,而横波在通过含气、流体层时,速度基本不受影响,因而转换波能量基本保持不变。通过纵横波剖面相互对比,并参考已知地层资料揭示的内容,证实在该段目的层中存在着裂隙发育和微小断层。

三、与单一纵波地震勘探相比多分量地震勘探应用中的优势和难点

多分量地震数据的采集和分析都是为了更好的对数据进行利用,以此达到准确勘测的目的,在解译和利用方面除了常规的层位解译外,主要的资料应用优势还包括以下几点:1)转换波对成像的质量起到了优化作用,转换波在穿过储气层、盐丘等介质时,成像有特有的优势效果。横波基本不会受到充气沉积岩的散射和衰减的干扰;2)用纵横波的振幅差异分析岩层的类型和含油气情况;3)流体描述,因为横波不受孔隙中流体性质的影响,可以识别孔隙中是否含有流体;4)采用横波分裂进行裂缝和各向异性的分析,当横波通过各向异性介质的时候,会出现分裂,形成快横波和慢横波,其偏振性、时差以及振幅差异等有益于对裂隙进行定性和定量的分析和评估; 5)横波联合对地震数据资料进行反演,以此消除单一波形对地震反演的欠缺,即利用横波信息在一定的程度上缓解只用纵波推演的多解性。

除了上述的应用优势以外,目前来说,多波地震勘探也存在着不少难题:(1)相位对比比较困难;(2)层位追踪对比存在误差;(3)“同分辨率滤波”法很难将纵、横波剖面中的相位完全对应。此外,多波地震勘探本身还存在着许多技术难点,如横波剖面的信噪比较低,处理时存在横波的静校正、共转换点的确定、VVO以及纵、横波分离等尚待研究解决的问题。

四、结论和应用前景展望

多波地震勘探解决了很多常规单一纵波勘探难于解决的地质问题,在小断层识别、储气下地层解释、纵横波剖面联合解释油气层方面和某些薄煤层地区有着自己独特的优势,而且在实际应用中,对比证明其对泥岩、砾岩、砂岩等都有较好的辨识能力,完全可以为勘探结论提供必要的参考。

特别是近10年来,随着多分量地震勘探技术在理论和仪器上的发展,多波勘探方法正在成为一种新兴的、具有广阔应用前景的勘探技术。在煤田勘探中引入多波地震勘探,将会实现从找构造为主,发展为地层地震和岩性地震,达到构造精细勘探和岩性预测,解决煤矿综合机械化开采所要求查明的地质问题,开辟地震勘探在煤层气、勘探、煤炭地下气化和矿井岩溶水防治等应用的新领域。

参考文献:

[1]胡朝勇,朱明,修中标.多波多分量地震勘探的现状与发展趋势[J].科技信息, 2009,(26) .

[2]季玉新,魏修成,陈天胜.关于多波多分量地震资料极性问题的讨论[J].石油物探, 2010,(01) .

[3]刘军迎,雍学善,高建虎,杨午阳.多波多分量地震波场数值模拟及分析[J].石油物探, 2007,(05) .

[4]梁庆华,宋劲. 矿井多波多分量地震勘探超前探测原理与实验研究[J].中南大学学报(自然科学版),2009,(05) .

[5]彭才,朱仕军,黄东山,谢芳,夏陵,何建秋.多波多分量直接油气检测方法研究[J].西南石油学院学报, 2006,(03) .

上一篇:新型墙体材料在城市建设中的应用 下一篇:郑州某工程预应力管桩静载试验