学习迁移理论在数学教学中的运用

时间:2022-02-24 05:08:55

学习迁移理论在数学教学中的运用

迁移是教育心理学的一个概念,是一种学习对另一种学习的作用,学习迁移的实质是原有知识在新的学习情境中的应用.两种学习之间的作用有的是积极的,有的是消极的.凡一种学习对另一种学习起促进作用,就称为正迁移,如方程的学习有助于不等式的学习;凡一种学习对另一种学习起干扰或抑制作用,就称为负迁移,如日常生活中的垂直概念对几何中的垂直概念往往会产生负迁移.从数学教育的目的看,应该追求的是正迁移.即通过“举一反三”、“触类旁通”的学习方式使学生达到“闻一知十”的境界,塑造学生良好的认知结构,进而达到“教是为了不教”的境界.

1 迁移的心理实质

迁移理论是学习理论的继续.人们对迁移现象从不同角度给出了不同的解释.一切有意义的学习都包括迁移,学生的认知结构是有意义学习的最关键因素.认知结构是一种推动人的认知活动的工具,两种学习间的相互作用是通过认知结构来完成的.如果学生的认知结构中具有较高抽象、概括水平的观念,是有利于迁移的;如果两类学习中存在共同点,也是有利于迁移的;如果学生有主动迁移学习的心向,也有利于迁移.

形式训练说的观点认为,必须经过若干心理功能的专门训练以提高注意力、记忆力、推理能力、想象力等各种能力,使之在不同的学习中认出形式上相似的东西而实现迁移.大多数人认为数学是思维的体操,在数学教学中,教师往往强调各种方法、技能、思想的学习,并认为让学生学会观察、实验、比较、分析、综合、抽象、概括,比记住一些具体知识更有益,其源由可追溯至此.其实知识与能力具有同等重要的价值,无知者无能,我们不能轻视知识的学习.相同要素说是在批判官能心理学的基础上发展起来的.这种学说认为,两类学习中的共同要素或共同的成份情境能触发迁移.如学生如果能发现解方程x2-3x+2=0和解不等式x2-3x+2>0中的“共同因素”是分解因式x2-3x+2=(x-2)(x-1),那么解方程x2-3x+2=0的某些学习经验就能迁移到解不等式x2-3x+2>0的学习活动中.这种做法有点机械,没有突出数学思维的特点.为什么在解方程、解不等式时要分解因式?上述做法并没有回答.学生往往只是照猫画虎,依葫芦画瓢.这个观点是伴随着行为主义的观点而来的,用现在的眼光看,它比较注重知识层面,并且局限于具体的知识点就事论事,其解释比较狭窄.在教学中,更多的是要求学生在各种变式中辨别事物的本质.概括说(类化说)认为,产生迁移的关键是学习者能否在两种学习活动中概括出它们之间的共同原理,当学生能把两类学习活动中的基础原理识别和提炼出来时,才能实现迁移.如学生在学习解二元一次方程组时,获得了“消元”这一解二元一次方程组的一般原理,紧接着在学三元一次方程组时,如果学生能把“消元”和解三元一次方程组联系起来,那么就能把解二元一次方程组的一般原理(消元)迁移到解三元一次方程组中去.华罗庚先生在学习解方程时,也有类似的经历.教材往往强调通性通法的教学,因为通性通法的包摄性强,概括性强,易于迁移.如湘版教材指出直线方程的一次项系数是直线的法向量坐标.有了法向量,就能从方向上把握直线,有关直线的问题就易于解决.类似的想法迁移到平面,用平面的法向量把握平面,就把二维平面的问题化归为一维直线的问题.现在流行的用法向量处理立体问题的做法就基于此.格式塔心理学家认为迁移不是由于两个学习情境具有共同成分,原理或规则而自动产生的,而是由于学习者突然发现两个学习经验之间存在关系的结果.人迁移的是顿悟,即两个情境突然被联系起来的意识.关系转换说强调个体的作用,认为学习者必须发现两个事件之间的关系,迁移才能产生.学习定势是用来解释顿悟现象的一个概念.学习情境的多样化决定了我们的基本人格特征,并在使某些人变得会思考中起重要作用.这些情境是以同样的形式多次重复出现的.不应以单一的学习结果,而应以多变但类似的学习课题的影响所产生的变化来理解学习.基于此,采用多样化的变式训练给学生提供丰富的多刺激的学习情境是非常有必要,有助于形成学习定势.因为学习定势既反映在解决一类问题或学习一类课题时的一般方法的改进(学会学习上),也反映在从事某种活动的暂时准备状态(准备动作效应或预热效应中).学习定势的这两个方面都影响作业的变化.

这些学说之所以对立的主要原因是传统学习理论缺乏学习分类的思想,把机械学习与有意义学习相混淆,把知识学习与技能学习相混淆.在技能学习领域,把智慧技能与动作技能相混淆.当代著名的学习理论有奥苏伯尔的有意义言语学习论,信息加工心理学的产生式理论和新近发展起来的认知策略理论(包括反省理论认知理论),他们都各自提出对迁移的解释.

奥苏伯尔认为,无论在接受学习还是在解决问题中,凡有已形成的认知结构影响新的认知功能的地方,就存在着迁移.原有知识的可利用性是影响新的学习和迁移的最重要因素,也是最重要的认知结构变量.当学习新知识时,如果在学生原有知识结构中能找到适当的可以用于同化新知识的原有知识(包括概念,命题或具体例子等),那么该学生的认知结构就具有原有知识的可利用性.反之,当学习新知识时,如果在学生原有知识结构中找不到用于同化新知识的原有知识,那么该学生的认知结构就缺乏原有知识的可利用性.上位的,包容范围大和概括程度高的原有观念可以充当先行组织者.如果认知结构中缺乏这样的上位观念,教师就可以从外部给学生的认知结构中嵌入一个这样的观念,使之起吸收与同化新知识的作用.如在掌握分数概念之后学习百分数,分数概念是上位的,起组织作用;百分数概念是下位的,有了上位分数概念的支持,学习起来容易.原有知识越巩固,越易促进新的学习.注意到新旧知识的异同点、可辨别性,是利用旧知识同化新知识的前提条件之一.

加涅的智慧层次论把智慧技能分成:辨别、具体概念、定义性概念、规则和高级规则.经过一定的练习,使结论和原理以产生式的形式表征,而不是以陈述性的形式表征,那么原先的结论和原理就转化为人们的办事规则.当规则支配人的行动时,规则就转化为做事的技能.判断学习成效的依据之一就是看习得的知识能否转化为学生灵活运用,转化为学生的办事技能.

产生式迁移理论适用于解释基本技能的迁移,是相同要素说的现代化.其基本思想是,先后两项技能学习产生迁移的原因是这两项技能之间产生式的重叠,重叠越多,迁移量越大.产生式这个术语来自计算机科学,产生式就是所谓的条件——行动规则.比如,解方程的学习经验与解不等式的学习经验有很多相通的地方,解方程的学习就有助于解不等式的学习.认知策略在本质上是一种特殊的程序性知识.认知策略迁移理论认为学习者的自我评价是影响策略迁移的一个重要因素.这也就是俗话说的“知人者智,知己者知”,“人贵有自知之明”,能够对自己认知结构的整体性、转换性和自我调节功能有一个恰如其分的认识.建构合理、有序、不断发展的具有调控作用的认知结构将有利于迁移.

由以上分析可知,实施正迁移有两个关键因素:(1)两种学习有类似性.相同要素说和产生式迁移理论着眼于知识的心理表征方面;有意义言语学习的迁移理论触及知识的灵魂——原理、思想和方法.“万变不离其宗”中的“宗”指的就是易于迁移的具有概括性质的思想和方法.(2)学生的数学素养,学生的迁移心向.形式训练说旨在通过提高学生的能力而实现自动迁移.着眼于提高学生的能力是其可取之处.学生在学习活动中不断感悟,反复体味,会形成一定的学习定势,机缘巧合时,就会产生顿悟,产生远距离的迁移.

2 迁移理论在数学教学中的应用

为了提高教学效率,使学生学会学习,应有意识地在教学中运用迁移.

2.1 合理组织教学活动,加强新旧知识的联系

数学是逻辑性很强的学科,公理化思想的教学应用把数学知识编织成一环扣一环的逻辑链条.这既为加强新旧知识的联系奠定了基础,又为加强新旧知识的联系(共同要素)提出了要求.有经验的教师在上新课之前先复习一下有关的旧课,然后通过类比等方式实施迁移,自然地引入新课,达到温故知新的目的.如学习了等差数列,再学习等比数列,完全可用类比的方式实施迁移,教师的“讲”只要讲在关键处即可.这样就遵循了循序渐进的原则,先前的学习可是后继学习的准备,后继学习是先前学习的自然延伸.当我们学习了新知识之后,还可以用新知识来阐释旧知识,以新带旧,如从高观点看初等数学就是此法的应用.

2.2 牢固掌握具有包摄性的数学方法和思想

学习迁移效果受知识经验概括水平的制约是实施迁移的一个基本规律.如果学生的认识结构中的已有知识经验概括水平高,那么就容易把新知识纳入原认知结构中,学习迁移就进行得比较顺利.学生的认识结构由知识结构转化而来.数学思想方法寓于数学知识之中,由数学知识化实为虚而成,具有很强的概括性、包容性,是数学知识的精髓.因此在教学中,要重视数学思想方法的教学,从而使之内化为学生头脑中的观念.如初等代数中最基本的思想,最重要的本质就是数的运算律(交换律、结合律、分配律等).学生掌握了运算律,就能顺利迁移到解方程等内容的学习中.一大套三角诱导公式,如果能从中提炼出“数学的用以简化问题的等价变换”这一思想原理,就会对全体公式及其关系和方法有了实质性的深入认识.教师应以具体知识为载体反复渗透数学思想方法的学习,着眼于提高学生能力,真正达到“领会基本原理和观念”.

2.3 自顶而下,逐层分解不断分化式的呈现教学内容

认知心理学认为,人们在接触一个完全不熟悉的知识领域时,从已知的较一般的整体中分化出细节,要比从已知的细节中概括整体容易些.人对知识的认识是从整体到细节,而不是相反.认知心理学还认为,人们关于某一学科的知识在头脑中组成一个有层次的结构,最具有包容性的观念处于这个层次结构的顶点,它下面是包容范围越来越小和越来越分化的命题、概念和具体知识.这是知识在头脑中的组织形式.教材的呈现也应遵循由整体到细节的顺序,要充分发挥先行组织者的作用,使之为后续内容的具体展开提供一些起固定作用的概念,以利于领会和保持.如在解析几何的序言课中,学生要深刻领会解析几何的实质是用代数的方法研究几何,那么在后续的学习中,学生将会注意到离心率可以用来刻画圆锥曲线,那么类似地,斜率能否用来刻画圆锥曲线呢?由此出发,学生可以获得一些深刻的见解.同样的,在三角函数的学习中,教师若能时时教给学生,三角公式其实是圆的性质的解析表达,学生如果能在具体的学习中时时用具体的公式来验证这个观念,必将加强对三角函数的理解.

2.4 加强横向联系,实现融会贯通

在教学中还应引导学生加强观念、原理、课题乃至章节之间的联系.如果学生不知道许多表面上不同的术语实际上代表本质上相同的东西,就会造成认识上的许多混淆.如比例的合比性质ab=cd=a+cb+d,其实是说,两杯一样甜的糖水混合之后,还是一样的甜,那么此公式显得十分的亲切了.加强知识间的横向联系,使知识能彼此阐释,使人有豁然开朗,茅塞顿开之感.

2.5 加强变式练习,使静态表征的知识以产生式的方式表征

技能之间产生迁移的本质是共同的产生式而不是它们的表面相似,变式是适合规则的情境的变化.变式练习不是简单的重复练习.变式练习及变式教学是我国本土教育经验的归结,不仅是适合于概念课、命题课和习题课教学的一种技术手段,更应看作一种促进学生学会问题解决,运用知识的一种教学理念.

2.6 发展自我意识,学会反省认知

学会使用高级规则和认知策略等具有高度概括性和模糊性的程序性知识,更需要学习者的自我意识发展到一定的水平,能够反省认知,能够评估采用不同认知策略所带来的不同效益,而不是把学习成绩的优劣简单地归结为自己资质的高低上.俗话说“每个人都看不到自己的后颈窝”,能自我反省,内省自己是很难得的.

与其说是心理学的知识在数学教学中的应用,还不如说是从心理学的观点来阐释数学教学的一些具体的现象.数学工作者喜欢做推广、引申之类的工作,其动作指向是具体数学结论的生成,在这个活动过程中,人的认知结构发生了变化,也就为迁移的产生提供了外界的活动基础.作为教师,不仅应该是技术型的,而且还应当是技术理论型的.

作者简介 徐章韬,数学教育博士,教育信息技术博士后,副教授。主要从事信息技术与学科教育的整合.

上一篇:基于一道高考试题的解答情况谈函数教学 下一篇:解题应追求朴素自然