水库路基设计范文

时间:2023-08-16 10:38:39

水库路基设计

水库路基设计范文第1篇

关键词:水电站库区复建道路道路设计 措施

中图分类号:TV文献标识码: A

1.概述

随着我国基础设施建设以及社会的发展,对能源的需求越来越大。同时国际社会以及我国政府越来越重视环境保护的重要性。选择清洁的可再生的能源(如水电、风电、光伏发电)成为了我国大力发展的能源建设的重点。而水电因为受外界自然环境影响小、可持续利用年限时间长、对环境基本无影响、可调峰等诸多优点,是我国能源的主要来源之一,近些年国家大力投资建设水电站。

水电站建设的主要道路有:对外交通、场内交通和库区复建道路。对外交通主要研究对外运输线路,通过经济技术论证选择合适的线路。场内交通主要根据电站施工总布置的运输需要,选择合适的路线、等级进行布设,以满足电站建设的需要。本文所讨论的库区路属于水电站建设的场内道路,是主要根据水库的“三原则”(原规模、原标准、原功能)对水库淹没的库区原有道路进行复建。根据水库的“三原原则”以及交通量分析,确定复建道路的标准、等级。

水电站库区复建道路作为库区建设的主要道路,对移民安置点建设、移民搬迁乃至水电站的蓄水发电都起着至关重要的作用。

2. 水电站库区道路设计的原则

水电站库区复建道路的整体设计特点是结合库区两岸布置的移民安置点和集镇,对由于水库蓄水淹没的现有交通工程按照水库复建的“原等级、原规模、原标准”的标准进行复建。其设计特点是首先应在满足设计规范的基础上,满足水库蓄水的安全性要求,即路基设计应以水库常蓄水位和设计洪水位作为设计的首要考虑因素,其次,该项目是服务于安置后的水库移民点当地群众,不但要满足村庄附近的道路的公路建筑限界要求,满足群众的出行需要,同时也要兼顾生产、生活的需要,要与现有的田间机耕道、通村路、灌溉设置有较好的结合。而现场的周边人文地质情况一般较为复杂,这也就成为设计过程中的重点和难点。

受水库蓄水影响库区复建路线线位提高,路线经过的路段地形陡峻、地质条件复杂,不良地质段增多,设计难度较大。设计时应考虑水库蓄水的影响以及地形地质情况的因数。并且在越岭路线的设计中,应利用地形自然展线,尽量避免设置回头曲线,鉴于库区道路在自然展线无法争取需要的距离并且克服高差,可在适当的地方设计回头曲线减少工程量。当设置回头曲线时,回头曲线的前后线性应连续、均匀、通视良好,两端宜布设过渡性的曲线,且设置限速标志、交通安全设施等。

3.建设中出现的问题以及解决措施

(1)水电站库区复建道路往往是沿河路基,水电站库区蓄水后,水位大幅度的变化以及沿河水流的冲刷引起浸水路基坡脚的后退,沿河路基边坡稳定性将受到严重的的威胁,应对沿河路基进行防治,以确保路基在水流的侵蚀下与水位的涨落下功能的可靠性。沿河凹岸路基的防治措施按其构造和作用可分为两种形式:一是直接防护,用抗冲材料直接覆盖在凹岸路基边坡上,以抵抗水流的淘刷而引起的崩塌;二是间接防护,如丁坝,通过在凹岸布设丁坝或丁坝群,来改变水流性质,减轻水流对路基的作用。

(2)水电站库区复建道路作为连接移民安置点的通道,在勘察设计过程中应与其他相关专业的沟通,根据移民安置点的规划布置,满足移民安置点建设的要求以及能够与移民安置区主要干道顺接。

(3)设计现场调查阶段应与当地政府沟通,了解当地居民意愿。避免因当地居民意愿与设计思路不同意,阻挠施工,造成施工建设无法开展,不得不进行变更以满足当地居民的意愿,造成投资浪费甚至出现废置工程。

(4)注重水库塌岸区的影响,由于水电站在运行过程中,水位受季节、气候、梯级电站调节要求等,水库的蓄水位在一定范围内波动。而处于这范围内的水库库岸常年处于保水及过保水的状态,处于不稳定状态。路基如果通过此路段可能处于失稳的不利状态。所以通过水库塌岸区时,应根据地质报告确定的水库塌岸区范围,进行避让,并保证不小于10m的安全距离。

(5)充分考虑农田灌溉的需要。应结合当地的灌溉系统及地形条件,组成完成的灌溉排水网路,避免因公路建设对原有灌溉系统造成破坏。通过农田段的路基做低填路基(1~2m),横穿路基灌渠做涵洞联通,既可保证灌溉系统的完整性,同时也可处理道路部分废方。

(6)注重地质勘查工作。水电站库区复建公路一般因受水库蓄水影响,线位抬高。路线往往出路较为陡峻的地段,边坡开挖、填方高度较高。在地质勘查阶段,应重点对高填深挖地段进行勘查工作,避免因施工开挖过程中实际揭露的地质情况与地勘报告出现较大的差异,引起防护工程数量增多,甚至路线的调整。

(7)注意路基防护设计。一般库区复建道路工程所经地区内外力地质作用强烈,地质构造较复杂,新构造运动表现为大面积整体间歇性急速抬升为主,岩体破碎,风化强烈,暴雨集中,山高坡陡,各种外动力地质现象发育,主要的不良地质现象有风化碎落、崩塌、滑坡等。

风化碎落主要发生于在部分公路及小道边坡出露的各种岩质边坡,由于风化剧烈,普遍可见风化碎落现象,但规模小,易于清除,对工程影响不大。

崩塌主要发生于河谷、沟谷两岸,部分公路及小道的边坡出露的硬质岩类边坡,由于纵横交错的节理裂隙发育,破坏了岩体的完整性和稳定性,在陡坡处易产生崩塌,但仅与个别工点有关,具有低频特征,规模小,易于清除,对工程影响不大。

库区复建道路路段,地形多为山地斜坡,地形横坡较陡,岩面起伏大,坡面覆盖层及基岩全风化层较厚,加之区内雨量集中且频繁,在雨水及沟水对坡面、坡脚的集中冲刷下,往往产生表浅型松散堆积层滑塌(土溜),但规模小,设计、施工易于清除或处治,对拟改建公路影响不大。

公路沿线覆盖层厚度变化较大,局部可能存在路基不均一沉陷及红粘土膨胀等问题。

对深挖路基以及高填方浸水路基主要采用以下几种防护形式:边坡喷锚支护;边坡设置SNS主、被动防护网;开挖边坡顶部设置截、排水沟;土工格栅处理高填方浸水路基;高填方浸水路基采用填石路基;填方路基设置挡土墙等。

(8)注意道路安全设施的布设。库区复建道路线路采用的设计指标较低,且遇到的道路实际的问题较多,如:淹没水位,复杂地质,山岭重丘,移民安置等。做好其安全设施的布设是行车安全、民众安全的重要保障。如遇到非单独设置的标志需要并列设置时,应优先保留禁令和指示标志。

5.小结

水库路基设计范文第2篇

关键词:公路 设计 选线 方案

引言

台山核电厂淡水水源工程的新松水库位于台山市赤溪镇的曹冲河,水库距台山市约60km,距台山核电厂约15km。坝址距新台高速浮石立交出口约28km,距西部沿海高速都斛出口约18km,现有外部交通条件较好。台山核电厂淡水水源工程通过在曹冲河建设水库,用输水管道将淡水输送至核电厂淡水厂,拟建进库道路连接水库坝址与台山核电厂的进场道路。目前,从旧赤溪镇到水库坝址,只有一条长约8km的简易泥结石道路可走。但该现有简易道路等级低,平面弯道多、转弯半径小、会车时错车困难,不能满足本工程施工期与运行管理期的交通使用要求,故须对进库道路进行配套建设。

1进库道路技术标准的确定

1.1道路等级标准的确定

进库道路是台山核电厂淡水水源工程的专用道路。经过对枢纽日常交通量的分析,对于设计水平年,预计对外交通道路的双向通行交通量小于1000辆/日。双车道四级道路可满足本工程施工高峰期的最大交通量。考虑工程的建设规模、重要性和施工期车辆交通情况,根据规范要求,结合当地实际情况,经综合分析,进库道路按四级公路标准设计。

1.2路线主要设计指标确定

进库道路按四级公路标准设计,设计速度为20km/h,设两车道,路面宽为6.0m,每侧土路肩宽为0.5m,路基宽7.0m。根据交通量组成与项目交通量、地质条件及主体工程施工的具体特点,施工期间行驶施工运输车辆较多,故采用高级路面。汽车荷载等级按公路等级采用公路-Ⅱ级,并采用施工运输车辆的实际最大荷载(约50t)进行复核。路基设计洪水频率参照《公路路基设计规范》(JTGD30-2004)的规定,路基设计洪水频率为1/25。

1.3道路横断面结构型式

进库道路路面结构:采用水泥混凝土路面。路堑挖方边坡根据地质报告资料,按岩体风化程度不同来选取相应的开挖坡比值。挖方边坡高度大于10m时,采用分级边坡,第一级边坡高度为8m,其余每级均为10m。路堤填方边坡填筑坡比值根据路基填料种类、地形等条件而定。第一级边坡坡比采用1:1.5,第二级至起其坡比采用1:1.75。地面横向坡度较陡路段在路堤下方设置挡墙,其中涵洞则与挡墙结合。

2进库道路路线方案设计比选

2.1选线原则

选择路线方案进行初步设计时需要充分利用地形、地势,尽量少出现回头弯;

选择地质稳定、水文地质条件好的地带通过,避开软基、泥沼、排水不良的低洼地等不良地段,避免穿过密集居民区、村庄;少占耕地、少拆迁,多利用山地,有条件的地方结合现有道路,使路线总里程较短、地形坡度较平缓、转弯舒顺;减少开挖量,避开高边坡等地段,减少水土流失;结合主体工程建筑物布置。

2.2路线方案布置

根据以上选线原则,及道路技术标准的约束,结合核电厂规划进场道路、主体工程建筑物布置及现场地形等具体情况,本阶段初步拟定设计了2条进库道路路线方案,其示意图见图2.2-1。

图2.2-1进库道路路线方案示意图

路线1:从核电厂规划进场道路东阳村南曹冲小学附近接入,经约0.2km海边虾蟹塘边后,沿曹冲河约2.2km,绕过新松村沿曹冲河约1.5km,经西坑,沿山边爬坡约0.8km至水库坝址左坝头,经大坝沿库边0.9km至输水隧洞进口。该路线全长约5.6km,其中0.2km为海边路,3.7km为原河边村路改造,1.7km为新建山边公路。

路线2:从核电厂规划进场道路南阳村南附近接入,经约0.2km海边虾蟹塘边后,沿原村路约1.4km至山边村,过村后沿山边小路0.8km,沿山边爬坡约0.7km至水库右岸垭口,沿库边经0.65km至坝址右坝头;另从垭口修支路0.25km至输水隧洞进口。该路线全长约4.0km,其中0.2km 为海边路,2.2km为原村路改造,1.6km为新建山边公路。

依据确定的道路技术标准根据选线原则对两个路线布置方案在已有1:2000地形图上进行设计并计算路面工程、路基土石方工程、路基防护工程等主要工程的工程量并形成工程量清单,对各路线方案估算其投资。

各路线方案特性见表6.5-1,各路线方案估算投资比较见表6.5-2。

表2.2-1进库道路路线方案特性表

2.3路线比选

由表2.1-1及表2.2-1可知:

从布置上看,路线1和路线2均有局部海边道路连接核电厂进场道路,距核电厂均较远,并需要进行软基处理。其中路线1沿曹冲河边,目前现有道路高程在3m~4m之间,曹冲河10年一遇洪水位高程为6.8m,25年一遇洪水位高程为8.0m,路面高程需加高5m左右,且需要按堤防标准建设,涉及水利设施等其他复杂问题;路线2长度最短,并利用现有的村路,线路较顺畅;从征地移民上看,路线1需要征用路边田地,路线2需要拆除少量房屋;从施工条件上看,路线2最短,但道路施工有可能受当地村民交通影响;从投资上看,路线2投资最少,比路线1少1810万元;综上所述,路线1的其中一段经过曹冲河边,其路面需按堤防的防洪标准进行加高,征用农田较多,涉及水利设施等其他复杂问题;路线2的路线需穿过村庄,但结合主体建筑物布置最合理,长度最短,路线较顺畅,投资最少。经综合比较后,推荐路线2为进库道路的首选方案。

3 结语

台山核电厂淡水水源工程进场道路外部交通条件较好,道路功能特殊,在明确道路的功能后由确定的道路技术标准,按照基本选线原则拟定设计出2条进库道路路线方案,通过方案比较发现路线2对结合主体建筑物布置最合理,长度最短,路线较顺畅,投资最少是符合本道路工程投资和运输效率的路线设计方案。

作 者 简 介

王琦(出生与1983年9月 ),男,大学本科,职称为水工建筑助理工程师,现在在广东省水利电力规划勘测设计研究院水工分院公路室从事路桥设计工作。

水库路基设计范文第3篇

关键词:水源保护区、长大纵坡、计算机模拟仿真、环保措施,运营安全

Abstract: based on the rivers flow through reservoirs and huanglong reservoir water reserve sections with research and project design, solve the highway construction and operation process to the contamination of water supplies and harm. Will highway design idea from the pure project feasibility plan the comparison of the construction cost +, improve to the life cycle of the system than the election, measures the ecological and environmental protection and highlights the design of the safety consciousness. Topics from engineering design, construction and operation management of the whole process, several research projects to introduce vehicle operation safety evaluation theory to solve safety problems, making use of the computer simulation experiment to solve impact across waters and dangerous road bridge in the double fence set hard road shoulder width and height of the barrier strength, problem, by setting biological pool and accident emergency pool solve the early rain and bridge surface traffic accident dangerous goods to contamination of water supplies that leak harm, the system the research and puts forward more environmental protection, a more reasonable roadbed, bridge and tunnel construction scheme, scientific planning of the construction and also solve the camp and temporary field pollution problem prefabricated, further improve the traffic safety and monitoring facilities to ensure safety during the operation of water.

Keywords: water reserves, grow up ZongPo, computer simulation, environmental protection measures, safe operations

中图分类号: TU991.11文献标识码:A 文章编号:

引 言

二十世纪八十年代初,随着沈大高速公路和沪嘉高速公路的相继开工建设,我国拉开了高速公路大规模建设的序幕。截止2010年底,我国高速公路通车里程已达7.4万公里,位居世界第二位。

经过近30年的建设,我国高速公路建设重心已从建设条件较好的沿海及平原地区逐步向建设难度较高的山区发展。在这一过程中,也随之出现了越来越多的需从生态环境要求较高、行车安全要求更为严格的高等级水源保护区通过的高速公路建设项目。

纯净、无污染的饮用水源是人类赖以生存的基础,国内外对在水源保护区修建高速公路项目极为慎重,对建设项目范围内的水源保护和行车安全方面要求极高;而在饮用水源保护要求更高的大、中型水库路段修建高速公路,常因水库受污染后其恢复时间长、恢复难度大等因素,对水源保护和安全运输要求更为严格,所以目前国内外此类建成项目很少。

目前,我国也非常缺乏在高等级水源保护区水库路段修建山区高速公路的成功经验,而可以借鉴的、成功的建设项目也很少。为此,本文通过国道主干线――大广高速公路粤境从化段穿越两个高等级水源保护区水库专题设计为契机,以确保饮用水源安全为前提,从工程设计、施工及后期运营等全过程、多方面进行探索和研究,总结出一整套适合在高等级水源保护区修建山区高速公路的设计经验。

1. 项目概况

本项目为典型的复杂山区高速公路,全段采用设计速度100km/h、双向6车道建设标准,路线全长约75km,其中穿越莲麻河、竹坑河、流溪河水库、黄龙带水库和流溪河等二级水源保护区路段长约50km。由于沿线穿越高等级水源保护区路段较长,河流和水库又分布较多,为做好水源保护区路段的工程设计、施工及后期运营的方案研究,本案例特别选取了工程设计难度最大、水源保护要求最为苛刻的两个水库路段进行专题研究和设计,研究的成果也将在其余路段进行推广和应用。图1:路线平面示意图

流溪河是广州市的母亲河,是广州市的主要饮用水源之一,而流溪河水库和黄龙带水库则位于流溪河的源头,是流溪河河水的主要供给者。按照国家环境保护部及地方相关主管部门的批示:两个水库均为二级饮用水源保护区,其中:流溪河水库水质目标为Ⅰ类,黄龙带水库水质目标为Ⅱ类。

为确保公路建设和运营期间两个水库水质的安全,更好的指导水源保护区路段工程设计,本研究课题将路线穿越两个水库路段(K124+100~K139+050,全长14.95km)的工程设计、施工方案及运营安全进行专题研究,同时对研究成果开展水土保持、行洪论证和环境评价等专项评估。

2. 工程设计

2.1 路线总体设计

1、路线走廊优化

针对工可跨越两个水库路段路线方案还存在多次跨越水域及濒临水域布线等不利水源保护的问题,设计作进一步的优化和调整,重点将原设计中两跨流溪河水库水域路线方案调整为一跨水域的西移方案;同时通过适当增加水库路段谷架半坡桥梁,缩短高挖方路基陡坡工程长度,减少弃方工程数量,减缓施工期间水土流失,降低对水库水质的影响。

2、平面设计

从山区高速公路安全事故率的角度考虑,过大或者过小的圆曲线半径均不好,一般情况下,采用1000~3000m的圆曲线半径比较合适。考虑到本项目作为我国南北国道主干线,中型以上货车及大型客车比例较高的特点,平面曲线的布设在适应山区独特复杂地形变化的同时,尽量选用了大型车辆运行条件相对较好的安全适用半径,将路线超高控制在4%以内,在满足车辆安全运行的前提下,又可顺适地形变化,降低工程投资。

此外,为尽量减少路基高填深挖对库区带来的植被破坏和水土流失,在案例中多采用了谷架桥和“低矮”旱桥取代路基高边坡工程,图2:傍山势而设的低矮旱桥

尽量做到移挖作填和土石方工程的平衡。

3、纵面设计

本段位于谷星长大纵坡越岭的中间路段,该段为一“人”字型越岭,其北段越岭长度5.3km,克服高差132m,平均纵坡2.48%;其南段越岭长度13.25km,克服高差288m,平均纵坡2.18%。

高速公路连续长陡下坡划分表

根据交通预测成果,本项目大客车及中型以上载重货车的比例将占到60~80%以上,而长大下坡路段往往也是高速公路上行驶车辆、特别是重载货车事故多发路段。在水源保护区路段,运输危险品车辆一旦发生交通意外事故,冲 图3:长大纵坡示意图

入水域之中或导致危险品泄露而直接危害水源的事故在国内外都常有发生,而此类事故一旦发生就将直接威胁到居民的日常生活用水安全,对社会危害的后果也是非常严重的。

为使长大纵坡的设计更趋合理,更加符合车辆特别是货车能有效控制行车速度的要求,经过设计论证,设计选用货车运行条件更好的货车“无害”组合纵坡(3.0%+2.5%)越岭;此外,在跨越两个水库水域路段则采用较为缓和的纵坡,以有效控制穿越水库水域路段车辆的实际行车速度,最大限度图4:京珠高速长大纵坡路段

避免因长下坡导致超速行驶而引发的交通意外事故。

4、运行速度检算

考虑到本项目中型以上车辆比例较大,为避免设计缺陷或考虑不周,而导致出现运行速度不协调、或存在货车运行安全等问题,对全路段进行运行速度检验。经计算:小客车最大运行速度差为3.75km/h,货车最大运行速度差为11.85km/h,全线运行速度协调性较好。

5、避险车道和冷却池

考虑到车辆特别是货车在长下坡路段运行中存在的种种不利因素,除了设置合理的越岭组合纵坡有效控制行车速度以外,为了预防部分失控车辆在长下坡路段发生冲入水库之中的严重交通事故,本研究在进入水域以前的安全路段设置避险车道(2处);另外,为有效预防货车在长下坡路段因长时间制动使得刹车毂温度过高而导致刹车性能降低的问题,在长缓坡路段设置南行下坡方向的冷却池(1处)图5:避险车道 冷却池

,专供货车通过冷却池降低其刹车毂温度,恢复货车刹车功能。

2.2 路基工程

1、边坡防护及水土保持

边坡采用湿法喷播植草、客土喷播及浆砌片石人字形骨架植草防护等绿化防护措施为主;桥头路段路堤边坡,在桥头30m范围采用人字形骨架护坡,锥坡范围内采用六棱块骨架防护,以尽量减少水土流失。图6:路基绿色边坡防护

2、取弃土场设置及绿化

通过平纵方案的优化,本案例将土石弃方工程从工可报告中的317.42万方缩小到115.74万方,大大减少高速公路建设对库区造成的水土流失。取弃土场设置在远离水源保护区及其涵养区以外的地方,采取加强排水、绿化等措施,防止水土流失。 图7:弃土场与周边环境融为一体

3、路面方案

考虑到沥青在拌合、摊铺和使用过程中,对水源保护区水质会造成一定的危害,为尽量减少对水源保护区的危害,研究推荐在水源保护区路段采用水泥混凝土路面。

4、路面雨水收集

路堤段在土路肩外侧设路面截水沟,路堑段在土路肩外侧路堑边沟内侧设路面截水沟。并同桥面雨水集中引至生物过滤池集中处理。

2.3 桥梁工程

本段桥梁总长8.143km,占路线总长度的54.5%。

1、桥梁护栏

为避免跨越水库路段车辆因发生交通意外翻出桥下的严重事故,对跨越水库水域的桥梁两侧防撞护栏进行加强设计。目前国内外穿越水源保护区的高速公路桥梁护栏采用的型式较多,其安全性和经济性方面差异较大。

国内外类似项目护栏设计方案调查表

显然,采用双层的护栏从安全、景观及投资等方面较为合适,而双层护栏采用的护栏组合型式及所需加宽的宽度不仅涉及建成后的行车安全问题,同样也对桥梁工程的投资有较大的影响,需要开展相关的课题研究,来解决护栏的型式及加宽的宽度等问题。

根据我国相关交通安全设施规范规定,并结合项目的实际特点,本研究选择了两种不同组合型式的护栏方案,在国内率先采用计算机模拟撞击仿真分析试验方法,开展专题科研研究。

图9:金属梁柱式+混凝土护栏撞击试验图 图10:双层混凝土护栏撞击试验图

通过试验和技术论证:以上两种组合方案都满足课题安全的要求,但以上两组方案在工程的经济性及景观方面则存在一定的差异。由于两个方案采用的护栏组合型式的不同,导致桥梁路段需加宽的宽度不一致,其中:方案一SS级金属梁柱式+SS级混凝土护栏组合方案需要加宽2.0m,而方案二SS级双层混凝土护栏则需加宽3.25m。通过技术经济比较:方案一因桥梁单侧加宽宽度减少1.25m,其单侧桥梁每延米投资减少约0.12万元,同时其采用的金图11:金属粱柱式+混凝土防撞墙

属护栏通透性较好,建成后桥梁景观相对较好,因此,本研究推荐采用SS级金属梁柱式+SS级混凝土防撞墙的组合方案,护栏之间的净距采用1.9m。

2、桥面雨水收集

在桥梁两侧防撞墙外侧加设PVC管汇集桥面雨水,并同路基段路面雨水一并收集处理。

3、跨越水域重点桥梁环保设计

玉溪湖大桥(K127+534)

跨越流溪河水库,桥位处两侧山势陡峭,相对高差40~60m,设计水位181.3m,到达设计水位时水面宽度约60m。

主跨采用(58+100+58)m连续刚构,跨越水面部分采用100m,水中不设桥墩和承台;全桥两侧采用双层护栏,两侧挂PVC管收集桥面雨水。

黄龙带特大桥(K138+093)

跨越黄龙带水库,桥位处重丘地貌,设计水位176.02m,达到设计水位时水面宽度约140m。

主跨采用(108+208+108)m矮塔混凝土斜拉桥,跨越水面采用208m,水中不设桥墩和承台;全桥两侧采用双层护栏,两侧挂PVC管收集桥面雨水。

图12:玉溪湖大桥桥型图 图13:黄龙带特大桥桥型图

4、常规桥梁环保设计

桥梁孔跨的布置除了考虑桥梁工程自身的经济性、协调性和美观性以外,还根据环保的要求,除完全避免在水库水域设置墩台以外,也尽量避免在水库的支流水域中设置墩台;另外,在地形横坡陡峭的路段,为了避免墩台施工的大量开挖而引起的水土流失,对于在陡峭路段多布置半幅独柱式桥墩为主,而在地形横坡相对较为平缓的路段则按常规布置单幅双柱式桥墩。 图14:独柱式山坡谷架桥梁

桥面推荐采用混凝土路面,避免沥青路面对水源保护区带来的各种危险和污染。

3. 施工方案

施工期间的污染主要表现为:路基开挖和填筑造成的水土流失,桥梁钻桩产生的泥浆、污水和墩梁施工产生的废弃物,隧道施工废水,临时预制场地和施工营地的各种垃圾。

因此,在案例设计中,优化土石方和边坡的施工方案,以减少水土流失,改善桥梁和隧道的施工工艺,收集施工废弃物,统一规划施工中的各种临时场地。

3.1 路基施工方案及防护措施

1、合理规划路基工程的施工工期,尽量避开雨季,优化填挖,减少施工时间。

2、设计中提前做好排水导流措施,严格水保措施,减少施工水土流失。

3、按照环保要求,施工前提前建立施工临时拦砂坝、沉砂池,阻止泥沙进入水体。

4、在填方路段,首先在填筑段设置沟渠导引地表径流,然后再及时压实填方松土。

5、施工过程中要同环保和水保单位密切配合,贯彻落实水土保持工程的环保验收制。

3.2 桥梁施工方案及防护措施

1、对于距离水库水域较近路段的桥梁,桩基推荐采用旋挖钻机施工,以避免传统方法造成的泥浆污染。

2、承台尽量减少土体开挖,搭设挡板,防止土方进入水库中。

3、对于临近水域路段的桥墩搭设防抛网,设排污管,集中处理施工污水、废油。

4、对于跨越水域的两座大跨度桥梁主梁采用悬拼挂篮施工,挂篮底部及侧面设防抛网,并铺设排污管,集中处理施工污水、废油。

5、混凝土采用商品混凝土,运输条件难以满足时,可将搅拌站设置于水源保护区之外。

3.3 施工建设营地及预制场所

按照环保要求,通过现场调查,并统一规划施工营地和各种预制场地,各种临时施工设施必须设置在离岸50m以外的陆地范围,施工废水、生活污水必须处理达到一级标准后方可排放。

4. 运营安全

4.1 路桥面雨水收集和处理

根据国家环保部和水利部门的要求,路桥面雨水经过统一收集后,需进行集中处理,经达标后方可排放。通过对国内外穿越水源保护区类似项目的调查,路桥面初期雨水收集和处理方案多,环保效果差异大,工程投资差距大。

经过综合比选,本项目推荐采用效果较好、投资适中及管理方便的生物过滤池的方案。

国内外类似项目路桥面雨污水收集和处理方案调查表 表4

1、处理方案

(1)对前15分钟的雨水进行收集和生物过滤,后期雨水可直接排放。

(2)桥面雨水由管道收集,路面由排水沟收集,统一汇入各雨水站处理。

(3)对突发交通事故而泄露的油品及有毒物品,临时应急储存并及时运走。

(4)初期雨水处理、后期雨水排放、应急状态截流三种状态的转换,通过路段监控和电动闸门进行控制。

2、处理工艺

初期雨水:生物过滤处理,进水 格栅 沉淀 植物吸收 过滤 渗滤 补充地下水的处理工艺。设生物滤池16座。

后期雨水:经过配水井后就近排放。

油类及有毒泄漏物:截流、贮存方式,设应急池16座。图15:生物过滤池及应急池

4.2 安全设施

1、防撞设计

路基:全路段采用加强型波形梁护栏;

桥梁:跨越水库水域路段采用双层SS级(金属梁柱式+混凝土防止撞强组合)护栏,其余路段采用单层SS级混凝土防撞墙。

2、安全警示辅助设计

设水源保护区警示牌、限速标志(80km/h)、测速标志,跨越水库水域路段桥梁分车道行驶警示,登记并监控危险品车辆通过水源保护区。

4.3 监控设施

监控设施一般设置在隧道、互通出入口及重点大桥处。为了能及时掌握路况及行车信息,需要对各重点路段特别是跨越水域和临近水域路段加强监控;另外,还需在每个雨水处理站汇水口之前加设监控设施,确保因交通事故而造成泄露的危险品能得到及时、正确的处理。

4.4 沿线生活设施

黄龙带互通生活管理区污水采用移动式干化粪池处理,并定期抽运农用。

5.结束语

针对高速公路在需穿越水源保护区路段,为严格保护水源安全,本文从工程方案设计、施工组织及后期运营的全过程进行探索和研究。

利用计算机模拟仿真撞击试验成果,确定水源保护区特殊要求路段设置双层护栏的宽度和强度;通过将路面桥面雨水进行统一收集和处理,避免路面桥面初期雨水对水源保护区水质的影响;利用路段设置的大量监控设施,及时将发生交通事故泄露的有害物质汇入事故应急池中进行紧急储存,避免有害物质对水源造成严重危害;规范施工方案和建设营地,严格杜绝施工期间对环境的破坏及水域的影响;建立完善的交通安全加强措施,最大限度减少危及水源保护区安全重大交通意外事故发生。

通过本次专题研究,很好的解决了大广高速公路穿越水源保护区路段的环保问题,为项目的顺利开展打下了坚实的基础,同时本次研究成果也将对后续类似项目的建设起到重要的借鉴作用;此外,通过本案例的设计,全面提升了设计人员生态、环保和安全优先的设计理念。

参考文献:

1、国家高速公路网规划(2004年);

2、广东省高速公路网规划(2005年);

3、大广高速公路粤境D3合同段路线穿越流溪河水库和黄龙带水库专题报告(2010年);

4、高速公路路侧设施在高速/重载车辆撞击下的变形及破坏行为研究。

水库路基设计范文第4篇

关键词: 小型水库; 除险加固; 设计

中图分类号: TV697.3 文献标识码: A 文章编号: 1009-8631(2012)01-0040-02

永寿县现有小(一)、小(二)型水库14座,其中:小(一)型水库4座,小(二)型水库10座。这些水库在农业生产、人民生活用水和工业用水、养殖业以及防洪等方面发挥着重要作用。然而,由于这些工程大部分建于50-70年代,工程运行时间长,淤积严重,许多水库都不同程度存在一些病险问题,特别是上世纪六七十建成的水库问题尤为突出,一直成为水利行业的工作重点之一。现以永寿县三分岔河水库为例对水库除险加固及运行管理上存在问题和解决的对策进行了分析。

一、水库概况

三岔河水库位于永寿县三岔河中游的御驾宫乡营里村,距县城12公里。三岔河是泔河左岸的一条支流,地处渭北黄土高原沟壑区,植被较差。沟道全长15km,流域面积62.5km2,沟道平均比降23.2‰。三岔河水库位于三岔河下游,控制流域面积52km2,坝址以上沟道长13.75km,沟道平均比降42‰。

水库始建于1976年,土坝工程从1976年10月动工,于1977年9月份全部填筑完毕。溢洪道1978年衬砌了陡坡和消了池,1982年5月对剩下96m未衬砌平流段进行了衬砌。放水设施和大坝同期完成。受当时政治条件和技术力量限制,由当时永寿县水电局边勘察、边设计,由民工大会战完成的水库工程。是一座典型的“三边工程”。由于原设计标准低,施工质量差,近40年来,一直带病运行,存在多处隐患。整个工程的病险状况已经十分严重。

2008年12月,咸阳市水利局组织有关专家对三岔河水库大坝进行了安全鉴定,鉴定结论为三类坝,并建议“尽快完成除险加固,使大坝能够安全、正常运行”。

水库由大坝、溢洪道、放水洞组成,属Ⅳ等小(1)型水库,主要建筑物4级,地震设防烈度VI度。原防洪标准为按30年一遇设计,300年一遇校核。水库原设计总库容193万m3,其中有效库容110万m3,死库容20万m3,滞洪库容63万m3。设计正常蓄水位926.00m,校核洪水位928.50m。

大坝为碾压式均质土坝,原设计坝顶高程929.00m,最大坝高26m。坝顶宽2.5m,坝顶长121m。上下游坡分别设有两级戗台。下游坡脚设有排水棱体。

溢洪道位于大坝左岸,为河岸开敞式,溢洪道进口高程926m,长199.2米,总落差22.96m。其中平流线长96m,宽15m,设计水深2.0m,校核水深2.5m;陡坡长80m,比降1%,宽11.5m,墙高2.0m,比降为0.25;消力池长20.75m,深1.5m,尾墙宽2.45m,全部用块石衬砌。

卧管和涵洞夹角为60°,卧管共有20个台阶,每个台阶高0.4m,每个台阶1个孔,孔径上口0.3m,下口为0.25m。涵洞全长96m,底宽0.8m,高0.8m,涵洞顶部为半圆形,半径为0.4m,洞底比降1%,流量0.23m3/s。

二、工程存在的主要问题

目前水库大坝主要存在以下问题:

1.大坝迎水坡及背水坡坡面局部出现冲沟和塌坑;坝后排水棱体石块风化固结严重,且排水棱体淤积堵塞,左坝肩存在绕坝渗漏;坝面排水系统不完整,现有排水渠冻融损毁,衬砌破坏严重,排水不畅。

2.溢洪道砌石风化滑塌严重,两岸高边坡没有按稳定进行边坡削坡处理,土体大量滑塌,大量土方堆积在溢洪道内,影响了溢洪道的正常泄洪。进口右岸侧墙因长年垮塌,现仅剩余不到2.0m宽的墙体,且多出存在裂缝。陡坡段砌石底板冲毁、风化严重,陡坡段末端右岸边坡绕坝渗漏。

3.水库年久失修,多年淤积,放水卧管几乎淤死,最大淤积高度达7.0m左右。放水涵洞出口引水渠因坝后高边坡滑塌而被掩埋,涵洞出口退水渠冲毁破坏严重,现已在坝后坡脚处形成深约2.0m,宽1.5m的冲沟,直接威胁大坝安全。

4.无监测系统、水情测报系统、无防汛抢险硬化道路。

三、水库除险加固的必要性

1.防洪减灾的需要。三岔河水库地理位置十分重要,担负着水库下游马坊镇仇家村、郭门村及御驾宫乡营里、御西、御中、庄头、寨子、九龙咀等村的防洪安全,使下游河道内耕地免受洪水威胁;灌溉方面,三岔河水库为当地2500亩农田提供灌溉生产用水,为当地农业增产及灌区农民脱贫致富奔小康发挥着重要作用。总之,三岔河水库综合效益显著。所以该水库对下游的防洪相当重要。

2.水库正常运行的需要。三岔河水库原设计总库容193万m3,有效库容110万m3,正常蓄水位926.0m。水库建于70年代,因工程设计标准低,施工质量差,且多年来工程管理和维护不到位,枢纽建筑物多处存在安全隐患,使水库一直带病低水位运行,没有发挥应有的工程效益。

3.满足工程安全运行的需要。三岔河水库属Ⅳ等小(1)型水库,主要建筑物4级,地震基本裂度为VI度。水库原按30年一遇洪水设计,300年一遇洪水校核,因水库属“三边”工程,工程建设标准低,质量差。现有坝体损坏严重,溢洪道因淤积造成泄洪能力不足,放水洞坍塌,放水设施失效,这些隐患给下游人口、耕地及公路交通带来潜在的威胁,严重影响当地农业、工业及交通运输业的发展。

4.水资源充分利用的需要。三岔河水库是永寿县很重要的农业生产的水利灌溉设施,给三岔河灌区0.25万亩农田提供灌溉水源。渭北地区缺水严重,为充分利用有限的水资源,保证三岔河灌区的农田稳产、高产,促进灌区经济发展和社会稳定,尽快实施三岔河水库除险加固是十分必要和紧迫的。

四、水库除险加固工程设计

(一)大坝加固工程

大坝加固工程主要包括排水棱体改建、坝顶加固、大坝上、下游护坡加固、坝面排水改建及左坝肩防渗处理等工程。

1.大坝下游坝体排水改建工程。由于原排水棱体部分掩埋并且淤堵严重,以失去功能,本次加固拆除原排水棱体在原位置新建排水设施。新建排水体顶高程905.69m,顶宽1.5m,为棱体排水,上游坡比为1∶1,下游坡比为1∶1.5。

2.大坝坝顶改造设计。实测坝中坝顶高程为929.07m,宽2.7m,本次经复核计算现状坝顶高程不满足防洪要求,为了降低工程造价本次设计不加高坝顶顶高,采用坝顶上游增设C25钢筋砼防浪墙,满足防洪需求。防浪墙顶宽0.3m,高0.9m,墙顶高程为929.97m。由于坝顶过窄,无法满足防汛抢险需要,如果仅是为了增加坝顶宽度采用培厚坝坡工程量较大,不经济。本次设计结合上游设置防浪墙,在下游侧设置M7.5浆砌石挡土墙,将坝顶加宽至3.5m。坝顶道路为3.5m宽泥结碎石路面,路面为15cm厚的泥结碎石,路基为12cm厚砂砾石垫层。

3.大坝上、下游护坡设计。本次设计在上游增设干砌石护坡,护坡下做砂砾石保护层。加固平整下游坡面,设草皮护坡,改建坝面排水渠。

4.左坝肩渗漏出口反滤设计。左坝肩坝后渗漏出口处增设砂砾石反滤层,保护渗漏出露点砂砾石层,提高稳定性。对出口处高程912.0m以上范围边坡削坡处理。912.0m~919.0m范围内做M7.5浆砌石护坡。护坡内填砂砾石反滤层厚20cm,底部间隔1.5m设φ50PVC排水管,渗水经排水管排入溢洪道。

(二)溢洪道改造工程

针对溢洪道目前存在的问题,改造内容如下:

1.清除溢洪道内原施工弃渣、弃土及塌岸堆土等;

2.对损毁的砌石边坡按计算高度重新砌护,对进口右岸的边墙延伸至坝侧。其余砌石段重新进行勾缝处理。

3.对陡坡段原砼底板和消力池底板进行加固处理,在原底板上加锚筋并浇筑30cm厚的C25钢筋砼,以提高抗冲能力。

4.对溢洪道左岸高边坡进行削坡治理。

(三)放水设施改建工程

1.卧管改造设计。本次改造仅对淤积高程925.00m以上卧管进行改造,卧管台阶高度由0.4m改为1.0m,共改造两级台阶,水平放水圆孔改为立式放水方孔,增设铸铁放水闸门及配套启闭设备。

2.输水洞加固设计。原放水涵洞采用块石砌筑,经多年运行,放水洞基本完好,但目前涵洞内局部存在破损、裂缝现象,本次加固拟采用M7.5水泥砂浆对裂缝封堵,然后表面抹平。对涵洞壁存在的裂缝用水泥砂浆封填处理,用水泥砂浆回填、压实、抹平。

(四)防汛道路改造工程

该防汛道路是在原有土基的基础上整修,全线长2940m。经复核原路线转弯半径等基本符合规范要求,所以整修道路基本维持原路线不变,仅对局部进行调整,最大纵坡不大于10%。路基宽度维持原路基宽度不变。路基宽度4.5m,路面宽3.0m,路面结构由两部分组成:泥结碎石面层(厚150mm)及级配碎石基层(厚120mm)。

(五)大坝安全监测工程

重新布设大坝变形监测网,增设大坝渗流观测,完善大坝相应的观测设施。

(六)工程管理

三岔河水库现由永寿水利局管理,共有管理人员5名,其中工程师1人,助工2人,技术员2人。根据水库管理人员编制规定,本次维持管理人员5人不变。

五、国民经济评价

水库加固改造后,保证了大坝的正常安全运行,经计算,年防洪减灾效益为46万元,灌溉效益为13.2万元;本工程的内部收益率为10.1%,大于经济基准收益率8%;经济净现值58.53万元,大于零;经济效益费用比1.10,大于1.0。可见实施本工程项目具有一定的社会效益,国民经济评价是合理的。

结束语

水库路基设计范文第5篇

关键词:库周道路,三原原则,低等级

Abstract: in order to realize the gorge water control project in the overall construction lechang goal, coordinate with reservoir resettlement in the submerged area of the work, according to the general command gorge lechang construction requirements, the library weeks as emergency special project road, following the principle of extrattrestrial "to carry on the design, design standards for mud stone pavement simple road cycling trails. This article through the library weeks road design process generalizations, low level of road design points are discussed.

Keywords: library weeks road, the principle of extrattrestrial, low level

中图分类号:TV文献标识码:A 文章编号:

1引言

乐昌峡枢纽水库的正常蓄水位为154.5m高程,比蓄水前的武江天然水位壅高五十多米。故水库蓄水后,水库左、右岸的大部分现有道路将被淹没或受淹没影响。库周沿线为林场,零星分布有村庄、小学、小水电、武警部队驻地、电力与通讯设施等,库区两岸的现有道路是当地群众生活、生产与交通出行的主要陆路通道,另外,库周沿线布置有管埠集中安置点、白鸡滩集中安置点及许多分散的移民安置点,移民安置点的施工设备、建筑材料运输与移民搬迁等也需利用该库周道路。尤其是施工围堰挡水后,10年一遇洪水淹没线以下的库区移民必须提前搬迁。水库蓄水前,为了便于主体工程施工使用,并有利于按期完成移民的搬迁安置工作,减少因淹没道路而需对部分移民进行额外搬迁安置;水库蓄水后,便于两岸居民的交通出行,便于库区客运、木材运输、汛期防洪抢险的交通使用,便于当地的社会经济协调发展,因此对水库蓄水淹没区的库周道路进行新建或垫高恢复并尽早建成交付使用是非常必要与迫切的。

2设计要点

水库蓄水后,左岸的京广旧铁路、大源镇、大源镇至大长滩简易道路大部分路段、从九峰水口附近至坪乐公路的部分机耕路及其它零星分散的机耕路与连接便道将被淹没或受淹没影响,需进行道路恢复;右岸从坪石镇至乐昌市沿武江边的永新路大部分路面高程低于淹没线,也需进行道路恢复。

2.1库周道路建设内容

结合水库蓄水后的淹没外包线,经过前期对原有交通现状的详细勘查,由于沿武江两岸地形陡峭、条件局限,路线基本是沿两岸山坡布置,方案较为单一,路线位置可基本确定下来。

库区左岸:新建库周道路总长26.824km;

库区右岸:新建库周道路总长42.438km。

新建桥梁:左岸大长滩中桥(48m);右岸年九坑中桥(32m)、洪源中桥(48m)、太坑河中桥(80m)、庙坑河中桥(60m);连接左右两岸的新秦过江大桥(165m)。

2.2选线原则

新建道路拟定路线时主要考虑以下几条原则:

(1) 应满足库区居民生活、生产及防汛抢险的要求,尽量结合移民安置点布置,有利于道路的布置与衔接;

(2) 充分利用地形、地势;

(3) 选择地质稳定、水文地质条件好的地带通过,尽量避开软基、泥沼、排水不良的低洼地等不良地段;

(4) 路线总里程较短、地形坡度较平缓、转弯舒顺;

(5) 尽量减少环保方面的不利因素;

(6) 尽量避免大开挖,尽量减少弃渣,避开高边坡等地段,减少水土流失。

2.3设计标准

根据《水利水电工程建设征地移民设计规范》(SL290-2003)及《公路工程技术规范》(JTG B01-2003),结合日常交通量、行车安全、经济等因素以及当地实际情况,对受淹没影响的库周道路,按原道路标准(为单车道简易道路)进行恢复:

(1) 原路面高于淹没线的路段,仍然保留,并考虑库周道路施工期间的维修养路费用;

(2) 原路面淹没路段,在淹没线以上地带重新布置新建道路,路面结构采用厚20cm的级配碎石垫层与厚20cm的泥结石路面,行车道路面宽3.5m,路基宽4.5m,靠山坡侧增设边沟、另一侧设置柱式C25砼护栏;

(3) 根据现场地形每隔300m左右设置一处错车道,错车道的泥结石路面宽6.0m,路基宽7.0m,错车道长度为30m,并选择有利地点设置回车场。

汽车荷载等级:公路-Ⅱ级。

路基设计洪水频率:参照《公路路基设计规范》(JTG D30-2004)的规定,库周道路的路基及桥涵设计洪水频率为20年一遇,库区新秦过江大桥设计洪水频率为50年一遇。

2.4线型设计

(1)平面线型:按照路线设计规范,根据平曲线半径与超高值的关系来设置平曲线的超高值。

按公路等级,路面采用第1类加宽标准设置加宽值。

本路线超高缓和段长度与加宽缓和段曲线长度一致。

(2)纵面线型:纵断面拉坡及横断面设计过程中,注意控制土石方的挖填平衡,发现局部路段挖填方过大,则重新调整路线平面、纵断面,力求设计过程中挖填土石方尽可能平衡。

2.5路基边坡设计

路堑挖方边坡:由于沿线山坡地形较陡,大部分坡度陡于1:1,因此新建道路均采用路堑形式。根据地质情况,按岩体风化程度不同来选取相应的边坡值。弱、微风化坚硬岩质边坡采用1:0.3;强风化岩质边坡采用1:0.5,对特殊路段采用挂网锚喷混凝土护坡加固措施。路堑土质边坡一般采用1:0.5,对特殊路段采用挂网土钉喷混凝土护坡加固措施。若边坡地质条件差时,适当放缓至1:1进行开挖。挖方边坡高度大于10m时,采用分级边坡,第一级边坡高度为8m,其余每级均为10m。如果第一级边坡岩性为硬质岩时,第一级边坡高度可为10m~12m。每级之间设一边坡平台,一般边坡平台宽为1m,但边坡高度超过20m时,边坡平台宽为2m。

路堤填方边坡:填方边坡根据路基填料种类、地形等条件而定。低填方路基(≤8m)边坡坡比采用1:1.5。在地面横坡陡于1:5的填方路段,做内倾2%的台阶处理,台阶宽度不小于1m。地面横向坡度较陡路段在路堤下方设置挡墙,其中涵洞则与挡墙结合。

2.6路基防护

(1)路堑挖方边坡防护:

对于路堑挖方高边坡,采用分级边坡防护。根据边坡岩土性质、坡比及坡高情况,对岩质边坡较陡且岩石较破碎的特殊路段,进行挂网锚喷混凝土护坡;对土质边坡的特殊路段,采用挂网土钉喷混凝土防护或砼框格护坡。局部出现黄粘土滑坡段采用M7.5浆砌石挡墙支护。边坡高度超过20m时,边坡平台宽为2m。

(2)路堤填方边坡防护:

对于路堤填方边坡,在正常蓄水位154.5m高程以下边坡坡面采用浆砌石护坡进行防护,154.5m高程以上边坡坡面则采用植草或铺草皮防护。

2.7桥梁设计

库周道路沿线的中桥,按照路线走向结合实际地形布置,桥梁法线尽量与水流方向平行,并且在满足过流前提下使跨度尽量最小,以达到经济的目的。为了尽可能利用标准图集的设计资料,各中桥采用标准化跨径进行设计。为了节省投资,中桥采用预应力砼简支空心板桥与桩柱式墩台的结构型式。按规范要求,桥梁设双车道,全桥宽7.5m =6.5m(桥面净宽)+2×0.5m(护墙宽),不设人行道,桩基采用嵌岩桩。具体设计为:左岸大长滩中桥为3跨16m、右岸年九坑中桥为2跨16m、洪源中桥为3跨16m、太坑河中桥为3跨16m、庙坑河中桥为3跨20m的预应力砼简支空心板桥。中桥的结构型式安全耐用、施工方便、景观协调。各中桥采用统一的结构型式还能大大提高设计效率。

经过水文、地质、河道断面等多方面综合考虑选定桥址以及多方案论证比较后,确定新秦过江大桥主桥上部结构为三跨现浇预应力混凝土连续刚构桥,全桥跨径组合为45m+65m+45m,加上右岸现浇空心板连接跨10m共长165m(不含桥台搭板长)。在桥台处各设一道仿毛勒式D120型伸缩缝。桥宽8.5m,为单箱单室结构。下部结构主墩采用双肢薄壁墩身,墩高40m,墩身截面采用矩形截面,肢距320cm,单肢墩身纵桥向宽80cm。

桥面布置:桥面设双车道,桥面净宽为6.5m =2×3.0m(行车道宽)+2×0.25m(侧向宽度)。桥梁两边各加1.0m宽的人行道,人行道高出桥面0.48m。桥梁全宽8.5m=6.5m(桥面净宽)+2×1.0m(人行道),设置双车道。

桥面纵坡和竖曲线指标:纵断面为平坡。

桥面横坡:由桥面铺装形成1.5%双向横坡。

桥面高程:根据通航水位、桥下净空与梁高,并考虑受风浪的影响,中心桥面高程为166.0m。

新秦过江大桥结构外观优美、接缝少、刚度大、变形小、自重小、整体安全性好、抗震能力强、行洪通航条件好、施工占地少、施工方法先进、施工工艺成熟、工期有保证、投资少等优点。

2.8涵洞设计

沿线根据集雨面积与汇流量大小及实际情况设置钢筋混凝土圆管涵、盖板涵或箱涵,涵洞出口尽量高于水库蓄水位以保证涵洞排水顺畅,因此大部分涵洞基础需在回填方上进行施工。要求基础部分采用石渣进行填筑并分层碾压密实至设计高程。涵洞出口至填方坡脚的坡面采用浆砌石进行防护以保证路基的稳定。若设置涵洞的冲沟不是太深,则设置路肩挡土墙与涵洞进行结合防护。

3结语

水库路基设计范文第6篇

关键词:铁路选线;工程选线;技术进步

中图分类号:X731文献标识码: A

前言:随着铁路路网覆盖率的逐渐扩大,各种复杂困难的工程设置条件和环保理念的贯彻对铁路选线提出了更高的要求。铁路各类工程修建技术的发展水平与线路方案的选择密切相关。一方面,线位的选择直接影响工程总量,进而影响项目的整体投资和社会经济效益;另一方面,各类工程的当前修建技术水平决定了该项工程的修建难度与可实施性,反过来影响线路方案的合理性。因此,通过实例对两者之间的相互影响进行分析,有助于准确把握铁路工程选线的科学性和合理性、提高选线工作效率。

1、兰新铁路天山隧道群历次选线思路变化

1.1兰新铁路基本概况

兰新铁路东起甘肃省兰州市,西至新疆维吾尔自治区乌鲁木齐市,后延伸至阿拉山口,全长2000余km。该线始建于20世纪50,60年代,90年代初实施了增建二线工程,进入21世纪以来,又分段实施了提速改造工程。其中大山至达坂城段线路通过大山白杨河峡谷,峡谷间沟谷发育,地形条件困难,工程量较大。由于历次工程建设年代跨度较大,其线路位置的选择和工程设置差异明显,集中反映了不同时期的选线理念和工程修建技术特点,具有较普遍的代表性。图1为白杨河峡谷区(局部)各时期线位与工程设置变化示意。

1.2I线选线方案及存在问题

I线于1962年建成,其线路最小曲线半径为300m。线路蜿蜒于沟谷间,以总长度4458m的12座短隧道穿越峡谷。限于当时修建技术水平,各隧道长度基本不超过1000m;跨越沟谷间也主要以高填深挖的路基工程通过,没有一处采用桥梁工程;甚至为节省建筑材料,在跨越2条冲沟处,仅设置了1座片石混凝土拱涵。该线建成后,存在隧道偏压、雨季排水不畅、钢轨磨损和道床变形等问题,造成运营部门需长期投入大量人力、物力进行养护维修和监测。以当前的设计理念来衡量,本段采用的线路方案是十分不合理的。但机械设备短缺、隧道施工进度慢、通风难,桥梁设计施工体系不完备、施工难度大,钢材、水泥等建筑材料极度匾乏是当时真实外部环境的体现。在如此简陋的技术条件下,I线的选线最大限度地降低了工程建设的难度,节省了稀缺的建筑材料,有效控制了工程投资和工期,实现了工程技术水平与选线的合理结合,及时解决了新疆与内地没有铁路通道的问题。因此其选线与工程设计实际上是一个成功的范例。

1.3II线的选线和工程设置

II线工程于1995年建成。经过30余年的发展,普通桥梁的修建技术已很成熟,不再成为选线的制约因素,钢材、水泥等建筑材料供应也较为充足。虽隧道修建的机械化程度有了明显提高,但长隧道施工、运营通风技术仍处于探索阶段,工程投资也较常规桥梁高,限制了长隧道的普遍使用。II线选择在I线左侧(靠河侧),仍以12座短隧道(总长度计5002m)穿过峡谷左岸山区,跨越沟谷不再采用高填路基工程,转而采用桥梁工程,同时得益于隧道工程技术在处理偏压、浅埋等方面的进步,隧道位置选择有更大的自由度,线路最小曲线半径增大至400m。由于各类工程修建技术的进步,II线的线路条件较I线有较大改善,建成后基本未发生各类病害,桥涵、隧道、路基等固定设备技术状态良好,运营养护成本明显降低。因此,选线设计很好地平衡了各类工程的技术难度、工程数量和工程投资,满足了当时经济发展对提高兰新铁路运输能力的要求。

1.4 提速改造

提速改造工程于2006年建成通车。提速改造平面最小曲线半径加大至2800m,线路位置选择在I线右侧(靠山侧)通过,以连续3座总长度计8879m的双线隧道穿越山体,其中最长隧道达4002m。3座隧道之间以15m以下高度的填方路基通过,并设大孔径涵洞排水。线路标准和各项工程可靠性得到了很大的提高。在线路允许速度从70一80km/h提高到200km/h的同时,明显降低了运营养护费用,实现了运营质量和效益的同步提高。

2、青藏铁路关角隧道选线变化情况

2.1 既有线现状

青藏铁路西格段东起青海省西宁市,西至格尔木市,全长800余km,是目前青藏高原对外联系的唯一铁路通道。20世纪50一60年代开始分段修建,历经26年于1984年建成通车,90年代末分段进行了提速改造,之后又实施了增建二线工程。其中天峻至乌兰段线路通过关角山,高山及山麓边缘丘陵地带沟谷发育,且北西向中吾农山―青海南山断裂带在关角隧道附近穿越线路,对工程影响较大。由于越岭地段落差达320m,为争取高程,线路选择主要以隧道工程通过关角山,不同时期隧道长度的设置具有较典型的代表性。既有线最小曲线半径为300m,线路以总长度计5044m的6座中、短隧道穿越峡谷,仅关角隧道长4010m,其余隧道基本不超过400m;桥梁工程以8m长梁桥为主,未采用24m以上大跨度桥梁工程;同时为节省投资大量利用回头曲线进行展线,以低填浅挖的路基工程通过。

2.2增建二线工程的改进

增建二线工程于2008年开工建设。二线工程在既有线左侧以2座长32.605km的单线隧道取直穿越关角山,不再采用展线方式适应地形。该隧道建成后将成为世界最长的铁路隧道。由于长大隧道施工技术的成熟和运营通风、排水技术的完善,不再控制选线,隧道长度的设置有了更大的灵活性。

3、兰合铁路跨越刘家峡水库桥梁结构形式的采用

3.1总体情况

兰州至合作铁路是连接陇海、西宁至成都铁路通道的重要组成部分。线路全线位于甘肃省境内,行经兰州市、临夏回族自治州和甘南藏族自治州,地处黄土高原与青藏高原的过渡地带,地震烈度为8度区,地形、地质条件复杂且差异性较大。其中永靖至考勒段线路需跨越著名的刘家峡水库,两岸滑坡、坡面溜坍、水库坍岸等不良地质发育,桥梁工程艰巨且技术难度大,属复杂、艰险山区,选线难度很大,故对跨越刘家峡水库段线路方案进行了研究。

3.2跨越水库桥梁形式的选择

根据勘察,桥位处因长期的水流切蚀,水库水位的升降,岸坡松散物质被水流带走,而坚硬的岩石不易风化,多部地段风化厚度较小,部分坡脚新鲜岩石出露。经历了长期的地质构造、地震、风化等作用,水库建成40多年来,坚硬岩石形成了陡立的岸坡,岸坡基本稳定。位于刘家峡水电站大坝上游4.2km、距挑河入河口2km处的折达公路桥资料显示,该处谷底最低约为1622m,水库蓄水后,库底已淤积到约1690m的高程,淤积高68m。桥址处受刘家峡水库库区回水影响,水中设墩施工难度很大,跨越库区桥梁以单孔一次跨越为宜。经过对主跨桥梁结构形式多方案比选论证,主桥采用100m+180m+100m连续刚构,主墩墩高达105m。该桥建成后将是我国单线铁路高烈度地震区最大跨度连续刚构桥,桥式受力合理、新颖美观且易与桥址周围环境融为一体。

4、结束语

由兰新铁路大山隧道群选线的普遍性及青藏铁路关角隧道、兰合铁路跨越刘家峡水库选线的典型性可见,铁路工程选线和工程修建技术水平是相辅相成的。工程选线一般应尽量考虑不同时期各类工程技术的水平,在保证实现铁路运输功能的前提下,尽可能平衡线路条件、工程条件、工程造价、建设工期、建筑材料等各方面因素,以安全可靠为原则,保证项目顺利建成。为保证线路方案的合理性,铁路专业设计人员应积极了解掌握各类工程技术的最新发展和变化,确保各项工程具备可实施性。

参考文献:

[1]中华人民共和国铁道部.铁路技术管理规程「S].北京:中国铁道出版社,2006.

[2]中华人民共和国铁道部.铁路主要技术政策「S].北京:中国铁道出版社,2013.

水库路基设计范文第7篇

关键词:双峰寺水库 ;移民 ;安置规划 ;生产安置 ; 搬迁安置

Abstract: considering the flood and water influence factors, reasonably determine the inundated area of the Shuangfeng Temple Reservoir, according to the survey results, based on environmental capacity analysis, put forward the feasible resettlement planning, to ensure the smooth implementation of the project, Tuo Shanan created the conditions of immigrant

Keywords: Shuangfeng Temple Reservoir; resettlement; resettlement; resettlement; resettlement

中图分类号:D632.4文献标识码:A 文章编号:2095-2104(2012

双峰寺水库位于河北省承德市境内滦河一级支流武烈河干流上,距下游承德市区约12km,是一座以解决武烈河流域和承德市防洪为主、结合城市供水兼顾生态环境及发电等综合利用的大(Ⅱ)型水利水电枢纽工程。坝型为碾压混凝土重力坝,设计洪水标准100年一遇,校核洪水标准2000年一遇。水库死水位382.0m,正常蓄水位389.0m,设计洪水位392.5m,校核洪水位395.11m。水库死库容0.34亿m3,兴利库容0.45亿m3,防洪库容0.47亿m3,总库容1.373亿m3。

水库枢纽工程主要包括拦河坝和电站等,其中拦河坝由非溢流坝段、溢流坝段、底孔坝段和电站坝段组成。拦河坝主要由左岸非溢流坝段、电站坝段、底孔坝段、溢流坝段和右岸非溢流坝段组成。拦河坝坝顶高程396.1m,坝顶宽度7.0~15.0m,坝顶全长533m,最大坝高51.1m。

双峰寺水库淹没涉及承德市双桥区的1个镇、8个行政村、47个村民小组。淹没线下居住人口2065户、6084人。

1 水库淹没处理范围

1.1 确定水库的淹没处理范围考虑因素

水库淹没影响范围包括水库淹没区和因水库蓄水而引起的影响区。水库淹没区包括水库正常蓄水位以下的经常淹没区和水库正常蓄水位以上的受水库洪水回水、风浪、船行波、冰塞壅水等临时淹没区,水库的影响区包括孤岛、浸没、坍岸、滑坡等蓄水影响的区域。

双峰寺水库淹没处理设计洪水标准依据行业规范确定,耕地、园地采用5年一遇设计洪水标准,农村居民点、一般城镇和工矿区采用20年一遇设计洪水标准,林地、其他土地采用正常蓄水位,铁路、二级公路采用50年一遇设计洪水标准。

经回水计算,库尾回水曲线低于于同频率天然洪水水面线0.3m,根据《水利水电工程建设征地移民设计规范》(SL—290—2009)的规定,采取水平延伸至与天然水面线相交尖灭。因水库库周不同位置的风向、风速等影响因素不同,选取库周沿岸四个不同位置按《水利水电建设征地移民安置规划设计规范》对于库周沿岸四个不同位置,风浪爬高计算值均小于规范规定的耕、园地征用界线超高下限值0.5m,因此土地征用线采用0.5m超高。

对回水影响不显著的坝前段,由于正常蓄水位持续时间较长,水面宽且水深,考虑水库调度运用、库周居民生产生活安全等因素,按有关规范规定居民迁移线采用1.0m超高。

水库蓄水引起的浸没、塌岸、滑坡等影响区根据地质勘察成果确定。结合河北省地质矿产勘查开发局第四地质大队编制完成的《承德市双峰寺水库建设项目地质灾害危险性评估报告》,并结合现场实地查勘后分析,水库区不存在浸没、塌岸、滑坡等地质灾害问题。水库蓄水引起的其他影响区还包括岩溶洼地出现库水倒灌、滞洪内涝而造成的影响范围;水库蓄水后失去基本生产、生活条件的库周地段、孤岛和引水式电站水库坝址下游河道影响地段;移民迁移线以上的零星住户,因户数过少,受水库淹没影响后交通难以恢复或生产生活条件明显恶化,必须搬迁安置的人口。

1.2 水库淹没影响处理范围

(1)耕地征用范围:坝前正常蓄水位加0.50m超高,接超过389.5m的五年一遇回水线以下陆域;

(2) 居民点及工矿企业范围:坝前正常蓄水位加1.0m超高,接超过390.0m的二十年一遇回水线以下陆域。

(3)林地、其他土地采用正常蓄水位:正常蓄水位389.0m回水线以下陆域。

(4)铁路、二级公路范围:坝前正常蓄水位加1.0m超高,接超过390.0m的五十年一遇回水线以下陆域。

2 水库淹没调查

2.1水库淹没调查工作过程

为了保证双峰寺水库工程淹没(影响)实物调查工作顺利完成,成立了由主管副市长牵头的实物调查领导组织机构,分别成立了领导协调组、综合协调组、后勤保障组、安全保障组、7个农村调查组、专业项目调查组、土地专项调查组等14个调查组。调查组工作人员由我院(水利部河北水利水电勘测设计研究院)、承德市水务局、承德市双桥区物价局价格认证中心、承德市公证处、承德市国土资源局、承德市林业局、承德市公安局双桥分局、双峰寺镇政府及所属8个行政村等单位人员组成的联合调查组,对库区的淹没及工程占地实物指标进行了全面的调查。

2.2 水库淹没调查成果

涉及承德市双桥区的1个镇、8个行政村、47个村民小组。淹没线下居住人口2065户、6084人(农业人口5989人、非农业人口95人)。

房屋面积211934m2,其中砖混结构房屋96471m2,砖木结构房屋81239m2,土木结构房屋7238m2,偏房15651m2,杂房2042m2,其他房屋9293m2。

附属设施包括围墙28304m3 (含花墙)、护栏2711m、大门3943m2、门楼917个、影壁墙33.6m3、厕所1345个、月台39695m2、附属房6817m2、台阶2473m2、硬化地面99225m2、猪圈3419个(除此之外还有9426.3m2不重复)、棚子18240m2及其他附属建筑物。双峰寺水库淹没土地13273.1亩,其中农用地10286.6亩(耕地9078.4亩,园地51.1亩,林地962.4亩,其他农用地194.7亩),建设用地1280.8亩,未利用地1705.7亩。零星树木78.76万棵,其中果树48.03万棵,一般树木30.73万棵。地上附着物包括日光温室64674m2,冷棚73827m2,大棚103282m2,水井830眼,灌溉管道1523m,井房7198m2,鱼塘81.0亩。

水库路基设计范文第8篇

不良地质现象、气候条件及第四纪地质各种不良地质现象和特殊地质问题如滑坡、泥石流、软土、崩塌、冻土等会给交通线路的合理布局、工程设计和施工带来很大困难,对建筑物稳定性和正常使用造成较大危害,甚至威胁到人类的生命安全。气候条件是不可轻视地质环境因素,常常直接影响水文地质条件,并间接影响地貌条件。第四纪沉积物的成因类型等等是影响交通线路建设稳定性的重要因素。地震作用及人类活动强烈地震破坏性非常大,但诱发的一些不良地质造成比地震还要严重的损失,根据沿线地震基本烈度的区划资料结合相应的地质环境设防,从则采取相应的防震措施。人类在交通线路施工和运营中进行开挖、填筑、弃石堆土等活动,破坏了地质环境。

交通线路建设最常见的环境地质问题及预防方法

1路堑边坡的稳定问题

在交通线路建设中,由于开挖路堑与平整路基,易崩滑的软弱岩层和断裂构造分布地段在丰水期常常发生崩塌、滑坡,破坏原有边坡的稳定,产生交通线路的“病害”。在勘察设计中要对路线走向、控制地点、沿线地形地貌地物、地质条件有充分的认识和了解,尽量避免线路经过可能崩滑流地段,还要采取适当的调控手段,发挥地质环境因素的综合效益。调控可分为主动调控(预先调控)和被动调控(事后应会调控)。在实际工作中,应以预控制为主,具体防治措施包括避绕、加固、保护和综合治理,如采取浆砌片石护坡、混凝土护坡、抛石护坡、石笼护坡,或修建浸水挡墙、修建扩面墙和挡土墙等,使边坡基本稳定,保护了路堑,交通畅通。

2路桥地基的稳定问题

地质条件影响路桥地基的稳定性,关系到交通线路的路线选择,是影响路线选择的重要因素,有时甚至是控制性因素。如桥位的选择要考虑河道顺直、河床稳定的地段,避开有沙洲、急弯、主支流汇合的地段。在岸坡稳定、地基条件良好无严重不良地质现象的地段,应选择在冲积层较薄、河底基岩坚硬完整的地段。还应避开顺河方向及平行桥梁轴方向的大断裂,同时还要注意水文地质环境变化。

3青龙山水库淹没区铁路改线工程地质问题及相应对策

青龙山水库位于穆棱河上游,下游距鸡西市12km,是穆棱河干流上大型控制性水利枢纽工程。该水库将淹没城鸡线铁路干线23.9公里,影响8.1公里,因此部分铁路需要搬迁。需要改线的范围是石磷车站到鸡西西场段。改线经过地区右侧为丘陵地带,左侧为穆棱河河床,漫滩及阶地,地势呈西南高而东北低的趋势,既有线和改建线主要位于右侧山坡坡面上。根据调查和区域地质资料分析,沿线出露的地层有:第四系全新统冲积层、洪积层、坡残积层,岩性为粉质粘土、粉土、砂、砂砾石、泥炭及混合土;白垩系下统猴石沟组砂岩、砾岩夹页岩等;侏罗系上统穆棱组砂岩、粉砂岩夹凝灰岩、泥岩和煤层等;元古界麻山群柳毛组斜长片麻岩,混合岩夹石墨片岩,大理岩等;元古代斜长花岗岩。线路通过区域大地构造单元属新华夏系老爷岭隆起带;本段地质构造主要表现为褶皱和断层,褶皱有龙山复式向斜和鸡西向斜,断层主要有柳毛断裂,该断裂位于柳毛乡北约1Km处,与铁路走向几乎正交。沿线地下水主要为穆棱河河漫滩及阶地地区的第四系孔隙潜水和丘陵地带基岩风化壳及裂隙中的基岩裂隙水,主要受大气降水补给。改线范围的地震动峰值加速度为0.05(g地震基本烈度Ⅵ度)。水库地区路基右侧为丘陵地带,左侧为穆棱河,可能发生边坡坍塌、地基湿陷、浸水路堤沉落、浸水路堤失稳及岸坡破坏等病害,并同时可能伴有地区特有的其它工程地质问题。在设计之初就查明可能出现的工程地质问题并采取相应对策,将防患于未然。改线主要工程地质问题及对策:设计线路多处以挂线方式通过该区域,其路基处于右岸山坡上,由于山体自然平衡的破坏,可能形成崩塌。根据其地形地貌、岩性、构造及水文条件等综合分析,可能会产生小型的崩塌落石。可修建落石平台、拦石墙等进行拦截;对于小块落石也可用钢钎栅栏、落石网防护;对易风化剥落的岩体表面可以喷浆、抹面,边坡陡时可修护墙;对张开裂隙、空洞进行镶嵌、灌浆、勾缝、锚栓加固;并根据地表径流情况布置排水建筑物。线路方案依山傍河,多为库岸路基。分别按岩质及半岩质岩层作坍岸预测,结合相似工程经验。线路宜设于坍岸线外一定距离;条件不具备时,应采取相应库岸防护措施如片石护坡、堆石、修建浸水挡墙等。岸坡破坏的防治应与坍岸防治共同考虑,如采取浆砌片石护坡、混凝土护坡、抛石护坡、石笼护坡,或修建浸水挡墙等。路堤,一侧临水,一侧傍山,由于库水位的升降而产生渗透压力和冲蚀作用,这种由于水头差引起的渗透压力和冲蚀作用是影响浸水路堤稳定性的主要因素。浸水路堤的填料宜选用渗水性好、水稳性高的岩块或粗粒土。不能用黄土、半岩质岩块等可发生浸水沉落的填料填筑浸水路堤。

水库路基设计范文第9篇

关键词:水土保持 ,生态防护墙, 可持续发展

Abstract: in the steep mountain terrain excavation subgrade construction, the ecological protective wall protection measures can effectively prevent soil erosion and vegetation protection and achieve rapid construction reduced. Ecological protection wall combined with natural law of development, anchor stability by steel fence way the natural plant roots into the consolidation of ecological bag wall with nets consolidation, sustainable development is the construction technology.

Keywords: soil and water conservation, ecological protection wall, sustainable development

中图分类号: TU74 文献标识码: A 文章编号:

重庆巨能建设(集团)有限公司承建的重庆市酉阳县钟渤快速通道工程全长20多公里,双幅双向8车道,总工期为30个月。该工程8号进场便道K0+180~K0+760米段,位于319国道龙潭水库位置对岸植被茂密的陡坡上,原地貌横坡在70°左右,便道设计宽度4.5米,大多属半挖半填路基,其中有360延米浆砌片石衡重式下挡墙。由于受地形条件限制,如不采取其它辅助措施按设计施工,路基开挖及挡墙施工只能交替逐步推进施工,按10天抢工完成10延米路基开挖及挡墙施工,至少需1年完成,将严重影响主线控制性工程的工期。龙潭水库是一级生态保护区,是龙潭镇居民生活用水和水库下游农田灌溉的取水地。县委有关领导、业主及环保部门多次开会强调:施工该段便道时,必须先制定好有效的水保施工方案才允许开工,坚决制止野蛮施工,不允许土石掉入库区减小库容,便道与水库之间的植被必须保护完好,防止库区周围水土流失及水质污染。8号进场便道服务的主线工程有花山1、2、3、4号大桥、花山1号隧道以及约1.5km路基工程,其中花山1、3号大桥为双幅连续刚构,花山1号隧道(全长约150米)贯通后开始施工花山4号大桥(全长约207米,为连续刚构结构),工期非常紧张,上述单位工程成为本快速通道工程项目工期控制性工程。鉴于上述存在困难,8号进场便道的快速、环保施工方案显得至关重要。

1 常见的施工防护方式及其不足之处

常见防护方式是采取搭设钢管脚手架结合竹跳板或竹胶板封闭形成防护墙,但如用于本工程施工存在以下不足之处:

1.1 在坡度较陡地段,稳定性难以保证,极易被土石冲击倒塌,防护失效;

1.2该防护墙为临时防护措施,需拆除。路基开挖施工完后,防护墙内掉落土石量必大,若采取人工清除,清除工作量大,且由于防护墙稳定性差,安全威胁大,若采取挖掘机清除,易将本就稳定性差的防护墙挤压推倒,防护作用失效。

1.3由于防护效果差,且防护墙拆除后防护墙与道路之间区域的植被已被破坏,路基下边坡植被必破坏殆尽,库区周边必将存在严重的水土流失隐患造成植被恢复困难形成恶性循环,后期处治成本高、难度大。

若采用上述施工方式,将严重违背我国日益加强的水环保意识和法律法规要求,也未达到快速施工目的。

2 生态防护墙目的、工艺及优点

2.1 生态防护墙的目的

生态防护墙施工方案必须达到:(1)水保、植被保护目的:防止土石掉入水库,保护路基下边坡植被完好,防止库区周围水土流失及水质污染;(2)缩短工期;(3)路基至防护墙植被破坏后的恢复。

2.2 生态防护墙工艺

主要施工工序:人工挖掘灌木——测量放线——安装钢栅栏——钢栅栏锚固——生态袋装种植土——堆码生态袋——植物种植

2.2.1人工挖掘灌木:人工挖掘路基红线内及路基下边坡3米范围内灌木,灌木树干及根系尽量保护完好并妥善堆放,不允许扔入库区,更不允许焚烧。

2.2.2测量放线:钢栅栏钢管立柱基础设置在路基下边坡约3米处,测量放线撒灰线确定钢管基础位置。

2.2.3安装钢栅栏:人工挖掘施工人行道路及钢管立柱基础表土并暴露出完整基岩。人工挖掘施工时,及时将种植土装入生态袋。采用小型钻机(俗称“水磨钻”) 在钢管立柱基础位置钻孔,孔径150mm,孔深0.6米(嵌入完整基岩深度)。在孔内安装长约4.5米(根据开挖防护要求高度确定)的φ108×6mm的镀锌钢管作为钢栅栏主要受力的立柱,间距2米,孔内用C15细石砼浇筑密实。

2.2.4钢栅栏锚固:在距钢管顶部约1/3的位置处,用2根与水平方向约20°左右夹角平面呈“人”字形的Φ22锚杆焊接锚固,锚杆锚入基岩约2米左右,用M10#砂浆灌密实。立柱纵向用L40×40×5mm的角钢焊接联接,间距0.6米,竖向用Φ16mm钢筋焊接,间距0.33米,形成钢栅栏。钢管、角钢焊接过后镀锌层被烧蚀的部位以及钢筋、锚杆均需作防锈处理。

生态防护墙示意图

2.2.4生态袋装种植土:生态防护墙主要依靠生态袋的特性来实现的。生态袋是采用高分子聚丙烯及一系列辅料复合材料制成,具有耐腐蚀性强、抗微生物降解、抗高温(150℃)、低温(零下50℃)、抗紫外线、抗老化、无毒、不助燃、裂口不延伸等特点,并永不降解,真正实现了零污染。其网孔状结构为植物根系提供了无障碍的生长通道,同时其具有透水不透土的功能,既能防止袋内种植土流失,又能实现水分在土壤中的正常交流,植物生长所需的水分得到了有效的保持和及时的补充,使植物能通过袋体自由生长。施工时就地人工挖掘种植土装入生态袋内,保持原生态生长条件,以利植物生长及降低施工成本。所有生态袋均需人工装袋并必须确保生态袋是完全地被填满,用扎口带将袋口捆扎可靠,人工搬运。

水库路基设计范文第10篇

关键词:水口庙水库大坝出险加固

水口庙水库是重庆南川区北部山区一座以农田灌溉为主,兼有防洪、养殖等综合利用功能的小(二)型水利工程,位于南川区黎香湖镇东湖村水口庙,所在河流属长江水系油江河上游黎香溪支流。水库控制集雨面积1.65km2,总库容81.9万m3,正常库容65.3万m3。水口庙水库建设的任务是灌溉白沙镇的农田。水库枢纽由大坝和放水涵(卧)管等建筑物组成。枢纽工程等别为Ⅴ等,主要建筑物为5级,设计洪水标准为20年一遇,校核洪水标准为200年一遇,次要建筑物为5级。

该库建造在特定年代,1957年动工兴建,完全采用人工土法施工修建,1958年6月竣工,投入运行以来,枢纽工程相继出现了较多问题。

一、工程现状

1、大坝

水口庙水库大坝为均质土坝。工程于1957年破土动工,在无设计资料、地质勘探资料的情况下,由土溪乡组织受益公社农民以“大突击”方式于1958年6月完成此工程。完成最大坝高14.26m,坝顶长57m,坝顶宽3.5m,坝顶高程为798.26m。上游边坡为1:1.5,下游坝坡设有变坡,坡比从上至下分别为1:1.5。下游坡面为草皮护坡,运行至今大坝存在一些问题:a、上游坡面冲刷严重,无坝面排水设施和观测设施,上、下游坝坡较陡,有白蚁危害。b.大坝浸润线逸出点较高,坝体填筑压实不均匀,坝体土料渗流系数较大;坝基清基不完善,坝体与坝肩的结合部漏水严重。c.大坝上游未做护坡、没有建立大坝原型观测设施,无坝坡排水设施。

2、溢洪道

当时没有进行设计直接修建的,没有考虑到大坝的泄洪量,因此该大坝没有设置溢洪道,到现在为止,该大坝不能满足永久泄洪的要求。如果发生洪水,光靠取水建筑物放水,是不能保证大坝的安全的。

3、取水建筑物

放水设施位于大坝左岸,由放水涵卧管组成,为阶梯式盖板闸分层取水,放水孔直径2×0.25m,最大放水流量0.16m3/s。放水卧管有横向裂缝1处,涵管由于年代已久,没有进行修复,导致很多地方都出现漏水现象。

4、水库管理房已成危房

工程管理房属危房,进库4.0km的防洪抢险公路不畅,无防洪通讯线路。

5、大坝枢纽缺乏必要的安全监测设施

二、分析病害的原因

一是工程是在特定的年代修建的,大坝工程开工时没有规范的设计,水库修建靠组织村民土法施工,没有专业施工队伍,工程建设随意性大,施工质量难以控制,埋下诸多安全隐患。如坝体单簿,坝顶宽度不够,大坝上、下游边坡较陡,未进行护坡处理,没有达到设计要求;在施工过程中坝肩(基)清基不彻底,土料填筑质量较差,岸坡岩层软弱风化引起左坝肩及坝体有渗漏水;无溢洪道,造成不能正常泄洪;坝区有白蚁危害,危及大坝安全。二是工程年久失修,老化病害严重。如放水设备涵(卧)管因年久失修、设备老化,修建时未置于基岩上,加之砌体砂浆标号过低,导致砌缝砂浆脱落、断裂等因素造成漏水。

三、整治的必要性

随着新农村建设的全面推进,构建合谐社会,促使水利发展跟上社会经济发展需要,水口庙水库除险加固显得十分重要。为了恢复农业生产的良好条件,发挥水口庙水库的正常功能。通过对水库的除险加固,可使水库蓄水量达到设计总库容81.9万m3,恢复蓄水量35万m3。因此,水口庙水库除险加固是必要的。建议:一方面工程管理单位必须加强水库调度管理力度,尽可能发挥较好效益;另一方面实施水口庙水库除险加固整治工程,确保工程安全。通过水库除险加固,可使水库正常蓄水量达到65.3万m3。

四、加固措施建议

1、大坝工程

针对水口庙水库大坝存在的不安全因素,培厚上下游坝体,使坝体达到结构稳定要求。水口庙水库坝顶高程保持现有大规模,水口庙水库坝顶无交通要求,确定坝顶宽度为3.5m。长57m,坝顶表面采用C25砼硬化处理。垫层采用干砌块石,厚30cm,路肩采用M7.5浆砌块石,上下游路肩宽0.4m,深0.6m,上下游路肩增设高位1.1m的栏杆,栏杆采用C20钢筋混凝土结构。对坝体及坝基(岸坡)进行帷幕灌浆处理。对上游坝坡死水位以下坝坡进行抛石压脚来稳定坝脚的滑动,防止风浪冲刷,边坡为1:2。培厚下游边坡,坡率为1:2,在下游高程788.946m处设排水棱体。块石与培厚土体结合部位采用碎石、粗砂、细石进行处理。为了确保水库大坝的安全,必须重视开展白蚁防治工作。重点对坝区2800m2白蚁危害地段采取找、挖、杀三个环节,彻底消灭白蚁的危害。即:一是找,在春秋进行普查发现蚁路,挖土追巢消灭白蚁;二是挖,挖土抽槽寻找、跟踪蚁路、追挖主巢;三是杀,采用药物毒杀和土坑诱杀等方法消灭白蚁。增设大坝大坝安全监测设施,监测大坝的水平位移和垂直位移。

2、溢洪道工程

由于受地形条件限制,溢洪道位置无其它可选比较方案,可设在距右坝肩7.5m处开挖,其达到正常泄洪要求。为便于工程的管理和当地群众出入方便,在溢流堰位置设交通桥,桥宽3m,净跨2.5m,为钢筋砼T型桥,梁高0.6m,梁宽0.25m,板厚0.2m,桥面设栏杆,栏杆高度1.1m,受力钢筋为Ⅱ级钢筋。水口庙水库放水涵卧管因多年未运行,年久失修,损坏严重,多处沉陷断裂。在原位置重新布置放水卧管;重新修建涵管进口段及消力池,涵管长度为20m。

3、其它工程

为了便于工程管理维护,以及遭遇暴雨洪水时的大坝防洪抢险,保证工程安全,需改建管理房,扩建改善防洪抢险公路等附属工程。

(1)改建水库管理房

水口庙水库管理房属危房。管理所现有职工2人,为了便于今后工程的运行管理,促进水库多方发展,改建管理房有利于水库自身的发展。

为此,改建管理房103.25m2,采用二层砖混结构。

(2)改建和完善防洪抢险公路

进库公路全长4.0km。该工程长期以来交通不便,路基差,路面狭窄不平,车辆通行困难。为了加强汛期防洪调度,确保下游群众的生命财产安全,需整修4.0km进库公路。保障道路畅通,有利于水库今后发展。为了配合通村公路建设,采用C25砼硬化路面4.0km,厚度20cm。

路基加固:路肩(基)用M5浆砌块石砌筑,顶宽0.5m,对易滑坡的地段采用M5浆砌块石砌筑挡土墙。

完善边沟:边沟内空尺寸为0.4m(宽)×0.3m(深),采用M7.5浆砌块石砌筑,边沟侧墙厚0.4m,用M10水泥砂浆勾缝。

五、总结

上一篇:扶贫资产监管范文 下一篇:法务合同管理范文

友情链接