计算机科学范文

时间:2023-03-02 12:41:19

计算机科学

计算机科学范文第1篇

《计算机科学》(CN:50-1075/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

《计算机科学》报导国内外计算机科学与技术的发展动态,以其新颖、准确、及时为特色,突出动态性、综述性、学术性,“前沿学科”与“基础研究”相结合;“优秀技术”与“支撑技术”相结合;“倡导”与“争鸣”相结合。

计算机科学范文第2篇

1.1计算机科学技术在生活中应用广泛

在这个信息化时代,计算机网络作为人们社会生活的重要部分,已经进入千家万户。人们不用出门就可以通过计算机了解国内外新闻、天气预报资讯、股市行情、世界地图、收发电子邮件、检索信息等;不用逛街就可以通过互联网中的购物网站买到喜欢的东西;通过计算机可以与相隔较远的朋友在线聊天、视频聊天等,加强人们之间的交流和沟通,促进友谊;人们可以通过计算机网络订购飞机票、火车票等,节省排队时间;教师可以通过计算机科学技术实现对学生的在线授课,更及时、更方便;动漫工作者可以使用计算机科学技术制作动漫;政府机关也可以通过计算机科学技术建立城市网站,及时了解市民反映的问题,通过计算机与各个行业的工作人员在线交流;很多企业使用计算机来处理大量数据和信息,代替传统的人工处理,提高工作效率。计算机科学技术潜移默化的影响着人们的生产、工作和学习。

1.2计算机科学技术更加智能化和专业化

计算机科学技术的快速发展和广泛应用,推动了集成电路、微电子和半导体晶体管的发展,计算机科学技术更加智能化和专业化。计算机能根据使用对象的不同个体需要进行改装、更新,对于有更高需求的用户可以专门定做计算机,用户可以根据使用环境的不同选择台式计算机、笔记本计算机、掌上电脑和平板电脑等。计算机科学技术在其他特殊领域也能发挥自己的优势,如智能化家用电器和智能手机,家庭式网络分布系统代替了传统的单机操作系统,满足人们的生活需求。

1.3计算机的微处理器和纳米技术

微处理器能提高计算机的使用性能,缩小传统处理器芯片中的晶体管线宽和尺寸。利用光刻技术,波长更短的曝光光源经过掩膜的曝光,将晶体管在硅片上制作的更精巧,将晶体管导线制作的更细小。计算机科学技术的快速发展使计算机运算速度更快,体积更微型,操作更智能,传统的电子元件不能适应计算机的发展。纳米技术是一种用分子射程物质和单个原子的毫微技术,可以研究0.1~100纳米范围内的材料应用和性质。计算机科学技术中利用纳米技术,可以使计算机尺寸变小,解决运算速度和集成度的问题。

2计算机科学技术的未来发展

现如今,计算机科学技术的应用越来越广,人们对计算机科学技术的要求越来越高,促使数学家和计算机学家们不断研究计算机科学技术,使计算机科学技术在各个领域、各个行业发挥更大的作用,满足人们的不同需求。下面从DNA生物计算机、光计算机和量子计算机三方面来探究计算机科学技术的发展前景。

2.1DNA生物计算机DNA生物计算机用生物蛋白质芯片代替传统的半导体硅芯片。1994年,美国科学家阿德勒曼率先提出关于生物计算机的设想。在计算机运算数据时,将生物DNA碱基序列作为信息编码载体,运用分子生物学技术和控制酶,改变DNA碱基序列,从而反映信息,处理数据。这一设想增加了计算机操作方式,改变了传统的、单一的物理操作性质,拓宽了人们对计算机的了解视野。DNA生物计算机元件密度比大脑神经元的密度高100万倍,信息数据的传递速度也比人脑思维快100万倍,生物计算机的蛋白质芯片存储量是传统计算机的10亿倍。2001年,以色列科学家研制出世界上第一台DNA生物计算机,体积较小,仅有一滴水的体积。2013年,英国生物信息研究院的科学家们使用DNA碱基序列对文学家莎士比亚154首作品的音乐文件格式和相关照片进行编制,增加了储存密度,使储存密度达到2.2PB/克(1024TB=1PB),提高了人们对信息储存的认识,这一重大突破使生物计算机的设想有望成为现实。

2.2光信号和光子计算机

光子计算机是一种由光子信号进行信息处理、信息存储、逻辑操作和数字运算的新型计算机。集成光路是光子计算机的基本构成部件,包括核镜、透镜和激光器。光子计算机和传统计算机相比较,有以下几点好处:

(1)光计算机的光子互联芯片集成密度更高。在高密度下,光子可以不受量子效应的影响,在自由空间将光子互联,就能提高芯片的集成密度。

(2)光子没有质量,不受介质干扰,可以在各种介质和真空中传播。

(3)光自身不带电荷,是一种电磁波,可以在自由空间中相互交叉传播,传播时各自不发生干扰。

(4)光子在导线中的传播速度更快,是电子传播速度的1000倍,光计算机的运算速度比传统计算机更快。20世纪50年代末,科学家提出光计算机的设想,即利用光速完成计算机运算和储存等工作。与芯片计算机相比较,光子计算机可以提高计算机运行速度。1896年,戴维•米勒首先研制出光开关,体型较小。1990年,贝尔实验室的光计算机工作计划正式开启。根据元器件的不同,光子计算机可以分为全光学型计算机和光电混合型计算机。全光学型计算机比光电混合型计算机运算速度快,还可以对手势、图形、语言等进行合成和识别。贝尔实验室已经成功研制出光电混合型计算机,采用的是混合型元器件。研发制作全光学型计算机的重要工作就是研制晶体管,这种晶体管与现存的光学“晶体管”不同,它能用一条光线控制另一条光线。现存的光学“晶体管”体积较大较笨拙,满足不了全光学型计算机的研发要求。

2.3量子理论计算机

量子计算机将处于量子状态的原子作为计算机CPU和内存,处于量子状态的原子在同一时间内能处于不同位置,根据这一特性可以提高计算机处理信息的精确度,提高处理数据的运算速度,有利于数据储存。量子计算机处理信息时的基本数据单元是量子比特,取代了传统的“1”和“0”,具有极强的运算能力,运算速度比传统计算机快10亿倍。中国和美国的科学家们在实验室里成功实现了同时对多个量子比特进行操作,为制造量子计算机提供了可能。相信在科学技术的不断发展和世界各国的科学家们共同努力下,量子计算机会成为现实。

3结束语

计算机科学技术是一个具有广阔发展前景的领域。从1946年到现在,计算机科学技术经历了巨大的变革,计算机物理元器件、集成电路、外存储器等都有较大的发展。计算机科学技术具有存储容量大、运算处理能力强、运算速度快、性价比高、计算数据精准、自动化程度高等特点。计算机科学技术已经涉及到社会生活的各个方面,改变了人们传统的生活、工作、学习方式,推动社会的全面发展。随着网络和科技的不断进步,未来计算机科学技术势必会朝着高性能、环保化、功能化的方向发展。

计算机科学范文第3篇

图灵是英国的一位科学家、数学家、逻辑学家和破译码学家,1912年6月23日出生于英国伦敦一个“书香门第”之家,家族成员中有三位当选过英国皇家学会会员,他的祖父还曾获得剑桥大学数学荣誉学位。可他的父亲居里欧的数学才能却很糟糕,正负数的乘法运算就把他弄得焦头烂额。

少年图灵性格内向、腼腆、胆小、软弱并患有轻度口吃,不被人接受,更不擅与人打交道。他小时候学业平平,除了一些简单的化学实验和数学题外,并无太多闪光之处。没有人能猜想到这位大智若愚的小男孩,后来居上,1931年,19岁图灵考进了剑桥大学,在剑桥大学的“国王学院”专攻数学。23岁的图灵被剑桥大学国王学院甄选为研究员,成为剑桥大学有史以来最年轻的研究员,同年又因他在“概率论”上的成就,荣获“斯密思奖”。24岁时在伦敦权威的数学杂志上发表了一篇划时代的重要论文《可计算数字及其在判断性问题中的应用》文中构造出一全属于想象中的“计算机”,数学家们把它称为“图灵机”。著名的“图灵机”的概念在数学与计算机科学中至今仍有巨大的影响力。

31岁时他参与了二战时英国对德军密码的破译,图灵和他的团队为提高实际破译的速度,他和同事们首先研制了一台密码破译机,取名“邦比”,后来又研制出一台专门破译密码的电子计算机,取名“巨人”。它们使英国政府编码与密码破译如虎添翼。但由于当时英国政府严格的保密法,一直没有公之于世。33岁时他构思了智能计算机的仿真系统,35岁提出自动程序设计概念,发表了《计算机与智能》《机器能思考吗》等著名论文。39岁时图灵被英国皇家学会选为会员,成为家族中的第四位皇家学会会员,是20世纪英国最伟大的科学家之一,并被人们称为“人工智能之父”“破译密码之父”。

天嫉英才,1954年6月8日,42岁的图灵悄悄地离开了人世,一代天才就这样走完了自己富有传奇色彩的一生。计算机天才图灵的英年早逝,对当时的世界计算机科学界与数学界来说,是一个无法估量的巨大损失。对于他的死因,众说纷纭,至今仍然是一个未知的谜。

图灵的早逝,过早地结束了他那充满传奇色彩的人生。后人为了纪念这位举世罕见的天才数学家、计算机科学的先驱,国际计算机协会(ACM)于1966年设立了计算机科学界的最高奖——“图灵奖”,专门奖励那些对计算机科学事业作出杰出贡献的个人。

计算机科学范文第4篇

《计算机科学与探索》(CN:11-5602/TP)是一本有较高学术价值的大型月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。

计算机科学范文第5篇

关键词:计算机;科学技术;计算机教育;具体应用;分析概述

随着互联网、计算机科学技术的到来,在此背景之下,人们在日常的生活当中也是越来越离不开计算机的使用,而对于我国教育的领域来说更是如此,计算机科学技术在整个计算机教育当中,是占据着非常重要的地位的。而在我国之前的教育当中,也由传统的教学方式逐渐的转变为计算机教育方式,这种有效的替代,在很大程度上提高了我国整体的教育效率水平。而计算机科学技术在整个计算机教育当中具体有着哪些作用,下文将对计算机科学技术在我国计算机教育当中的实际应用进行阐述。

1有效的帮助相关的教师来进行日常的教学管理

计算机,在我国各个学校的日常实际应用当中,主要是体现着简洁、高校等特点。并且,在实际运用到教师以及学校的日常管理过程当中,对于在校的众多学生在学习的过程当中,所出现的一些琐碎问题,而利用我国传统的教学管理方式,是以及远远不满足于现在时代所对其提出的要求,传统的教学处管理方式,不仅存在着效率低下的问题,并且,还不能够很好的对在校学生的一些日常生活以及学习过程进行很好的监控以及了解。而有效的利用计算机科学技术,就能够在很大程度上弥补原来传统教学管理方式上的一些漏洞。例如:学校学生在平时的作业上,通常来讲,都是由老师先布置之后,学生在根据布置的内容进行完成,最后在由课代表或是相关的人员统一收上之后,在交给教师来进行批阅,而在教师批阅之后在发放回去。而合理的使用计算机去管理学生日常作业的过程当中,就可以很好的省掉一些繁琐的环节,教师可以直接在网络通知平台上布置学生的作业,很好的免去了学生以及老师在布置作业上的环节,并且,也在一定程度上降低了交作业以及发作业当中的浪费的时间精力。

2很好的方便了学生日常的学习

而很好的方便了学生日常的学习,其主要是因为,计算机网络自身不受到来自时间、空间等方面限制的特点,并且计算机网络自身还具有非常良好的快速查阅、上传等一些特点,这些特点都在很大程度上满足以及方便了各个学生对于学习的各种要求。与此同时,合理有效的利用好计算机等相关科学技术的搜索功能,就能够帮助学生在第一时间内找到自己需要的资料信息,此外,对于网络上庞大丰富资源,也能够很好的培养学生举一反三的能力,使得学生在学习的过程当中,自然而然会提高学习的兴趣,而在学习兴趣的趋势下,就能够在很大程度上培养学生的自主学习型。此外,还由于每个学生在学习的过程当中,接受知识的能力上是有着差异化的,所以,在利用计算机科学技术就可以很好的打破之间的差异化的,使其灵活的调整整个教学实践,教师还可以将与本堂课与之相关的视频发送给学生观看,这样就能够在很大程度上提高学生对于内容的掌握能力。

3有效的丰富教学的资源,同时还能够节约教育的资金成本

在合理的利用计算机科学技术来讲进行教育的过程当中,不仅仅能够很好的丰富广大教师自身的教学方式,还能够让学生在学习的过程当中,看到文字、图片、以及视频,这样在很大程度上增强了整个教学的趣味性,还能够在一定程度上帮助学生对于课堂知识的掌握。与此同时,计算机在拥有非常庞大的资源时,自身还具有节约资源的这一良好特点。如果,在我们把原来的教科书,逐渐的变为电子稿的形式,并且将学生在日常考试的当中所用到的一些笔试换成为机考,这些不仅能够节省掉大量的纸张资源,而且,也能在一定程度上节约因为这些资源所投入的人、物、资金等方面的开销。而从学生学习的内容上来将,在有效的降低整个资本成本的同时,不仅没有减少原来的一些学习内容,反而是将基于原来教学内容上在使得变的丰富多样。并且,由于计算机本身就是作为一种工具来进行使用,所以它还具有随地随时使用的能力,而当学生在进行朗读以及背诵的过程当中,就可以很好的通过计算机来进行资源的搜索,而不光是对于音频上还是对于相关的视频上甚至一些动漫上,都是能够很好的帮助广大学生对于课堂知识的理解,并且也在一定程度上将原本枯燥、乏味、单一的朗诵课堂变得更加具有乐趣性。

4结论

只有真正的加强对于计算机科学技术在我国计算机教育当中的具体运用,就能够很好的推动我国整体教育的发展进步.

参考文献

[1]邹永利,冯静娴,郑荟.学术文献的文体特征及其检索意义——计算机科学文献与相关新闻报道文体的比较研究[J].中国图书馆学报,2014(02):33-40.

[2]陆枫,金海.计算机本科专业教学改革趋势及其启示——兼谈华中科技大学计算机科学与技术学院的教改经验[J].高等工程教育研究,2014(05):180-186.

[3]何钦铭,陆汉权,冯博琴.计算机基础教学的核心任务是计算思维能力的培养——《九校联盟(C9)计算机基础教学发展战略联合声明》解读[J].中国大学教学,2010(09):5-9.

计算机科学范文第6篇

关键词:量子比特;量子力学;量子相干性;并行运算

0 引言

自1946年第一台电子计算机诞生至今,共经历了电子管、晶体管、中小规模集成电路和大规模集成电路四个时代。计算机科学日新月异,但其性能却始终满足不了人类日益增长的信息处理需求,且存在不可逾越的“两个极限”。

其一,随着传统硅芯片集成度的提高,芯片内部晶体管数与日俱增,相反其尺寸却越缩越小(如现在的英特尔双核处理器采用最新45纳米制造工艺,在143平方毫米内集成2.91亿晶体管)。根据摩尔定律估算,20年后制造工艺将达到几个原子级大小,甚至更小,从而导致芯片内部微观粒子性越来越弱,相反其波动性逐渐显著,传统宏观物理学定律因此不再适用,而遵循的是微观世界焕然一新的量子力学定理。也就是说,20年后传统计算机将达到它的“物理极限”。

其二,集成度的提高所带来耗能与散热的问题反过来制约着芯片集成度的规模,传统硅芯片集成度的停滞不前将导致计算机发展的“性能极限”。如何解决其发热问题?研究表明,芯片耗能产生于计算过程中的不可逆过程。如处理器对输入两串数据的异或操作而最终结果却只有一列数据的输出,这过程是不可逆的,根据能量守恒定律,消失的数据信号必然会产生热量。倘若输出时处理器能保留一串无用序列,即把不可逆转换为可逆过程,则能从根本上解决芯片耗能问题。利用量子力学里的玄正变换把不可逆转为可逆过程,从而引发了对量子计算的研究。

1 量子计算的基本原理

1.1 传统计算的存储方式

首先回顾传统计算机的工作原理。传统电子计算机采用比特作为信息存储单位。从物理学角度,比特是两态系统,它可保持其中一种可识别状态,即“1”或者“()”。对于“1”和“0”,可利用电流的通断或电平的高低两种方法表示,然后可通过与非门两种逻辑电路的组合实现加、减、乘、除和逻辑运算。如把0~0个数相加,先输入“00”,处理后输入“01”,两者相“与”再输入下个数“10”,以此类推直至处理完第n个数,即输入一次,运算一次,n次输入,n次运算。这种串行处理方式不可避免地制约着传统计算机的运算速率,数据越多影响越深,单次运算的时间累积足可达到惊人的数字。例如在1994年共1600个工作站历时8月才完成对129位(迄今最大长度)因式的分解。倘若分解位数多达1000位,据估算,即使目前最快的计算机也需耗费1025年。而遵循量子力学定理的新一代计算机利用超高速并行运算只需几秒即可得出结果。现在让我们打开量子计算的潘多拉魔盒,走进奇妙神秘的量子世界。

1.2 量子计算的存储方式

量子计算的信息存储单位是量子比特,其两态的表示常用以下两种方式:

(1)利用电子自旋方向。如向左自转状态代表“1”,向右自转状态代表“0”。电子的自转方向可通过电磁波照射加以控制。

(2)利用原子的不同能级。原子有基态和激发态两种能级,规定原子基态时为“0”,激发态时为“1”。其具体状态可通过辨别原子光谱或核磁共振技术辨别。

量子计算在处理0~n个数相加时,采用的是并行处理方式将“00”、“01”、“10”、“11”等n个数据同时输入处理器,并在最后做一次运算得出结果。无论有多少数据,量子计算都是同时输入,运算一次,从而避免了传统计算机输入一次运算一次的耗时过程。当对海量数据进行处理时,这种并行处理方式的速率足以让传统计算机望尘莫及。

1.3 量子叠加态

量子计算为何能实现并行运算呢?根本原因在于量子比特具有“叠加状态”的性质。传统计算机每个比特只能取一种可识别的状态“0”或“1”,而量子比特不仅可以取“0”或“1”,还可同时取“0”和“1”,即其叠加态。以此类推,n位传统比特仅能代表2n中的某一态,而n位量子比特却能同时表示2n个叠加态,这正是量子世界神奇之处。运算时量子计算只须对这2n个量子叠加态处理一次,这就意味着一次同时处理了2n个量子比特(同样的操作传统计算机需处理2n次,因此理论上量子计算工作速率可提高2n倍),从而实现了并行运算。

量子叠加态恐怕读者一时难以接受,即使当年聪明绝顶的爱因斯坦也颇有微词。但微观世界到底有别于我们所处的宏观世界,存在着既令人惊讶又不得不承认的事实,并取得了多方面验证。以下用量子力学描述量子叠加态。

现有两比特存储单元,经典计算机只能存储00,01,10,11四位二进制数,但同一时刻只能存储其中某一位。而量子比特除了能表示“0”或“1”两态,还可同时表示“0”和“1”的叠加态,量子力学记为:

lφ〉=al1〉+blO〉

其中ab分别表示原子处于两态的几率,a=0时只有“0”态,b=0时只有“1”态,ab都不为0时既可表示“0”,又可表示“1”。因此,两位量子比特可同时表示4种状态,即在同一时刻可存储4个数,量子力学记为:

1.4 量子相干性

量子计算除可并行运算外,还能快速高效地并行运算,这就用到了量子的另外一个特性――量子相干性。

量子相干性是指量子之间的特殊联系,利用它可从一个或多个量子状态推出其它量子态。譬如两电子发生正向碰撞,若观测到其中一电子是向左自转的,那么根据动量和能量守恒定律,另外一电子必是向右自转。这两电子间所存在的这种联系就是量子相干性。

可以把量子相干性应用于存储当中。若某串量子比特是彼此相干的,则可把此串量子比特视为协同运行的同一整体,对其中某一比特的处理就会影响到其它比特的运行状态,正所谓牵一发而动全身。量子计算之所以能快速高效地运算缘归于此。然而令人遗憾的是量子相干性很难保持,在外部环境影响下很容易丢失相干性从而导致运算错误。虽然采用量子纠错码技术可避免出错,但其也只是发现和纠正错误,却不能从根本上杜绝量子相干性的丢失。因此,到达高效量子计算时代还有一段漫长曲折之路。

2 对传统密码学的冲击

密码通信源远流长。早在2500年前,密码就已广泛应用于战争与外交之中,当今的文学作品也多有涉猎,如汉帝赐董承的衣带诏,文人墨客的藏头诗,金庸笔下的蜡丸信等。随着历史的发展,密码和秘密通讯备受关注,密码学也应运而生。防与攻是一个永恒的活题,当科学家们如火如荼地研究各种加密之策时,破译之道也得以迅速发展。

传统理论认为,大数的因式分解是数学界的一道难题,至今也无有效的解决方案和算法。这一点在密码学有重要应用,现在广泛应用于互联网,银行和金融系统的RSA加密系统就是基于因式难分解而开发出来的。然而,在理论上包括RSA在内的任何加密算法都不是天衣无缝的,利用穷举法可一一破解,只要衡量破解与所耗费的人力物力和时间相比是否合理。如上文提到传统计算机需耗费1025年才能对1000位整数进行因式分解,从时间意义上讲,RSA加密算法是安全的。但是,精通高速并行运算的量子计算一旦问世,萦绕人类很久的因式分解难题迎刃而解,传统密码学将受到前所未有的巨大冲击。但正所谓有矛必有盾,相信届时一套更为安全成熟的量子加密体系终会酝酿而出。

3 近期研究成果

目前量子计算的研究仍处于实验阶段,许多科学家都以极大热忱追寻量子计算的梦想,实现方案虽不少,但以现在的科技水平和实验条件要找到一种合适的载体存储量子比特,并操纵和观测其微观量子态实在是太困难了,各界科学家历时多年才略有所获。

(1)1994年物理学家尼尔和艾萨克子利用丙胺酸制出一台最为基本的量子计算机,虽然只能做一些像1+1=2这样简单的运算,但对量子计算的研究具有里程碑的意义。

(2)2000年8月IBM用5个原子作为处理和存储器制造出当时最为先进的量子计算机,并以传统计算机无法匹敌的速度完成对密码学中周期函数的计算。

(3)2000年日本日立公司成功开发出“单电子晶体管”量子元件,它可以控制单个电子的运动,且具有体积小,功耗低的特点(比目前功耗最小的晶体管约低1000倍)。

(4)2001年IBM公司阿曼顿实验室利用核磁共振技术建构出7位量子比特计算机,其实现思想是用离子两个自转状态作为一个量子比特,用微波脉冲作为地址。但此法还不能存储15位以上的量子单元。

(5)2003年5月《Nature》杂志发表了克服量子相关性的实验结果,对克服退相干,实现量子加密、纠错和传输在理论上起到指导作用,从此量子通信振奋人心。

(6)2004年9月,NTT物性科学研究所试制出新一代存储量子比特的新载体――“超导磁束量子位”。它可通过微波照射大幅度提高对量子比特自由度的控制,其量子态也相对容易保持。

4 结束语

计算机科学范文第7篇

关键词:计算机科学导论;教学目标;教学方法

中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)02-0344-02

目前,计算机技术的飞速发展,使得计算机技术的应用及渗透的领域越来越广,这迫切需求高技能高素质的人才。如何将计算机专业的人才培养成合格的、适应市场需求的人才,成为每一位计算机专业教育工作者的首要任务。

计算机科学导论作为一门计算机专业大学一年级学生的专业必修课,重点旨在勾画计算机科学体系的框架,通过计算机科学基础理论与应用操作相结合课程内容安排,使学生对计算机学科的知识体系结构有一个较为全面和系统的了解,继而激发并培养自己对本专业的兴趣,为以后大学四年的知识学习、能力素质和职业道德的塑造奠定坚实基础[ 1-2]。基于课程至关重要的作用,该文主要从计算机科学导论的教学方法和考核方法等方面进行了讨论,以期在今后的课程教学过程中达到最佳教学效果。

1 明确课程教学目标

计算机科学导论目标是通过介绍计算机科学与技术学科的定义、学科范畴、特点与规律,来构建课程的体系结构,引导学生培养正确的学科专业思想,同时激发学生对本专业的学习兴趣,使学生逐步形成以计算机的观点来分析解决问题的思维。课程内容涉及到一些专业课程的基本概念及某些具体内容,但绝不是计算机科学学科专业课内容的压缩和拼盘。通过本课程的学习使学生了解各专业领域研究的主要内容,掌握计算机系统的基础知识和操作技术,提高感性认识,力求使学生对所学专业及后续课程的学习有一个整体性、概括性的了解,树立专业学习的信心和自豪感,为今后在各自的专业中对计算机的使用打下厚实的基础,踏入计算机科学技术的大门,更好的适应社会的需求。

2 注重课程教学方法

近年来,这门课在教学中出现了多方面的问题。虽然计算机科学导论这门课程的内容不难,但是课程授予的对象是刚刚步入大学的新生,他们在入学前对计算机的了解程度各不相同,有的学生能够较熟练的操作计算机,有的学生却不会操作计算机。基于学生对计算机的认知基础不同,采用怎样的教学方法来教授这门课程能达到预期的教学效果,成为担任该课程教师一直关注的焦点。

为了在教学中提高学生的应用水平,培养他们浓厚的学习兴趣,我们不仅要充实授课内容,把握好难易程度,更需要结合多种教学方法。

2.1 积极引导学生,激发学习兴趣

计算机科学导论课程的授课对象是计算机专业的大一新生,他们对计算机及计算机专业学科的构架都还认识不足。因此,授课教师需要从多方面去积极引导他们。首先,从计算机应用的重要性及社会市场的需求方面进行举例分析,增强学生信心,并引导学生把握好自己的专业学习方向[ 3-4]。其次,在课堂的教学过程中用生动形象的应用举例讲解取代传统的理论讲授、理解掌握的方式,帮助学生逐渐熟悉并建立计算机科学与技术学科专业的知识框架,不断激发学生的学习兴趣。再者,在课余时间中,向学生介绍电子设计大赛、数学建模、PPT设计大赛等科技活动,鼓励学生深入了解并积极参与,帮助他们开阔视野,增强实践动手能力。

2.2 教学内容丰富,易理解易掌握

计算机科学导论是构造计算机学科专业框架的教材,授课内容涉及各个学科、各个领域的专业理论知识,难度比较大。因此应该优化内容,做到难易适中、层次浅显、通俗易懂,讲授时最好采用图文并茂加实物相结合的方法,使学生在感性上充分认识,更有助于理解和掌握[5]。除此以外,对教学内容进行适当的补充和实例演示。比如在讲授硬件知识时,可以视频演示硬件组装的过程;在讲授计算机网络知识时,补充一些加强网络信息安全方面的一些知识。这样既能集中学生的注意力,激发学生的学习兴趣,也能调动学生学习的积极性。

2.3 理论联系实际,培养动手能力

计算机科学导论课程不仅要塑造学生的学科知识框架,还要让学生熟练掌握计算机的基本操作。所以实验是课程教学中的一个必备环节,能促进学生加深感性认识,更能帮助学生理解掌握课堂知识[6]。

实验中实验目的要明确,实验内容要丰富备多样、知识面广,在全面锻炼学生的动手能力的同时调动他们的学习热情,从而提高学习效率和质量。比如在实验练习PowerPoint内容时,让学生把自己的个人简历情况进行作品设计,可以把自己的简介、照片、爱好等内容进行规整,加之实验的具体要求,这样在实验过程中充分提高了学生的积极性,也多方面的练习了文字与图片的排版、自定义动画、幻灯片切换、超链接、背景、配色方案等功能。

2.4 问题启发思路,促成创新思维

课堂提问是教师主要的教学手段之一,它可以帮助教师了解学生知识的掌握情况,也可以帮助学生温习加深理论知识的记忆,从而启发学生的思维,有助于促进学生的创新能力[ 7]。

计算机科学导论的课程内容是计算机专业主要课程的精简,本身理论性较强。因此在课程的教学过程中要打破传统的灌输式教学方式,结合课程的特点,充分利用其优越性,通过视频播放或者实例演示引入一些启发性的问题,来调动学生的学习积极性,启发他们的问题求解思路,逐渐培养他们的创新能力。比如讲解Excel时,月份、星期等都可以循环的拖动填充,那如何将同宿舍同学的姓名设置同样的效果呢。提出这样的问题后,能够引起学生的好奇心,激发学生求解渴望,从中增强学生分析问题和解决问题的能力,并在实践中促成创新思维,使学生在对后续课程学习过程中,保持一种主动积极的学习态度。

3 改进考核方式

多年来,计算机科学导论课程一直沿用理论考试为主要的考核方式,这样往往忽略了学生的计算机操作能力的培养。因此,该课程应注重学生的基本操作能力的考查,采取理论考试与上机考试相结合的考核方式,两者应该各占二分之一的比例,这样就能更好将理论和实践相结合,从而使学生认识到计算机基本操作的重要性。

4 结束语

“计算机科学导论”是学生对计算机科学与技术知识体系结构形成的专业入门课。它有助于计算机各专业同学对自己所在专业课程概貌及其框架结构的了解,有助于每个学生从中学到大学的学习方法、学习习惯的转变,更有助于学生学习兴趣的培养。选取多种教学方法相结合进行“计算机科学导论”教学,以问题推动思考,以实践促进理论,势必取得更好的教学效果。

参考文献:

[1] 符蕴芳.计算机导论课程教学改革的研究[J].教育与职业,2009(32):129-130.

[2] 薄树奎.“计算机导论”课程教学方法初探[J]. 郑州航空工业管理学院学报( 社会科学版),2011(8):182-184.

[3] 蔡京哲.对“计算机导论”课程教学的探讨[J].科技信息,2010(35):153.

[4] 王樱,蒋瀚洋. 新形势下计算机导论课程教学改革的研究与实践[J].电脑知识与技术,2010 (6):5391-5392.

[5] 陈晓君,卞江,范韬. “计算机科学技术导论”的教学改革[J].科技风,2011(9):194.

[6] 易虹.《计算机导论》课程教学改革与实践[J] .科技信息,2007(14):388.

上一篇:通信技术范文 下一篇:发展趋势论文范文

友情链接