爆破施工方案范文

时间:2023-03-10 01:47:19

爆破施工方案

爆破施工方案范文第1篇

关键词:土石方 爆破 施工方案

云保公路改线工程Ⅲ标工程项目主线全长16km,分布了12座主线桥梁,路基施工段切割成不连续的多段,不利于路基施工的组织。同时也给路基土石方爆破施工带来了一定的难度。

1 爆破方案的确定

在高等级公路施工中,关于爆破方法的选择一方面要考虑如何提高炮眼利用率,另一方面要思考如何控制开挖轮廓和爆破振动对地层的扰动。笔者结合实践经验,围绕这两方面问题,就爆破方案的选择进行深入探讨。

施工时所选的爆破方案必须同时满足技术、经济和安全三方面的要求,技术人员先就现场情况进行实地踏勘,全面记录现场情况,包括爆破对象的位置、结构、尺寸、数量、材质、地质状况、爆破点附近的环境,以及地表与地下需要保护的光电缆等设施与爆破工点的相对位置和距离等。参建人员基于现场踏勘获得的全部信息,结合爆破要求,编制了多套爆破方案进行甄选,最终确定一套经济合理、技术可行且安全可靠的爆破方案。

本工程沿线山坡有大量石方,坡面几乎全部位于岩层中。根据设计图纸和施工规范,结合现场条件,坡面的爆破可应用光面爆破及预裂爆破的施工方案。爆破方式按标准结合松动方式进行。

光面爆破时,炮眼要密集排布在开挖轮廓线上,装药量少于普通爆破方法所用的装药量,周边眼间距与抵抗线之比基本达到0.8,主爆破后最后同步起爆,沿开挖轮廓线爆除岩体,尽量避免扰动围岩。光面爆破孔距通常不超过1m。但是在实际爆破施工中,可根据岩石结构多布设几个预裂孔。

光面爆破所布设炮眼的密集度和装药量不及预裂爆破。按照预裂爆破方案,从开挖断面轮廓线开始起爆,也就是四周的炮眼先于断面上其他的炮眼同步爆破,所采取的爆破工艺几乎无异于光面爆破。当装药量和检举适当时,在各炮眼的爆破力相互作用下,使四周炮眼形成相互贯通的预裂面,并形成一道屏障,目的是减小随后爆破的冲击波对外侧围岩的扰动。

2 爆破方案的设计计算

2.1 预裂爆破。①凿岩机具的型号决定炮孔直径的大小。炮孔直径的设定要充分考虑炮孔直径和孔深、孔距的关联,通常炮孔直径不宜过大。如果开挖深度或边坡高度达不到4m,所选钻机直径最好大于38mm小于45mm;如果边坡低于8m或挖深达不到8m,所选钻机直径最好大于60mm小于100mm;如果边坡高于8m,或开挖深度超过8m,所用钻机直径最好大于100mm。②炮孔间距a与炮孔直径d有关:a=(8~12)d。若d≤6cm,则a=(9~14)d,破碎软岩必须严格控制间距和装药量。如果是完整硬岩,可适当拉大炮孔间距。③通常以线装药密度表示预裂爆破的装药量。在实际操作中,能够对装药量造成影响的因素来自方方面面,工程人员无法根据相关理论做出准确的分析判断,因此通常根据条件相似的进行或通过公式计算来进行甄选和鉴别。④预裂孔通常比底板高程深一、二米,孔底高程相同,与主爆孔同深且距主爆孔有一段距离。

2.2 光面爆破。光面爆破实际是对光面层施暴。按照光面爆破要求,光面炮孔必须爆破,而且要尽量缩短各炮眼爆破的时差,使其不超过100ms。针对石方路基开挖常用的露天边坡梯段爆破,其开挖顺序通常是由外向内逐一爆破,前一排炮孔爆破为后一排炮孔开辟自由面,最后是光面炮孔爆破。该技术方案所用的技术参数如下:①炮孔直径:如果是露天光面爆破,所用钻机型号必须与主爆区的钻机型号相同;如果是井巷爆破,所用凿岩钻机光面炮孔直径最好大于35mm且小于45mm。②炮孔间距a:露天光面炮孔间距a=(10~15)d,井巷掘进光面炮孔间距a=(12~16)d。如果是大断面掘进爆破,炮孔直径必须大于38mm小于45mm,且光面炮孔间距设定为60~70cm。对于小断面掘进的巷道拱、墙交接部分,开挖面曲率较大,爆破面受岩石的夹制作用比较明显,此时光面孔间距宜控制在45cm~50cm。导向空孔距装药孔的距离通常不超过40cm。③炮孔角度与深度:露天冠冕爆破、光面炮孔倾角和边坡坡角一致,沿设计轮廓面排布。参考开挖深度或梯段高度设定孔深,同时要考虑超深。④光面层厚度:光面层厚度即是光面炮孔的最小抵抗线W。它与光面炮孔间距a的关系为:a=(0.8~1.0)W。⑤装药量:通常用装药集中度或线装药密度表示光面爆破装药量。线装药密度是炮孔装药量与装药段长度之比,而装药集中度则是炮孔总装药量与整个炮孔的长度之比,二者是完全不同的两个概念。

3 石方段开挖爆破施工方案

石方段开挖采用浅孔松动爆破,预留边坡光爆层,层厚控制在3m,纵向梯段法开挖,采用风钻打眼,毫秒微差雷管松动爆破,火雷管起爆,导爆管传爆,装载机挖装,自卸车运输到填方区域指定的弃土场。

3.1 爆破设计。基于现场踏勘信息逐一校核工程数量,参考人机数量、备料量和进度计划,结合地质条件、开挖高度、钻眼情况及机械运行状况来设定梯段分层厚度和钻孔直径,网络设计、起爆顺序及爆破参数则要根据岩石性质、临空面等信息来具体设定。

3.2 爆破环境复查。认真调查并复查石方爆破地段空中、地面、地下结构物类型及其与开挖面的间距。对于可能影响全局的关键地段施作前,具体的爆破振动参数必须经过实地观测,施工阶段如出现问题应及时优化调整。

3.3 本项目应用垂直钻孔纵向梯段式(台阶式)松动爆破方案实施爆破,钻孔呈梅花形依次排布,且要参考钻眼机具型号设定松动爆破台阶高度。

3.4 施工工艺流程:施爆区管线调查爆破设计与设计审批配备专业施爆人员爆区放样用机械或人工清除施爆区覆盖层和强风化岩面放样与布孔钻孔爆破器材检查与测验炮孔检查与废渣清除装药并安装引爆器材布置安全岗及拆除施爆区及飞石、强地震波影响区内的人、畜起爆清除瞎炮解除警戒测定爆破效果(包括飞石、地震波对施爆区内外构成损伤及损失)装、运石方与整修边坡落底至设计高程开凿台阶作业面:先将地表杂物和覆盖土层清理干净,施作小爆破构成台阶作业面。

布孔:参考设计图纸,放出开挖轮廓线及各炮孔位置,预以编号并设标有炮孔尺寸、大小等信息的木牌。

钻孔:该环节的施作质量直接决定最终的爆破效果。钻孔的操作应符合预先设计的角度和方位,且要从慢到快逐步推进。钻孔施工尤其特定的操作规程,如不按规定操作,就可能导致错钻、超钻、漏钻或卡孔;装药前先确保炮孔倾角符合设计要求,方位正确,孔内无积水或杂物,且孔壁不掉块。如果炮孔偏离了指定位置,或其深度与设计要求不符,应尽量快补孔和透孔,重点关注炮眼数量和装药量,以免影响爆破效果。

装药:炸药品种的选择、药量的设定必须按提前设定的标准逐一进行。严禁超装或欠装,确保爆破效果达到预期。爆破前,起爆装置应提前装设到位,光爆炮眼内采用空气柱间隔装药,主炮眼用散装炸药集中装在底部。炮孔堵塞:通常用钻孔的粘土、炮泥来堵塞光爆炮孔,堵塞长度通常距口部约1m。爆破网路敷设:敷设网路前,先确定起爆器的数量、编号,检查其质量是否可靠,严格参照《爆破安全规程》中给定的起爆方式敷设爆破网路。检查确认网路可靠、完好后实施爆破,但要注意起爆点必须位于安全地带。安全警戒:从装药阶段起就开始安全警戒,非施工人员不得进入爆破现场,敷设好网路后,现场无关人等尽快撤离,负责防护和警戒的工作人员即刻就位,临时封闭爆破区段,无关人等一律不得入内。起爆:在网路检测无误,防护工程检查无误,各方警戒正常情况下,指挥员即可命令起爆。安全检查:爆破完成并达到规定的间隔时间后,由安检人员进入施工现场进行检查,经确认无瞎炮等安全隐患时,出渣人员方可下入现场进行施工。

3.5 控制爆破要求。严格控制爆破飞石范围、空气冲击波强度、地震波效应,确保周围人、畜的安全。维护边坡稳定,减少爆破对边坡的破坏以及透发边坡滑坡的可能性。控制爆破度,尽量减少二次破碎工作量,提高装运效率。科学管理,文明施工。

4 结束语

通过对以上爆破关键环节进行了严格的技术控制,云保公路改线工程Ⅲ标项目土石方开挖爆破施工效果良好,完全满足了设计要求,并取得了良好的经济效益。

参考文献:

[1]刘运通,高文学,刘宏刚.现代公路工程爆破[M].人民交通出版社,2006-01.

[2]张志毅,王中黔.交通土建工程爆破工程师手册[M].人民交通出版社,2002-10-1.

爆破施工方案范文第2篇

关键词:控制爆破施工方案

中图分类号:TB41文献标识码: A 文章编号:

1、概述

本工程为南宁市郁江老口航运枢纽工程右岸主体工程,主要进行纵向围堰、闸坝、重力坝、电站厂房及安装间的爆破施工。工程爆破在破碎岩体的同时也将发生一些爆破的危害影响,包括空气冲击波、地震波、飞石与粉尘、有害气体、水中冲击波等。在本工程石方爆破开挖施工区域临近范围内有砼结构物及附近有村庄,爆破产生的空气冲击波、地震波将对新浇砼结构物、民房及其他设施造成一定的影响,故对此两项进行爆破控制设计,以制定施工方案,减少对临近新浇砼结构及附近居民的影响。

2、爆破设计

本工程为露天钻孔梯段爆破,采用液压钻钻孔,孔深主要为3~6m,其中3m孔深较多。火工材料采用乳化炸药,非电毫秒雷管分段联网起爆。现场地势较为平坦,根据地质资料及结合现场情况得知:岩石强度相对较低,主要为软—中硬岩,同时经测定临近范围内新浇砼结构物距爆破施工区域最近距离为10~200m,附近居民点距爆破施工区域最近距离为350m。

2.1空气冲击波

空气冲击波计算参数主要有:空气冲击波超压值P、单响炸药量Q、药包至危害对象的距离R、经验系数K及指数α。爆破设计的目的在于处理个系数之间的关系,使其达到爆破控制目的,本设计主要采用经验公式法。本工程为露天钻孔爆破,根据《水利水电工程施工手册》,采用如下经验公式计算:

P=K(3√Q/R)α

式中 P——空气冲击波超压值,105Pa;

K、α——本工程钻爆采用梯段爆破,故取K=1.48,α=1.55;

Q——单响炸药量,kg;

R——药包至危害对象的距离,m;经测定附近居民点距爆破施工区域最近距离为350m。

按照经验公式可得出在不同距离、不同单响炸药量下的空气冲击波超压值,以此确定最大的安全单响药量。

根据现场勘查,保护对象为周围人员及民居,民房主要为砖混结构,部分为毛石房屋,参考《水利水电工程施工手册》建筑物的破坏程度与超压关系表2-12-1及超压与人员伤害等级对照表2-12-2。得出不同保护对象下的安全超压值P安见下表1。

2.2地震波

爆破地震波的强弱采用质点振动参数来表示。计算参数主要有:质点振动速度v、单响炸药量Q、药包至危害对象的距离R、经验系数K及衰减指数α。爆破设计的目的在于处理个系数之间的关系,使其达到爆破控制目的,本设计主要采用经验公式法。根据《水利水电工程施工手册》,采用如下经验公式计算:

v=K(3√Q/R)α

式中 v——质点振动速度,cm/s;

Q——单响炸药量,kg;

R——药包至危害对象的距离,m;经测定附近居民点距爆破施工区域最近距离为350m。

K——与爆破到计算保护对象间的地形、地质条件有关的参数,软岩:250~350,中硬岩150~250;

α——衰减指数,软岩:1.8~2.0,中硬岩1.5~1.8。

根据《水利水电工程施工手册》爆区不同岩性的K、α值对照表2-12-8,在计算时考虑最不利于安全的条件,系数K值取大值,α衰减指数取小值。按照经验公式可得出在不同单响炸药量、不同岩性下的爆破质点振动速度值,以此确定最大的安全单响药量。

根据现场情况,受保护的对象主要为砖混结构的民房、部分毛石房屋及新浇筑的砼结构物,参考《水利水电工程施工手册》爆破振动安全允许标准表2-12-9,结合不同爆破类型的质点振动频率,以确定安全的质点允许振速,见下表2。

表2不同爆破类型的安全允许振速表

3、结论

(1)通过分别对爆破空气冲击波及地震波的分析计算,可以看出:爆破产生的空气冲击波会对人员及建筑物造成损害,地震波主要损害建筑物。

(2)由上表1可以得出:当受保护对象距离爆破点350m,单响炸药量Q=10000kg时,产生的空气冲击波为0.0197×105Pa,小于安全超压值P安=0.02×105Pa,即当单响炸药量Q

(3)由上表3可以得出:同等的单响药量,产生的质点振速受距离的影响因素较大,距离爆破点越近,受保护对象受到的损害就越大。

4、爆破控制措施

通过对爆破参数设计及计算分析,为了减少对临近新浇砼结构及附近居民的影响采取如下措施:

(1)爆破施工前应先弄清爆破区附近受保护对象的类型及结构形式,确定距离爆破点的距离,熟悉地形、地质条件,以便于能够较为准备的计算出安全的单响炸药量;

(2)在钻爆施工时,应尽可能采用浅孔爆破,分散药量,分段起爆;

(3)准确钻爆,确保设计抵抗线,设计的爆破方向,避免形成波束;

(4)确保炮孔堵塞质量,必要时进行覆盖,降低爆破冲击波;

(5)选择爆破方向,避开抛掷爆破及梯段爆破中地震效应最大的后冲方向;

(6)实施隔震衰减:布置减震裂缝、采用光爆技术、炮孔底部采用岩屑设置缓冲垫层;

(7)尽量避免在新浇龄期小于7d砼的近距离范围内进行爆破施工,如需爆破作业,应采用浅孔、小面积、多分段等方法尽可能降低单响炸药量,使其控制在安全单响药量之内;

(8)结合表1、表2通过对照计算,可得出在不同距离、不同岩性、不同爆破类型下的安全单响药量,在现场爆破施工时严格按照计算的爆破参数控制实施。

参考文献:

1、《水利水电工程施工手册》 中国电力出版社2002-12

2、《水利水电工程施工组织设计手册》水利电力出版社1990-2

3、《水利水电工程施工作业人员安全操作规程》 中国水利水电出版社 2007-11-26

4、《水利水电工程施工测量规范》 中国水利水电出版社 1993-6-25

爆破施工方案范文第3篇

Abstract: This paper, based on the construction of the tunnel, studies and analyses the blasting construction scheme in the tunnel construction, introduces the basic situation of the tunnel, the engineering geology and the hydrology geology, describes the key technical problems, such as blasting point, drilling and blasting design, blasting vibration monitoring, blasting data processing and so on, and provides reference for tunnel construction.

关键词:爆破施工;钻爆设计;振动监测

Key words: blasting construction;drilling and blasting design;vibration monitoring

中图分类号:TD235 文献标识码:A 文章编号:1006-4311(2016)12-0232-03

0 引言

随着“一带一路”战略的实施,中西部基础设施建设规模逐步扩大,交通建设方面飞速发展,其中隧道里程所占的比例也越大。为保持我国经济持续稳定增长,需设计及修建大量的铁路、公路隧道。随着隧道工程开发规模的不断扩大,隧道修建时与已有隧道邻近会增加新建隧道的工程爆破施工风险和施工难度。

关于隧道的施工爆破技术的现有研究中,李玉磊将爆破振动监测试验数据同数值模拟结果进行分析对比后,提出了预留侧向台阶土体的小间距隧道爆破施工工序;孙箭林采用ABAQUS软件建模和青岛地铁二号线隧道工程实例情况提出了求施以最大进尺和爆破工法的极限距离,来减少进尺荷载的措施;醋经纬依托兰州枢纽北环隧道上穿红山顶隧道工程,综合爆破振动理论、现场实测、数值模拟三个方面,研究小净距空间交叉隧道爆破施工控制技术。

本文依托实际工程的基本情况,对爆破方案中的爆破要点、钻爆设计、爆破振动监测、爆破数据处理等关键技术问题进行了阐述,为隧道建设工程提供参考。

1 工程概况

某隧道全长1126m,为单线隧道。其所在位置平均海拔440~560m,埋深最大和最小分别为220m和10m。进出口均位于斜坡上。洞身穿越两断层,2处节理密集带。在建隧道与既有隧道相邻最小间距42.07m,隧道位置及平面位置关系图如图1、图2。施工时可能会发生坍塌、突泥、涌水等问题,同时需考虑对建成隧道的影响,施工技术复杂,施工难度大。

隧道施工范围内地质土层主要为第四系全新统坡积膨胀土、寒武系片岩、片岩夹灰岩夹板岩,构造岩主要为压碎岩、断层角砾。隧址区洞身浅埋段为干沟,进、出口冲沟不发育,存在基岩裂隙水,构造裂隙水及岩溶水。在断层带段落,灰岩段为中等富水区,其他段为弱富水区。地下水Cl-含量11.7mg/L,SO42-含量71.1mg/L。

2 方案选择

方案的可行性要符合实际情况,不适应进度或不经济的方案应该直接予以剔除。考虑工程进度(见表1)和围岩开挖费用(见表2)后,从控制爆破、机械开挖、静态爆破和机械配合静态爆破这四种方案中选取控制爆破施工方案。

根据表1可以得知,控制爆破方案开挖进度最快,可缩短工期。

根据表2可以得知,控制爆破方案开挖费用最少,可节约经济成本。

综合上述两方面数据,可以得知此隧道出口临近营业线采取控制爆破方案最为合适,故选取控制爆破施工方案作为此隧道出口临近营业线的施工方案。

3 爆破方案

考虑临近建成隧道资料、在建隧道开挖情况和建成隧道控爆方案专家意见,隧道开挖采用机械开挖隔震槽结合控制爆破的方式,减弱对既有隧道的爆破震动,爆破震速宜按5cm/s控制。隧道隔振槽深度不小于每循环开挖进尺,宽度不小于0.5m,确保既有隧道加固段落超前20m以上。

根据设计与实际情况Ⅴ级围岩采用三台阶留核心土法施工。施工严格按照“先加固、后开挖、弱爆破、短进尺、强支护、勤量测、衬砌紧跟”的原则组织施工。开挖工序见图3所示。

3.1 三台阶法开挖

Ⅴ级围岩采用三台阶法开挖光面爆破时,采用楔形掏槽,周边眼采用不耦合装药,装药结构见周边眼采用装药和辅助眼装药结构图,如图4。

3.2 爆破控制要点

①采用光面爆破技术和微震控制爆破技术,严格控制装药量,以减小对围岩的扰动,控制超欠挖,控制洞碴粒径以利于挖掘机、装载机装碴。

②隧道开挖每个循环都进行施工测量,控制开挖断面,在掌子面上用红油漆画出隧道开挖轮廓线及炮眼位置,误差不超过5cm。并采用激光准直仪控制开挖方向。

③钻眼按设计方案进行。钻眼时掘进眼保持与隧道轴线平行,除底眼外,其它炮眼口比眼底低5cm,以便钻孔时的岩粉自然流出,周边眼外插角控制3°~4°以内。掏槽眼严禁互相打穿相交,眼底比其它炮眼深20cm。

④装药前炮眼用高压风吹干净,检查炮眼数量。装药时,专人分好段别,按爆破设计顺序装药,装药作业分组分片进行,定人定位,确保装药作业有序进行,防止雷管段别混乱,影响爆破效果。每眼装药后用炮泥堵塞。

⑤起爆采用复式网络、导爆管起爆系统,联接时,每组控制在12根以内;连接导爆管使用相同的段别,且使用低段别的导爆管。导爆管连接好后有专人检查,检查连接质量,看是否有漏连的导爆管,检查无误后起爆。

3.3 爆破标准

开挖断面不得欠挖;炮眼利用率在95%以上,光爆的半壁炮眼留痕率Ⅴ级围岩在80%以上;相邻两循环炮眼衔接台阶不大于150mm;爆破岩面最大块度不大于300mm。

3.4 安全用药量和炮孔装药量

依据《爆破安全规程》,可以初步计算隧道掘进爆破炸药安全用量,确定循环进尺。

通过安全用量公式

计算得出不同距离下,在确保既有线隧道二次衬砌爆破振速V不大于10cm/s的条件下,最大起爆炸药用量。当Ⅴ围岩加强复合式衬砌R=38.76m,时Qmax=327.18kg,Ⅴ围岩加强复合式衬砌R=60m,时Qmax=998.1kg。

3.5 非电毫秒雷管的选用

导爆管为非电起爆系统中的毫秒雷管1-7段,其间隔时间小于50ms;而7段之后,段与段起爆间隔大于50ms。根据隧道爆破掘进时,实际爆破情况表明起爆间隔大于50ms,爆破振动基本不叠加这一规律,现场爆破时采用分段起爆,保证同一段别雷管同时起爆炸药用量均在安全用药量范围以内。

隧道Ⅴ级围岩加强复合式衬砌每循环掘进0.6m。

3.6 微振爆破钻爆设计

光面爆破周边炮眼采用?准25mm小药卷间隔装药,导爆管、导爆索、竹片用电工胶布与炸药卷绑在一起,辅助眼采用普通装药,装药结构分别如图5、图6所示。

4 爆破振动监测

4.1 振动速度监测方案

新建隧道离既有线隧道较近,属临近既有营业线复杂环境下的隧道开挖爆破,且隧道地质条件复杂,岩性不一,爆破振动衰减规律变化不一致,因此,在试爆段需要对隧道爆破进行全程监测,其余地段每周进行复测一次。既有隧道线通车量大,新建隧道试爆期间必须在列车间隔时间进行,由于列车间隔时间较短,进入隧道安装传感器和测试仪器必须抓紧时间,提前联系好监测单位、设备管理单位、各站段。结合隧道的开挖特点、施工方法、测试条件以及振速控制要求等内容,确定监测方案如下:

①将整个隧道分成洞口和洞身二部分,监测重点是洞口部分。

②将明暗交接洞口作为试验段进行重点监测。进口段距既有隧道较近。试验段选择在进口段,试验段监测内容包括:寻找该区域的爆破振动衰减系数k、α值,为爆破设计提供依据;监测既有隧道及其附属结构的爆破振动安全,控制爆破振动速度低于10cm/s;监测洞口周边建(构)筑物的爆破振动安全,控制爆破振动满足振速控制要求。为准确获得该区域的爆破振动衰减规律,传感器安装在既有隧道边墙的拱腰部位,一次安设4个传感器,传感器之间的距离如图7所示,这样一次监测的隧道掘进长度为105m,所获得的爆破振动衰减系数k、α值能正常反映本区域的场地条件。当开挖隧道的掌子面进洞后正式进入振动监控阶段。洞口周边建筑物的振动监测需要在保护对象附近安设传感器,获得该处的最大质点振动速度和主振频率。

③洞身作为控制区域进行监测。进入振动监控阶段,在既有隧道的边壁上每隔50m安装一个传感器,每个掌子面前后共安装4个传感器,位置如图8。每次爆破均进行遥控监测,每次爆破监测数据均通过无线数据传输进行收发,既有隧道的爆破振动速度控制在10cm/s以内。

爆破振动强度用介质质点的运动物理量来描述,包括质点位移、速度和加速度。但大量工程实践观测表明,爆破地震破坏程度与振动速度大小的相关性比较密切,故在实际测试中,大都采用质点振动速度作为衡量地震波强度的标准。本次测试采用质点振动速度作为主测试量,爆破振动频率作为评价隧道洞身和附属结构以及洞口周边建筑物的辅助测试量。

爆炸引起岩石内部质点振动有垂直、径向和切向三个速度分量,以往的测试数据表明,三个方向形成的合速度对爆破地震动起控制作用。因此,在本工程中,全部采用合速度作为测试量。

4.2 监测方法

以往隧道振动检测结果表明,最大爆破振动速度通常出现在拱腰的位置处,因此将传感器安装在临近开挖隧道一侧的既有隧道的墙壁拱腰上,爆破振动记录仪和无线发射装置固定在距墙角1m高的边墙上。传感器在墙壁上安装必须牢靠,安装方法为在隧道壁上钻孔,埋入螺栓,在孔中灌入水泥砂浆固定,在传感器底部焊接螺母,利用螺母与边墙处螺栓连接固定传感器。为防止爆破振动记录仪和无线发射装置被损坏,在其外部罩一铁皮方盒,铁皮方盒锚固在边墙上。测试时,准确记录各传感器距洞口的距离,以便根据爆区的位置,准确计算爆区与测试点之间的距离。

对洞口周边建(构)筑物进行监测时,传感器布置在需保护的建(构)筑物距爆区的最近点处;测点尽可能布置在基岩上,找不到基岩的区域将爆破振动监测点布置在压实的路面上;准确测出测点的位置,确定至爆源的距离;所有传感器用石膏粉牢固粘结在地表,传感器至记录仪的传输信号线长度小于5m,避免长距离的信号衰减。

4.3 监测数据的处理

①回归爆破振动衰减规律

将收集得到的数据按下式进行回归分析,找出该区域的爆破振动衰减系数k、α值。

式中:V―爆破振动速度最大值(cm/s);Q―同段别雷管同时起爆炸药安全用量(kg);R―爆破区药量分布的几何中心至既有隧道边墙的距离(m);K、α―与地形、地质条件相关的系数。

②对比既有隧道的爆破振动速度是否小于10cm/s。

③判别被保护的建(构)筑物的爆破振动是否满足要求。各种建(构)筑物的爆破振动安全判据,采用保护对象所在地质点峰值振动速度和主振频率为指标,将监测结果与《爆破振动安全允许标准》数据进行对比,即可得到爆破振动是否对周围建(构)筑物造成影响。

④将上述得到的数据及时反馈,指导爆破设计和施工。

5 结论

爆破控制技术是隧道建设施工中必不可少的技术,虽然只是整体施工中的一道工序,但对整个隧道工程极其重要。由于爆破控制技术具有技巧性、灵活性和因地制宜性,故需根据具体工程条件,制定合适的爆破控制方案。本文通过对隧道爆破施工方案的设计,为今后类似工程提供一些参考。

参考文献:

[1]汪旭光.中国典型爆破工程与技术[M].北京:冶金工业出版社,2006.

[2]汪旭光.中国工程爆破与爆破器材的现状及展望[J].工程爆破,2007(4):01-08.

[3]黄选军,梁进.邻近营业线隧道小净距控制爆破施工技术[J].铁道建筑技术,2014(07):01-06.

[4]张超.既有隧道对临近爆破的振动响应研究[D].西安建筑科技大学,2012.

爆破施工方案范文第4篇

关键词:地铁、矿山法、竖井、爆破、防护

中图分类号:U231文献标识码: A

一、工程概况:

1.1 停车场出场线

(1)停车场出场线1#竖井

出场线1#竖井(图2-18)位于北环大道与林园东路交叉口的东北角,北侧6m处为笔架山约10m高边坡,南侧为北环大道,西侧为林园东路,

1#竖井净空长6.9m,宽5.9m,基坑深度约为41.6m。围护结构采用Ф800钻孔桩,间距 950mm共38根,钻孔桩进入微风化花岗岩层不少于1米,Ф600钻旋喷桩桩间旋喷止水共38根,旋喷桩桩底需穿透中风化层顶,布置5道环梁,第一道为1000×1200的冠梁,2~4道环梁尺寸为1000×1000,竖井下部为喷锚支护,喷混凝土:C25 早强混凝土,厚0.15m;钢筋网:纵向、环向用φ8 钢筋,构成0.15m×0.15m 网格,全环单层设置。钢筋网应与锚杆连接牢固;钢筋网喷混凝土保护层厚度不小于20mm;砂浆锚杆采用直径22的钢筋,钻孔直径为40mm。

图1-1 出场线1#竖井地质剖面图

出场线1#竖井地质剖面图如图1-1所示,竖井底板底以上有、微风化混合岩侵入,根据1#矿山法施工竖井围护结构》,、主要矿物成分为石英、长石,其次为云母,含少量风化次生矿物,中粒变晶结构,块状构造,部分条带状构造。岩体较完整,裂隙少量发育。岩芯呈短柱状,少量长柱状,金刚石钻进困难。该层岩石饱和单轴抗压强度平均值fr=82.70MPa,最大值fr=96.40MPa,属于坚硬岩。锤击声清脆,有回弹,难击碎,岩体较完整,岩体基本质量等级为II级。

为加快施工进度,需要采用爆破法挖除侵入结构的、11-4>微风化混合岩。出场线隧道底板标高-8.60~14.77m。区间岩芯呈短柱状,少量长柱状,金刚石钻进困难,属于坚硬岩,锤击声清脆,有回弹,难击碎,岩体较完整,矿山法施工区间段主要为Ⅱ、Ⅲ级围岩。

2 爆破施工

2.1 爆破方法施工工艺:

(1)炮孔布置:根据现场实际情况布置炮孔,具体见爆破布孔图。

(2)布孔:根据开挖断面,选择合理的孔网参数、爆破参数,布置好炮孔。

(3)钻孔:钻孔作业前必须认真清理作业面范围内的浮石、松石等,严格按孔位钻孔,以便在装药过程中减少堵孔现象,保证孔网参数符合设计要求,达到预期爆破效果。

(4)装药:严格按工程师要求控制每个孔的装药量,并在装药过程中检查装药高度和堵塞高度。装药过程中发生堵塞现象时,应停止装药并及时疏通,用木制长竿处理,严禁使用钻具、钢筋等处理。如已装入雷管或起爆药包,处理时要注意不许冲击雷管或起爆药包。装药过程中发现药量与装药高度不符时,应及时检查校核,找出问题,并采取相应措施。装药时要设警戒区,非爆破作业人员禁止入内。

(5)填塞:堵塞材料用黄泥、岩粉等,堵塞材料中不许夹有碎石块。根据炮棍上的刻度记号,控制堵塞长度,使其满足设计要求。不能捣固直接接触药包的堵塞材料或用堵塞材料直接冲击起爆药包。严禁堵塞不合格强行爆破。

(6)爆破网路铺设及起爆站。应将过长的联接线剪掉,以使网路清晰,便于检查。铺设起爆网路时,不得硬拉起爆药包。起爆站应设在100m外的确保安全的位置。

(7)警戒、起爆

根据本方案规定的爆破安全距离和现场工程师要求,确定爆破警戒范围和警戒点。每次爆破前30分钟准备进行警戒,警戒范围内的一切人员必须全部撤离。采取警示的方法,提醒司机前方有爆破施工,避免因爆破振动或噪音而发生交通事故,

(9)爆破后安全检查。爆破通风使空气达标后,再等15分钟后,爆破技术人员进入爆破现场,检查爆破效果。如果发现有盲炮、危石等现象应及时处理,未处理前要在现场设立危险警告标志。

(10)退库及登记。现场保管员应将剩余爆破器材仔细清点,如数及时退回临时炸药库,并做好爆破器材领用、使用及退库原始记录。爆破技术人员要对每次爆破过程进行记录,包括爆破参数、爆破效果、装药情况,爆破器材使用情况,以及爆破中出现的问题等。

(11)值得注意的是,每个竖井初次爆破时,应当进行试爆破,观察爆破效果,然后逐渐增加装药量直至计算值。

3 爆破方案选择和装药量计算

3.1 爆破方案选择

加强爆破对周边建(构)筑物的爆破震动监测,根据震动监测数据及时指导爆破作业。

(1)竖井爆破

表4-1竖井爆破参数

底盘抵抗线 W1=(0.4~1.0)H m

炮眼超深 h=0.3~0.5 m

炮眼深度 L=H+h m

填塞高度 l1=1.0~1.5 m

装药长度 l=L-l1 m

孔间距 a=(1~1.5)W1 m

排间距 b=(0.8~1.0)a m

单孔药量 Q=qabH kg

炸药单耗 q=1.0~1.5 kg/m3

按上述方法计算得到φ=40mm的爆破参数值列于表4-2。

表4-2竖井φ=40mm浅眼微差控制爆破参数表

H(m) W1(m) h(m) a(m) b(m) L(m) l(m) l1(m) Q(kg) Q前(kg)

1 0.8 0.3 0.8 0.7 1.3 0.3 1 0.3 0.2

1.5 1 0.3 1 0.8 1.8 0.6 1.2 0.6 0.5

2 1 0.4 1.2 1 2.4 1 1.4 1 0.8

注:Q前指前排炮眼装药量。

矿山法竖井、中间风井的爆破一般在岩层低洼处开切割槽形成自由面,深度进尺控制在1m左右,竖井多采用分次爆破,竖井为减少爆破震动,必须采用控制爆破的方法,通过减小爆破进尺、单孔单响控制爆破,减少使用光面爆破,竖井一般为开挖快进入井底岩层才进入微风化岩层,此时爆破采用楔形掏槽光面爆破的方法,但应控制爆破震动对周边建筑物的影响。

竖井爆破时进行加强覆盖防护,井口全封闭,切割槽开好后,适当加密炮孔,增加堵塞高度,减小单孔装药量,加强覆盖,以防飞石。

3.2 爆破布孔及装药量计算

(4)笔架山停车场出场线1#竖井爆破

爆破布孔形式如图4-1所示。竖井断面爆破设计参数如表4-2所示。

图4-1 停车场出场线1#竖井爆破炮孔布置示意图

为了达到减振降噪的目的,选用楔形+密排监控眼混合掏槽法,即充分利用楔形掏槽的易抛掷和减震作用与贯通掏槽的贯通临空面来最大限度地减轻爆破振动。

3.3起爆方法、起爆网路和起爆顺序

(1)起爆方法:竖井采用电雷管起爆系统,可能有雷雨的阴晴天采用电与非电混合起爆系统,孔外电雷管串联联接。隧道采用非电(导爆管雷管)起爆网路,用激发针起爆。

(2)起爆网路

竖井采用电起爆网路,采用1~11段毫秒电雷管引爆,电雷管串联联接。当爆破日可能有雷雨阴晴天气时,采用电与非电混合起爆网路:采用5~10m的1~11段微差导爆管雷管,每个炮孔内置一发雷管,两条联接线,孔外用同段毫秒电雷管或瞬发电雷管激发,大串联,即形成并串联起爆网路。

隧道采用非电(导爆管雷管)起爆网路,用激发针起爆。采用YJGN-500型起爆器起爆,由于每次起爆雷管数不超过60发,所以是完全可以安全起爆的。

(3)起爆顺序

起爆时以掏槽孔为自由面,从自由面开始,逐排向南起爆。

3.4 安全分析

根据《爆破安全规程》的规定爆破震动安全距离按式4-1计算:

K、α――是与地形、地质条件有关的系数和衰减指数。本处岩石为微风化、中风化的花岗岩和片麻花岗混合岩,根据GB6722-2003《爆破安全规程》,对微风化岩石取K=150,α=1.5;对中风化岩石取K=200,α=1.65。

R――爆破震动安全允许距离(m);

Q――炸药量,延时爆破最大一段装药量(kg);

v――保护对象所在地质点振动安全允许速度(cm/s)。

本工程保护对象为23m远的燃气管道,下穿北环大道、其它居民楼等,按照GB6722-2003《爆破安全规程》,对楼房取v=1.0cm/s,燃气管道取v=2.0cm/s,办公楼、天源田加油站取v=1.0cm/s,对北环大道取v=10.0cm/s。由此计算出各种安全距离下允许的爆破单响最大炸药量,如表4-3。

表4-3 爆破单响最大炸药量(kg)

由上表可以看出,距离钢筋砼楼房小于30m的地带不能采用明爆的方法进行爆破开挖,采用静力爆破的方法开挖。因此,在施工中一定要根据要保护建筑物的距离严格控制单段装药量。在施工中要根据震动监测的实测数据修正K、α值。

4.安全防护剂警戒

4.1控制飞石

竖井竖井爆破时,为控制飞石,可以在岩石表面覆盖沙包、竹笆、铁丝网、等防护,如图5-2所示。井口要加盖10层防坠网,网眼尺寸不得大于100mm×100mm,防坠网应牢固绑扎在冠梁上,设置防坠网的目的是防飞石飞出井口。

图5-2 覆盖防护示意图

竖井井口5m范围禁止爆破,石方采用人工配合机械凿除岩石,因而竖井井口要用覆盖物全封闭,以使无任何岩石飞出井口,覆盖物与竖井口应预留30~50cm排气,防止冲击波掀翻或破坏钢板造成飞石。因该竖井位于住宅小区考虑到噪音减震,特增加了防护网和减震橡胶带具体敷设如下图。

5. 建(构)筑物附近爆破时的振动监测

为确保爆破施工安全,爆破过程中应对爆破区域周边的重要建筑物及设施进行爆破振动监测,根据甲方要求,选择监测点进行振动监测。

为保证监测质量,委托市公安部门认可的爆破振动监测单位进行爆破振动监测。

6.结语

深圳地铁竖井爆破周边环境复杂,对爆破震动的控制要求严格,通过该竖井的地质情况、竖井爆破参数的设计和爆破安全防护做了阐述,在类似地质和周边环境相符情况下提供参考。

爆破施工方案范文第5篇

关键字:沙坪二级水电站导流明渠549.5m高程以下渠身段爆破施工方案

中图分类号:TV73 文献标识码:A 文章编号:

1 工程概况

沙坪二级水电站位于四川省乐山市峨边彝族自治县和金口河区交界处,其左岸位于金口河区境内,右岸位于峨边县境内,坝址位于大渡河和其支流官料河交汇口上游230m处的大渡河干流上,距峨边县城约7km。该水电站是大渡河干流22级梯级开发方案中的第20个梯级的第二级,上游为沙坪一级水电站,下游为已建的龚嘴水电站。

导流明渠位于坝址左岸台地,明渠设计底宽55.0m,设计轴线全长608.64m,其中坝轴线以上渠段轴线长241.0m,坝轴线以下渠段轴线长367.64m。开挖坡比为1:0.3, 539.5m高程处设置3m宽的马道,采用挂网喷混凝土支护。由于工期要求,安排在主汛期施工,钻孔过程中,渗水量较大,钻机效率较低。

2 爆破施工顺序

坝址区岩层较破碎,为降低对周围岩体的扰动,对导流明渠渠身段分区爆破施工,共分4段,第一段为549.5~544.0m高程,第二段为544.0~539.0m高程、第三段为539.0~534.0m,第四段为534.0~529.0m(建基面)。由于梯段施工遵循先中间后两边,先左后右的顺序,即为先施工1区,再施工2区,最后施工3区,循环下降。

3 爆破参数

3.1 爆破参数

爆破参数见表1、表2。

表1 梯段爆破参数

表2预裂爆破参数

3.2 爆破抛掷方向

各施工区爆破抛掷方向见图2所示。

4 爆破施工

(1)按照设计要求测量放样出每个炮孔的孔位,并用红油漆标注清晰。

(2)主爆破孔采用CM-351钻机造孔,预裂孔采用QZJ-100B钻机造孔,造孔完成后检查孔深。现场实际钻孔时渗水量较大,钻机无法按照正常功率钻进,钻头易打滑空转,钻机在钻进过程中发出嗡嗡的嘶鸣声。为保证干地施工条件,提高钻孔效率,每隔间隔一段时间进行集中抽排水。

(3)钻孔方向要求与设计方向一致,无漂移,钻孔倾角与方向偏差不得大于±1.5%孔深;孔位偏差不得大于5%孔距;终孔的高程偏差不得大于±5cm。

(4)爆破孔采用连续耦合装药结构,预裂孔采用连续不耦合装药结构。爆破参数根据现场爆破效果适当调整。

(5)爆破网路的联接必须在全部炮孔装填完毕,无关人员全部撤至安全地点后进行;联接应由工作面向起爆站依次进行,两线的接点应错开10cm,接点必须牢固,绝缘良好。

(6)梯段爆破采用微差爆破网络,分段毫秒电雷管联网,电力起爆。在同一爆破网路上必须使用同厂、同型号的电雷管,其电阻值差不得超过规定值(应控制在±0.2Ω以内)。

(7)边坡梯段爆破最大一段起爆药量,临近设计边坡坡面的缓冲爆破最大一段起爆药量等,根据允许的安全质点振动速度进行控制。在桩井、新浇大体积混凝土、新灌浆区、新喷锚支护区的质点振动速度不得大于安全质点振动速度,见表3。允许爆破质点振动速度控制标准,见表4。

表3 允许安全振速控制标准

表4质点安全振动速度表单位:cm/s

(8)炮孔堵塞前对施工场地进行排水。堵塞物采用一定湿度并含有一定比例砂的黏土,边堵塞边捣固,确保炮孔堵塞质量。

(9)因故未能按时起爆的施工部位,若装药已经完成,应派专人值守,附近应停止施工并禁止人畜、机械、车辆进入;若是电雷管起爆炮区,应将电雷管短接,防止雷电等外因引爆;将电雷管拆除,防止发生意外引爆。

(10)安全警戒人员必须服从爆破指挥所的统一指挥,统一佩戴警戒服装,统一佩戴警戒袖标,必须佩戴对讲机保证通讯畅通,施工现场必须设立明显的爆破安全警戒标识,爆破安全警戒范围不小于300m,在警戒区边缘必须设立明显的安全警戒标牌,标识上爆破时间段。

(11)石方地段爆破后,必须确认已经解除警戒,作业面上的悬岩危石经检查处理后,清理和挖运人员以及施工设备方准进入现场。

(12)爆破开挖渣料采用2.1m3反铲挖装、25t自卸车运输出渣。

5 建基面施工

导流明渠渠身开挖最后一个梯段时,将传统预留保护层进行水平钻爆的施工方法,更改为采用QZJ-100B钻机一次钻至设计基础高程,钻孔角度为90°,钻孔直径90mm,装药时爆破孔底设置30cm厚度的柔性垫层,以保证底板建基面完整的施工方法。垫层材料采用炸药箱箱纸,起爆网路采用非电毫秒雷管起爆、导爆索传爆、起爆器电雷管起爆。施工过程中严格控制爆破孔钻孔深度,保证爆破后建基面平整度达到设计要求,局部不平整部位采取啄木鸟钻机检平。

爆破施工程序:技术交底测量放样钻机就位钻孔清孔、验孔装药、联网爆破平台清理进入下一工作面。

在大规模施工前,通过在导上0-190.0~导上0-160.0段进行柔性垫层爆破试验,选择爆破参数如下:

炸药单耗:0.42kg/m3;钻孔深度:5m;钻孔间、排距:2.5m;堵塞长度:1.5-2.5m;柔性垫层厚度:0.3m,布置在炮孔底部。

装药直径:φ70;炸药类型:2号岩石乳化炸药;

6 爆破振动监测

为使爆破振动监测数据及分析结果能与其他监测方式的结果相互对比和印证,在导流明渠开挖过程中,选取导上0-060.0、导下0+000.0和导下0+110.0三个断面,进行爆破振动跟踪监测。每个断面根据需要布置3~5个测点,每个监测点布置三个侧向(径向、水平径向和水平切向),以便获得现场爆破振动分布特征和衰减规律,为施工期爆破振动作用下预留岩坎的动力稳定性校核提供依据。

7 结论

爆破施工方案范文第6篇

临时船闸及升船机工程是三峡工程大江截流的关键项目之一,必须确保工程进度满足航道按时进水,按计划达到正式通航的目标要求。临时船闸和升船机并列布置,临时船闸为单线一级船闸,闸室有效尺寸为240mx24mx4m,承船厢有效尺寸为120mx18mx4m,在临时船闸闸室和升船机承船厢之间设有一个宽20一35m、长24(]m的中隔墩;临时船闸和升船机开挖工程开工后,工程施工进展顺利,但工程开工1年后,因种种原因,垂直升船机工程缓建,升船机承船厢部位的开挖于1995年5月下旬复工,停工约6个月。

升船机部位暂缓施工后,临时船闸的土石方开挖并未停止,当升船机承船厢部位开挖复工时,临时船闸闸室抽槽开挖已基本完成,升船机承船厢与临时船闸闸室之间形成了30多m的高差,升船机承船厢内尚剩约功万时的岩石有待开挖爆破,致使现场的开挖施工条件和合同订立时的条件出现较大的差别。若仍按原合同投标文件的施工方法进行开挖爆破,势必造成临时船闸闸室和升船机承船厢之间的中隔墩中约巧万时岩体的严重破坏。因此,需要研究开挖爆破的施工办法,减少对中隔墩岩体的破坏,从而减少工程成本和争取非常宝贵的施工工期。

2施工方案的拟定

2.1方案1

方案1为不采取额外的保护措施,按原合同投标文件的施工方案组织施工。沿升船机承船厢的设计开挖边线预裂爆破,钻孔直径so~,孔距50Cm;升船机承船厢内岩石梯段爆破,施工设计爆破参数为:抵抗线2.5一3m,钻孔孔距5一6m,孔径100-lro~,一次起爆的单响药量300一500kg,岩石单耗药量0.5娜耐。

2.2方案2

方案2为仅采取加密预裂爆破钻孔,升船机承船厢内岩体按原合同投标文件的施工方案组织施工,即将方案1中的预裂爆破钻孔孔距变为印cm,其他技术参数相同。

2.3方案3

方案3为采取加密预裂爆破钻孔,不抽槽、其他部位的岩石加严梯段爆破的控制。即将方案1中的预裂爆破钻孔孔距变为团。m,其他部位加严梯段爆破,孔网参数为4mxZm,钻孔孔径l(X)一110mm,一次起爆的单响药量控制在100kg以内,岩石单耗药量0.7一0.8k留时。

2.4方案4

方案4为既采取加密预裂爆破钻孔,又采取靠左侧抽槽、其他部位的岩石加严梯段爆破的控制。即将方案1中的预裂爆破钻孔孔距变为00Cm;左侧先抽槽采取小孔距,小药卷爆破施工,爆破参数为孔网参数2mx2.5m,单耗药量约1.4k岁耐,其他部位加严梯段爆破,孔网参数为4mxZm,钻孔孔径100一110~,一次起爆的单响药量控制在100kg以内,岩石单耗药量0.7一0.8k岁砰。

3承船厢开挖爆破对岩体影响的规律

为了掌握升船机承船厢岩石爆破对中隔墩的影响规律,分析不同的施工方案对中隔墩破坏的程度,特请武汉水利电力大学进行了《临时船闸与升船机中隔墩爆破安全观测试验》,通过试验掌握不同的爆破方式在目标处产生的质点振动速度,得到中隔墩的安全质点振动速度为6.8。而s。再根据不同的爆破方案下产生的不同质点振动速度和理论计算的结果,给出中隔墩被破坏岩体所占岩体总方量的百分比,同时,通过专家评判得出不同施工方案对中隔墩岩体破坏程度的可能概率。

4不同施工方案的损益值计算

4.1计算基础数据

当中隔墩岩体被破坏将有两方面要增加成本,既要进行岩石开挖,又要用混凝土回填恢复中隔墩的体形。全部破坏时,增加的费用为巧万砰x(18.49+230)元/耐二3727.35万元(18.49元/耐为该部位岩石开挖单价,230元/耐为回填混凝土的合同价格水平的单价);当中隔墩岩体无损伤时,不增加费用;当中隔墩岩体轻微损伤时:增加的费用为3727.35x20%=745.47万元;当中隔墩岩体一般损伤时,增加的费用为3727.35x40%二l朔.94万元;当中隔墩岩体较重损伤时,增加的费用为3727.35x印%二2236.41万元;当中隔墩岩体严重损伤时,增加的费用为3727.35x80%=2981.88万元。

4.2不同损伤程度采取施工措施所增加的费用

预裂爆破:(352:0.6x36一382:0.8x36)mx58元/m=33.24万元;承船厢内岩石全部梯段爆破:50.89万时x4.的元/耐=208.14万元;承船厢内部分岩石梯段爆破加抽槽:43.87万耐x4.的元/耐+7.02万m3Kro.20元/耐=251.03万元。(其中:382m为承船厢需预裂爆破的水平长度,36m为承船厢开挖爆破深度,50.89万时为承船厢内岩石全部方量,43.87万耐为承船厢内岩石部分方量,7.02万耐为抽槽方量,59元/m为预裂爆破合同价格,4.的元/时为加严梯段爆破与合同价的差价,ro.20元/耐为抽槽爆破与合同价的差价。)

4.3不同施工方案的损益值计算

决策树又叫决策图,是以方框和圆圈为结点,并由直线连接而成的一种象树枝形状的结构,每条树枝代表该方案可能的一种状态及其概率大小,方框结点代表决策点,圆圈点代表机会点,在各树枝末端列出该状态的损益值及其概率大小,这样构成的图形即为决策树。因此,决策图是由左向右,由简入繁组成的一个树形状图。对不同施工方案的损益值进行计算并列于决策树图中。

5升船机承船厢开挖爆破施工方案优选

爆破施工方案范文第7篇

连拱隧道段通常具有比较复杂的结构,由于地铁隧道断面会根据情况出现变化,会提高地铁隧道的工作难度,并延长工作周期。因此选择科学、合理的施工方案可以有效的提高施工效率,并且保证施工质量。在制定施工方案时,需要考虑一下几点:

1)地铁隧道的施工安全;

2)地铁隧道的结构安全;

3)在保证质量的前提下降低施工难度;

4)在保证质量的前提下缩短施工周期;

5)提高经济效益。

本文主要介绍单一式中墙施工方案和分离式中墙施工方案。

1.1 单一式中墙施工方案

单一式中墙施工方案的具体施工方法如下:

1)首先从右线双连拱小洞隧道开始施工,并且向折返线侧搭建临时施工通道、双连拱和三连拱中墙,然后及时支撑中墙,并且在执行操作时避免偏压;

2)完成中墙衬砌的相关工程后,根据“先小后大、封闭成环”的施工顺序和原则,采用台阶法对右线进行施工时,采用CRD工法对大跨度的折返线隧道进行施工;

3)当工程进行到折返线侧时,首先完成三连拱和双连拱中墙的施工,然后再进行右线掘进;

这种方法在地铁隧道施工中应用比较普遍,但是该方法在应用中存在工作复杂、工期较长、施工成本高等缺点。

1.2 分离式中墙施工方案

分离式中墙施工方案的具体施工方法如下:

1)该方案使用两个单洞,并且采用分离式中墙,在施工时首先修建右线单线隧道;

2)在进行三连拱隧道施工时,首先进行单线施工,然后进行中墙衬砌;

3)按照CRD工法对大断面的右线双连拱隧道进行修建;

4)进行折返线的施工时,工序与右线相反。

分离式中墙施工方案与单一式中墙施工方案相比,工序简单、施工难度低、工期较短、有利于防水、建造正本低等优点,并且对核心岩体进行了保留。

2 三连拱段施工方案

进行右线施工时,首先根据工程要求修建三连拱隧道,全环设置格栅,格栅间距为0.6m/榀。使用混凝土进行全环喷射,对中墙拱顶进行加强,进行中墙施工时,在格栅接头的位置需要破除一个纵向加强梁。使用静态爆破或微差弱爆破的方法进行中墙开挖,完成中墙开挖施工后立即对中墙进行二次衬砌。在完成中墙施工后,需要采取支护措施,并且回填中墙空隙。在完成一侧的施工后,再开始修建对另一侧中墙,完成了两侧中墙的修建后,对两侧单洞隧道进行二次衬砌。最后修建三连拱隧道。

3 地铁隧道施工关键技术

在对连拱隧道段进行施工时,需要保证施工人员严格遵守工作纪律和施工要求,提供良好的施工条件,而且在施工中需要提供强大的技术支持。

3.1 对拉锚杆和加强锚杆

由于施工方案中没有使用单一式中墙,中墙开挖后厚度为0.8m,因此需要设置加强锚杆以及对拉锚杆。其中对拉锚杆要求的规格为采直径22的钢筋药卷锚杆,长度变化范围在0.8m~2.0m之间,采用0.6m×0.5m的间距进行施工。加强锚杆的规格要求为直径25,长度3.0m的中空注浆锚杆,使用0.6m×0.8m的间距设置在中墙的边墙处和两侧仰拱处。

3.2 中墙夹岩柱体注浆加固

中墙岩体最薄的地方,厚度可能仅有0.15m。而且施工过程中的开挖、爆破等操作会导致围岩松动,将对其承载能力产生不良的影响。所以,需要在中墙的仰拱出、墙以及拱顶处分别注浆,以提高承载能力。注浆时,预先埋设直径42的钢管,使用1:1的水泥和参数为30Be~45Be的水玻璃组成双液浆进行注浆,注浆的压力范围为0.2MPa~1.0MPa。在工程的两次的开挖施工时,都需要对中墙注浆,并且在完成最后开挖施工后,需要对中墙夹层注浆,并达到饱和。

3.3 微差微震爆破技术

地铁隧道使用钻爆法进行“0”间距开挖施工。由于地铁隧道很可能穿过建筑物密集的地区,因此在进行预留光面层爆破时,需要保证产生的振动在规定的范围之内,所以需要使用微差微震爆破技术。如果地层的围岩等级为Ⅲ级或Ⅳ级时,在爆破时需要注意以下几点:

1)使用速乳化低震炸药进行爆破;

2)每循环进尺控制在0.6m~0.8m范围内,炮眼之间保证0.4m的间距,合理规定药量,并且保证光面层爆破的质量;

3)起爆网络采用不对称系统,使用非电毫秒雷管进行多段位起爆;

4)中墙处的开挖施工使用两次施工的方法,首先在光面层预留1m,在距离中墙较远侧布置掏槽眼,在预留光面层上布置适量的空眼,合理控制药量,然后在该光面层进行二次爆破。施工时避免超挖,使用人工风镐对欠挖处进行处理。

这样,可以在二次爆破时,有效的减小了爆破产生的振动,达到保护中墙的目的,有利于使用“0”距离的方法开挖连拱隧道。

3.4 辅助剪刀撑加强支护

使用ANSYS有限元软件进行模拟分析,在修建小断面隧道时,为了是施工安全得到保障,需要使用辅助支撑的方法加固小断面隧道,避免爆破时的振动和冲击导致偏压,或者在开挖岩层时,避免释放负荷造成的偏压。

选择I20型钢作为支撑材料。在两端格栅处放置预埋钢板,在施工时,将I20型钢焊接在预留钢板上。然后选择高强螺栓进行进一步加固。在布置支撑时,支撑的间距规定为0.6m,这样可以保证所有格栅都有支撑,支撑需要布置到双连拱隧道两端各1.2m处,而且支撑的布置工作需要在大断面隧道开发前完成。在布置支撑时,需要根据施工条件和工程设备大小选择最好的布置方法。大量的地铁隧道施工经验证明,在进行隧道施工时,布置支撑可以有效的保证施工安全和工程质量。

3.5 信息化施工

为了使隧道的施工安全和结构安全得到保证,需要实时掌握隧道的施工情况,对施工地层的地质特征和具体情况进行分析,制定科学合理的施工方式。通过实际测量显示,该方法在进行小断面隧道施工时,最大沉降的测量结果是14.6mm;进行大断面隧道施工时,最大沉降的测量结果是17.2mm,结构收敛最大值的测量结果是7.6mm,施工时地面最大沉降的测量结果为10mm,开挖三连拱中洞的拱顶时,最大沉降的测量结果为22.8mm。

4结论

本文通过对地铁隧道施工技术进行分析,详细说明了各种施工方案的优点和缺点、施工工序,本文使用两次爆破的方式,有效的缩短了施工工期,降低了施工成本,提高了工程质量和施工安全,并且对中墙的保护和加固方案和爆破技术进行了阐述,希望对地铁建设的隧道施工提供参考。

参考文献

[1]刘小兵.双跨连拱隧道中墙结构合理形式研究[J].施工技术,2004-10,15.

[2]汪俊明.软弱围岩地段双连拱隧道施工技术[J].西部探矿工程,2003,6.

爆破施工方案范文第8篇

某输水隧洞气垫式岩塞进水口设计从前至后分为爆破岩塞体、锁口段、梯型高边墙集渣坑及检修竖井前隧洞连接段;集渣坑作为岩塞体爆破岩渣的主要处置方式,集渣坑容积设计充分考虑岩塞体爆破岩渣自然方量及爆破时不确定影响因素(岩塞口周围的滑坡、超挖等),在严格保证过水断面,洞内集渣效果及集渣运行期间的稳定,本工程集渣坑设计长度为44m,集渣坑高度为20.435~21.31m,宽度为9.2m,由连接段隧洞底板向下开挖12.11m;集渣坑设计剖面。

2集渣坑施工方案

根据隧洞内集渣坑“高、宽、陡”特点,开挖、支护编制两套施工方案。

2.1方案一(连接段形成施工道路)

在连接段隧洞K0+101.882~K0+61.442段形成长为40.44m,宽为5m的施工运输道路,运输道路坡度为1:4,运输道路集渣坑侧高程为249.49m,比集渣坑底板高2m,集渣坑开挖、支护、后期混凝土浇筑均可以利用此施工道路施工;运输道路按照最大坡比1:4,运输道路水平长度40.44m,集渣坑进行常规的爆破分层施工,随着每层开挖形成;集渣坑内开挖石渣可以在工作面内直接利用液压反铲装自卸汽车运输出洞外,本施工道路还可用作支护、混凝土衬砌材料及设备运输。洞内开挖分层。集渣坑施工完毕以后,运输道路采用C20抛石混凝土回填至原连接段隧洞底板设计高程。

2.2方案二(集渣坑段内形成施工道路)

先期在集渣坑施工过程中,形成17.6%(坡度角约10°)的出渣施工运输道路,以此施工道路为分界线,分为A区和B区两个施工区域进行施工。A区及施工道路以下2m范围内的开挖、支护利用此施工道路施工;B区内的开挖、支护施工拟利用液压反铲及垂直运输方式施工。AB区分界线以上的石渣可以直接采用液压反铲装车运输,B区出渣将采用两台1.0m3反铲以打接力的方式将石渣倒运至连接段隧洞内,然后装15t自卸车出渣,最后剩余少量石渣采用人工辅助吊篮从集渣坑内运出;B区的支护以及集渣坑的混凝土衬砌施工也利用垂直运输方式施工。

3两种方案工期分析

3.1方案一

开挖共分六层,Ⅰ层为隧洞主过水断面开挖,Ⅱ层高3.76m,Ⅲ层~Ⅴ层高为3m,保护层0.5m,Ⅲ层~Ⅴ层每层先开挖先锋槽,先锋槽布置于集渣坑上游侧靠近岩塞位置,先锋槽第一次开挖尺寸为3m宽,二次扩挖至5.3m宽;每层先锋槽开挖完成后采用水平开挖方法,由岩塞体向连接段方向开挖,每排炮进尺3m。Ⅱ层以下开挖支护共计73天完成,Ⅰ层开挖支护计划13天完成,集渣坑施工时间共计86天。利用施工道路,底板基础清理计划7天完成。利用施工道路,混凝土施工时材料及设备可以直接运输至工作面,集渣坑混凝土衬砌施工垂直分缝按9m一仓,共分为5仓,(45m长),施工时隔仓浇筑;水平分缝按3m一层施工考虑,两侧边墙平起浇筑,共分为7层,每层计划施工3天,混凝土施工约42天。施工道路抛石混凝土施工计划7天完成。

3.2方案二

利用宽约5m小部分扩挖施工平台,集渣坑开挖支护计划工期约150天。利用垂直运输设备,底板混凝土基础清理计划10天完成。集渣坑混凝土施工时施工材料不能直接运输至工作面,需要利用垂直运输设备运输至工作面,集渣坑混凝土衬砌施工垂直分缝按9m一仓,共分为5仓,(45m长),施工时隔仓浇筑;水平分缝按3m一层施工考虑,两侧边墙平起浇筑,共分为7层,每层计划施工4天,混凝土施工约56天。

3.3施工工期

方案一:开挖支护计划86天完成,底板混凝土基础清理计划7天完成,混凝土衬砌计划42天完成,抛石混凝土计划7天完成,总工期142天。方案二:集渣坑开挖支护计划150天,底板混凝土基础清理计划10天完成,混凝土衬砌计划56天完成,总工期216天。集渣坑开挖支护为关键工作,处于关键线路上,施工方案一相对于施工方案二节省直线工期74天,从而节省总工期74天;扣除混凝土衬砌节省的施工时间14天,集渣坑施工方案一开挖支护节省总工期60天。

4、两种方案的优缺点

4.1方案一(连接段形成施工道路)

优点:在连接段形成施工道路,本方案开挖及运输施工与常规洞挖方法一致,施工速度快,集渣坑的石渣运输不受限制,运输设备可在工作面进行装渣,大大节省工期;施工安全有保障,施工人员及设备施工通道有保障,为后期的混凝土衬砌的各个工序施工提供了运输通道。缺点:本方案需要新增加开挖量(10.11*40.44)/2*5=1022m3,C20抛石混凝土1022m3。

4.2方案二(集渣坑段内形成施工道路)

优点:不需要大幅增加开挖及回填混凝土工程量。缺点:集渣坑B区开挖出渣需要两台液压反铲进行倒渣,人工配合运渣,出渣较困难,存在安全隐患问题多,本方案中石渣运输存在垂直作业,特别是靠近连接段侧,施工中考虑安全因素较多。混凝土施工期间没有施工通道,需要增设起重机或卷扬机简易提升系统,减慢了工程施工进度。

5施工成本

施工方案一开挖支护节省工期60天,增加开挖及C20混凝土回填成本约(165+405)*1022=58.3万元施工方案二相对施工方案一比较,延长工期60天,增加小部分扩挖及垂直运输费用约20万元。

6方案比选

集渣坑开挖支护施工方案一(连接段形成施工道路)比施工方案二(集渣坑段内形成施工道路)缩短工期60天,但增加费用约38.3万元;方案二渣料、物料运输均必须经过装卸倒运,施工繁琐,且用另置提升系统施工存在安全隐患。集渣坑作为岩塞进水口关键部位,从施工进度、施工安全、施工方便的角度考虑,两种方案经过比选应拟采用施工方案一进行集渣坑施工。

7结语

隧洞内集渣坑施工受空间限制,高空作业,交叉作业,安全管控难度较大,集渣坑又临近水源,集渣坑施工突涌水风险极高,开挖支护强度大、时间长;受水库水位制约,施工工期应有严格控制,合理利用有效工期极其重要,集渣坑施工作为岩塞爆破进水口施工关键节点,机械及人员进入、撤离通道方便通畅,对高风险施工作业人员心理素质调节也能起重大的作用,本工程集渣坑施工方案选择希望能为后续类似工程施工提供参考思路。

爆破施工方案范文第9篇

关键词:深基坑施工;施工方法;施工质量。

中图分类号:TU74文献标识码:文章编号

1 工程概况

1.1 地理位置

本项目位于山东青岛市东南的董家口嘴,本项目取水口工程位于场地西南角,西侧紧邻西护岸,南侧靠近工作船码头引堤堤根。取水口基坑占地范围东西长向度92m、南北向95m呈倒梯形,占地面积约2000m2。原地面走势为南低北高,标高为-1.0 ~2.0m(当地理论最低潮面),且北侧(陆侧)已回填块石至+6.5m。开挖后基底标高为-7.6m。设计高水位为4.705m,低水位为0.665m。取水口工程位置图见图1。

图1.取水口工程位置图

1.2地质情况

本区钻孔分布于近岸地带的养殖塘及礁盘之上。现有钻孔中揭示地层主要有强风化花岗岩(砂砾状)、强风化花岗岩(碎块状)、中风化花岗岩。大部分地带基岩直接出露且整体性较好,养殖塘内分布修建时炸礁遗留的碎石块。

1.3地下水

场地地下水根据其含水层的岩性及地下水赋存条件不同,可分为第四系松散层孔隙水、基岩裂隙水两大类。松散层孔隙水主要为赋存于粗砂层,该类型含水层属强透水层,富水性较好,粘性土和淤泥质土可视为相对隔水层。基岩裂隙水主要赋存于中风化花岗岩裂隙中。其富水性及导水性受断裂构造控制,具各向异性,且不排除局部破碎带有地下水量较大的可能。

各类地下水主要接受相邻含水层的侧向补给及海水的下渗补给,并向海域低洼方向渗流排泄。

2 施工特点及难点

1、开挖强度较高的中风化花岗岩需要爆破施工。爆破施工以及后期构筑物的施工需要干地施工条件,因此要在基坑设置止水围堰。在临海处设置止水围堰施工难度大,且由于基坑施工期为5、6月份,属于多雨季节;施工期经历台风季节,面临暴雨和风浪恶劣天气不利于降水、排水及支护的稳定。

2、止水围堰施工完成后,对基坑内进行爆破施工,势必会对围堰产生破坏,影响围堰的稳定以及止水效果。

3、施工工期短,施工工序穿插多,爆破施工、石渣外运以及排水同时进行,且由于基坑较深石渣外运难度大。

3 施工方案设计设计、比选

3.1 方案设计

针对本工程的施工特点,我们设计了两种施工方案。现将两种方案的优缺点进行对比分析:

方案一:在取水口在取水口工程外侧回填开山土石形成临时围堰,围堰由内围堰、堰以及粘土芯墙组成。在取水口区域进行爆破开挖(围堰断面图见图2),采用集水坑降水配合开挖,施工中若发现渗水严重则对渗水区域进行局部灌浆制水处理。

方案二:在取水口工程外侧回填开山土石形成临时围堰,临时围堰岩面以上采用Ф1000旋喷桩止水,止水施工完成后对取水口区域进行爆破开挖(围堰断面图见图3)。

图2.一方案围堰断面图(海侧)

图3.二方案围堰断面图(海侧)

3.2 技术经济比较

两种施工方案的优缺点比较见表1。

表1施工方案比较表

3.3 推荐方案

考虑到本工程施工工期短且地质较好的特点,经过综合分析推荐第一方案。在第一方案止水围堰施工前要将少量碎石及强风化花岗岩清理掉,以防止外侧海水在此处渗入基坑内。

4 推荐方案施工设计

4.1 止水围堰施工

止水围堰顶标高为+6m,顶部宽度为11m。止水围堰由内围堰、堰以及粘土芯墙组成,围堰内坡为1:1.5,外坡为1:1。为了减少围堰受风浪的影响,在堰外侧设置扭王字块临时护面。

内堤与外堤采用10~100KG级配良好的块石抛填,粘土芯墙选择袋装粘土。当内堤加高至当地理论最低潮面+2.0m,外堤加高至+4.5m时,对准备抛填粘土芯墙区域进行清理至岩石表面,满足要求后,使用自卸车运粘土至现场,人工装填袋装粘土,粘土芯墙采用逐层抛填的方法,粘土墙厚不小于2.0m,分四层抛填到顶,分层标高依次为+1.0m、+3.0m、+5.0m、+6.0m,抛填前必须保证将外堤和内堤间粘土层位置清理干净,保证无块石和砂土层存留,两侧使用挖机理好坡度,并铺设400g/m2土工布一层。土工布宽6m,沿垂直围堰轴线方向铺设预留长度到顶标高,相邻两幅土工布间相互搭接长度1m,保证粘土墙处于土工布包围中。 抛填粘土时,要防止将块石和碎石渣混入到粘土中,确保证粘土墙的连续性。每一层粘土墙抛填完成后将土工布提起,抛填两侧石堤,将粘土墙挤住,抛填时要保证粘土芯墙的厚度满足要求。

内堤抛填施工需随粘土芯墙抛填逐步加高,总共分三层抛填至顶,第一层标高填至+2.0m、第二层抛填至+4.5m、第三层抛填至+6.0m。

4.2 爆破施工

为了最低限度的减小对已建成的止水围堰的影响,以及避免因爆破引起底部岩层开裂而导致止水困难等因素,本次爆破使用手风钻进行钻孔,采用分层、分区域钻孔爆破的方式。采用手风钻钻孔爆破的优点是孔径较小,可以精确控制装药量,防止大孔径炮孔装药量过于集中而导致局部超挖严重。首先在基坑南侧地势较低处进行爆破,形成临空面后依次向基坑北侧施工。

4.3 石方开挖运渣

基坑内爆破完成后立即组织多台挖掘机按照平面开挖图和断面图进行施工,在基坑北侧设置坡道供自卸车上下。当土方开挖至基坑北侧坑边坡道时,在基坑顶自然地面上设置一台16米长臂挖掘机,在基坑内部设一台小挖掘机。施工时小挖掘机负责清理基坑内的多余石料,小挖掘机在清理至基坑标高时后退行走,同时将区域内的余料转运至长臂挖掘机的挖掘范围内,由长臂挖掘机将土方转运至自然地面装车运走。

4.4 排水处理

根据止水围堰设计及场地水文地质情况,在基坑开挖过程中,以“集水明排”的措施为主,在坑底设置集水坑,做好基坑及周边的截水、疏水和排水工作,保证施工现场在基本无水状况下施工。

5 结束语

爆破施工方案范文第10篇

关键词:挖方路基;施工;方案

一、施工前的准备工作

首先,要对设计文件进行全面熟悉,并会同设计代表进行现场核对和施工调查,发现问题及时修改。在路基开工前,还要进行施工测量,其中包括中线及其高程的测量,水准点导线点复测与增设,横断面检查与补测。为了便于施工,要根据路线中桩,设计图表定出路基边线等具置,确定路基轮廓。

二、土石方开挖施工方法

1、路基场地清理

(1)路基开工前首先对图纸所示的各类植被、垃圾、有机杂物等进行现场核对和补充调查,发现与图纸不符,及时报告监理工程师核查。

(2)将公路用地范围内的所有植被、垃圾、有机杂物等和原地面顶部20CM范围内草皮和表土进行砍伐和清除运走,符合设计图纸及监理工程师的要求。

(3)所有清除的杂物均放在路基用地范围以外不防碍施工的设计指定位置作备用或废弃,以堆放稳定、不干扰交通和污染环境、整齐美观为原则。

(4)清理完毕后,将遗留下的坑穴用监理工程师同意的材料填平夯实,检查合格后即可进行下一道工序施工。

2、路基土方开挖

(1)开挖采取自上而下分层开挖,不得乱挖或超挖。开挖时如发现土层性质有变化时,应修改施工方案及挖方边坡,并及时报监理工程师批准。

(2)根据开挖地段的路基中线,标高和横断面,精确定出开挖边线,并提前作出截、排水设施,土石方工程施工期间的临时排水设施尽量与永久性排水设施相结合。

(3)路基开挖逐层施工,土方开挖以挖掘机配自卸式汽车进行挖运。开挖弃方在指定的弃土场进行弃置,若弃土场不能满足弃方要求时,应尽早重新选择弃土位置并修改相应施工方案报监理工程师批准,但弃土场的位置不能选在沿江、沿山坡和其它图纸规定不能横向弃置废方的开挖路段。

(4)居民区附近的开挖应采取有效措施,以保护居民区住房及居民和施工人员的安全,并为附近居民的生活及交通提供临时便道或便桥。

(5)开挖中要注意边坡的整修,避免边坡不顺。而当发现土层性质变化时,要及时修改开挖边坡,并报监理工程师审批。

(6)挖方标高应按照设计标高开挖避免超挖,挖好的土石方路堑30CM范围内的压实度以JTJ051-93重型击实试验标准进行检验,其压实度均不应小于95%,若不符合则进行翻松碾压,使压实度达到要求。若挖方路床以下土质不良时,将按图纸所示或监理工程师指示的深度和范围,采取挖除,换填或其它措施进行处理并压实。

3、路基石方开挖

(1)根据地形、地质、开挖断面及施工机械配备等情况,采用能保证边坡稳定的方法施工。开挖的石方须破碎作为路基填方材料。

(2)石方路堑严禁过量爆破,并应在事前14d作出计划和措施报监理工程师批准。未经监理工程师批准,不得采用大爆破施工。当确需进行大爆破时,应严格按图纸要求及《公路路基施工技术规范》规定编制技术设计文件,并于爆破施工前28d交监理工程师审批。大爆破施工后的石方坡面,应凿成平整度不大于200mm的表面。

(3)爆破器材的存放地点、数量、警卫、收发、安全措施及必要的工艺图纸编制报告,应在爆破器材进入工地前28d报监理工程师审批,同时将运入路线和时间报有关管理部门批准,并取得通行证后方可将爆破器材运入工地保管。

(4)应确定爆破的危险区,并采取有效的措施防止人、蓄、建筑物和其它公共设施受到危害和损失。在危险区的边界应设置明显的标志,建立警戒线,显示爆破时间的警戒信号,在危险区的入口或附近道路应设置标志,并派人看守,严禁人员在爆破时进入危险区。

(5)由于爆破引起的松动岩石,必须清除,由于爆破造成的坡面凹凸不平,深度或突起高度超过300mm且面积超过1m2时该区域应采用C15级以上混凝土填平并与原岩面结合牢固。

4、弃方的处理

(1)在挖方路段开工前,向监理工程师报批土石方开挖、调运施工方案,该方案包括挖方及弃方数量、调运方案,弃方位置及其堆放形式,坡脚加固处理,排水系统的布置以及有关的计划安排等。

(2)当弃土场的位置、堆放形式或施工方案有更改时,必须提前将更改方案报监理工程师批准。

(3)弃土场应堆置整齐、稳定、排水畅通、避免对土堆周围的建筑物,排水及其它任何设施产生干扰或损坏,避免对环境造成污染。

5、质量控制要点

(1)正确标出边桩线,施工中经常检查边坡开挖坡度,及时纠正偏差。

(2)坡面平顺光滑,无明显的局部高低差。土质边坡预留的30cm保护层由人工从上至下顺坡修整。

上一篇:房屋建筑施工论文范文 下一篇:自动化设备范文