数字化岩土工程勘察技术措施分析

时间:2022-10-30 05:00:38

数字化岩土工程勘察技术措施分析

【摘 要】岩土工程勘察是一项综合性的工程地质调查工作。 随着计算机图形处理技术的完善,已经完全可以集成以岩土工程建模、岩土工程数字化、岩土工程数据库管理、岩土工程特性分析、岩土工程地质解释以及空间分析和预测、地学统计和图形可视化的一体化系统,继而发展成为现代化、信息化为一体的岩土工程勘察数字化新体系。本论文就将主要对数字化的岩土工程勘察进行简单的探讨,以期和同行分享。

【关键词】岩土工程;数字化;勘察

1 岩土工程数字化勘察技术

岩土工程勘察的对象是建设场地的地质、环境特征和岩土工程条件,具体而言主要是指场地岩土的岩性或土层性质、空间分布和工程特征,地下水的补给、存贮、排泄特征和水位、水质的变化规律,以及场地周围地区存在的不良地质作用和地质灾害情况。岩土工程勘察工作的任务是查明情况,提供各种相关的技术数据,分析和评价场地的岩土工程条件并提出解决岩土工程问题的建议,以保证工程建设安全、高效运行,促进经济社会的可持续发展。数字化岩土工程勘察是指应用当代测绘技术、数据库技术、计算机技术、网络通信技术和CAD技术,通过计算机及其软件,把一个工程项目的所有信息(勘察、设计、进度、计划、变更等数据)有机地集成起来,建立综合的计算机辅助信息流程,使勘察设计的技术手段从手工方式向现代化CAD技术转变,作到数据采集信息化、勘察资料处理数字化、硬件系统网络化、图文处理自动化,逐步形成和建立适应多专业、多工种生产的高效益、高柔性、智能化的工程勘察设计体系。

2 岩土工程勘察技术中存在的主要问题

2.1 采用传统的勘察方法和传统的勘察手段已经很难满足设计的需要,存在着许多急需解决的岩土工程勘察技术问题,这些问题主要有以下几个方面:

2.1.1 界面划分,主要有岩土体和岩石风化程度的界面划分,地质构造和软弱结构面的判定,以及不良地质体的地质界面等。

2.1.2 地质形态,主要有不明地下物体、空洞及其分布形态、埋藏位置和埋藏深度的确定。

2.1.3 岩土参数,主要是那些难于取到原状岩土样和难于进行室、内外试验的岩土层即粗颗粒土、残积土和风化岩等。

2.1.4 综合能力,主要表现在一部分勘察技术人员缺乏对勘察各专业的野外和室内原始资料的整理、分析、利用的能力,缺乏如何辨别真伪、归纳总结的能力,缺乏建筑、结构设计方面的知识,常造成勘察的目的不明确,所提供的资料不能满足设计的需要。

2.2 探讨问题的对策

2.2.1 可以利用工程物探可连续加密测点的办法来获得连续的地质界面。从而有效的解决传统钻探手段以点带面划分地质界面时常带来的漏判、划分不准确等缺点;并且可以利用综合工程物探方法有效地解决传统勘察手段难于解决的诸多岩土工程问题。

2.2.2 加强室内、外测试新技术和施工检测技术的使用,通过其所获得的数据和资料,经过分析、对比,建立它们之间的关系,并通过工程施工检测所获取的实测资料反算所得到的参数作为对比依据,确保所提供的岩土工程设计参数的可靠性。

2.2.3 加强勘察技术人员的再教育和技术培训并形成定期制度,促进其知识的更新换代。勘察单位施行内部岗位轮换制度,促成勘察技术交流、知识渗透,尽可能组织技术人员参加各种有关的学术活动和讲座,达到扩大勘察技术人员的知识广度和深度的目的。强调计算机技术的应用,以提高他们的技术综合能力。

3 数字化岩土工程勘察应用实现的关键技术

3.1 岩土工程数字化建模方法

岩土工程地质建模的方法目前采用的主要有表面模型法,表面模型法(也叫数字表面模型)的历史较早,它的基本内容就是通过精确的表示出工程地质体的外表面来表示均质地质体的建模方法,也是目前广泛使用的建模方法。表面模型法的数据来源是通过测点获得的一系列离散的测点资料,包括测点的几何特征数据和属性特征数据,然后利用数据解释结果重构地质体界面。可以抽象为把一系列同属性的点按照一定的规则连接起来,构成网状曲面片,进而确定整个地质体的空间属性,有很多方法用来表示表面,常用的方法主要有数学模型法和图示模型法,本论文主要讨论图示模型法。常用的图示模型法有边界表示法、规则格网法、等值线法、不规则格网法等,其中不规则格网法是本系统选用的模型表示法,将做详细分析讨论。不规则格网法(TIN)是将区域内有限个点将区域划分为相连的三角面网络。区域中任意点落在三角面的顶点、边上或三角形内,如果任意点不在顶点上,则该点的数字属性值通常通过线性插值的方法得到(在边上用边的两个顶点的高程,在三角形内则用三个顶点的高程),所以TIN是一个三维空间的分段线性模型,在整个区域内连续但不可微。有许多种表达TIN拓扑结构的存储方式,这里采用一个简单的记录方式是:对于每一个三角形、边和节点都对应一个记录,三角形的记录包括三个指向它三个边的记录的指针,边的记录有四个

指针字段,包括两个指向相邻三角形记录的指针和它的两个顶点的记录的指针;也可以直接对每个三角形记录其顶点和相邻三角形。每个节点包括三个坐标值的字段,分别存储X,Y,Z坐标。这种拓扑网络结构的特点是:对于给定一个三角形,查询其三个顶点属性和相邻三角形所用的时间是定长的。它在沿直线计算地形剖面线时具有较高的效率,当然可以在此结构的基础上增加其它变化,以提高某些特殊运算的效率。

3.2 数字化岩土勘察工程数据库系统

基于GIS的岩土工程勘察涉及到的原始数据主要为地理信息方面的空间数据和非空间数据,数据来源包括:

3.2.1 基础地理数据这些数据主要包括:a.自然区划图。该图反映被研究区域的地理区划、河流、道路、居民区、山川、公共设施等等自然地理信息。b.地形、地貌图。 该图反映被研究区域的自然地貌情况。

3.2.2 岩土工程勘察数据这些数据主要包括:所研究区域的工程地质勘探资料。经过筛选、处理的各勘探点包括地理、环境、土的物理力学指标在内的所有信息。 各类建筑场地的地层信息,比如液化等级、液化指数、特征周期、年代、沉积相等。

3.2.3 数字化岩土勘察工程数据库系统可以按以下几个步骤实施构建:a.岩土工程勘察数据库的概念模型设计。岩土工程勘察数据库管理作为岩土工程勘察数字化系统的一项基础工作是一个数据密集、处理复杂的数据库应用问题,为了能获得反映信息世界的概念性数据模型,将与实体和联系相关的功能与行为剥离出来,仅从现实世界中实体的数据侧面来建立模型即研究数据对象与属性及其关系,并在此基础上建立相对应的数据库表结构。b.数据库建立实现。岩土工程一体化系统的数据有三类:用户输入的原始数据、系统生成的中间数据及最终数据。原始数据由测点数据组成,而测点数据又由测点几何属性数据(位置)和测点信息属性数据;中间数据包括根据原始数据系统自动生成的地层层面等值线模型、三维表面模型、剖面模型等,根据这些模型可以生成用户需要的各种图件,还可以进行各种信息查询操作;最终数据种类繁多,主要是根据用户需要由中间数据生成,包括图形资料和文档资料如,地质勘察报告等。

参考文献:

[1]戴一鸣.工程物探技术在岩土工程中的应用[J].福建建筑,2004.

[2]GB50021-2001.岩土工程勘察规范[S].北京:中国建筑工业出版社,2002.

[3]谭克文.建设工程质量控制[M].北京:中国建筑工业出版社,2003.

[4]黄俊泉.浅谈工程勘察中的问题与措施[J].广东科技,2007.

[5]常金铭.岩土工程勘探工作重点[M].北京:冶金工业出版社,2002,11

上一篇:浅析如何加强我国路桥施工质量控制 下一篇:针对深层搅拌桩在地基处理中的施工分析