数字化制造技术范文

时间:2023-12-05 11:37:09

数字化制造技术

数字化制造技术范文第1篇

【关键词】数字化;先进制造;机械;信息化

【Abstract】This paper presents the key feature of advanced manufacturing technology. The relationship of advanced manufacturing technology and digital technology were discussed. The status and development of the digital technology and advanced manufacturing technology were analyzed. Pointing out that digital manufacturing is the core technology of the advanced manufacturing technology. Several key technologies in the digital manufacturing system were specifically discussed.

【Keywords】Digital technology; Advanced Manufactories Technology; Mechanical Manufacture; Informatization

1 先进制造技术的含义

先进制造技术AMT(Advanced Manufactories Technology)是指以提高制造企业综合效益为目的,综合利用信息、能源、环保等高新技术以及现代系统管理技术,对传统制造过程中及产品的整个寿命周期中的使用、维护、回收、利用等有关环节进行研究并发行的所有适用技术的总称[1-2]。

相对传统制造技术,数字化制造技术是一项融合数字化技术和制造技术,且以制造工程科学为理论基础的重大的制造技术革新,是先进制造技术的核心。数字化先进制造是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的。它是对制造过程进行数字化的描述,将制造信息采用数字化的表征、存储、处理、传递和加工,从而在数字空间中完成产品的制造过程[3-6]。

2 数字化是先进制造技术的基础

2.1 先进制造技术的基本特征

先进制造技术包括以下五个基本特征。

(1)先进性。制造工艺作为先进制造技术的基础,必须是经过优化的先进工艺。先进制造技术的基础必须是优质、高效、低耗、清洁工艺,它从传统制造工艺发展起来,并与新技术实现了局部或系统集成。

(2)通用性。先进制造技术不是单独分割在制造过程的某一环节,它覆盖了产品设计、生产设备、加工制造、销售使用、维修服务,甚至回收整个过程。

(3)系统性。随着微电子、信息技术的引入,先进制造技术的驾驭信息生成、采集、传递、反馈、调整的信息流动过程。先进制造技术是可以驾驭生产过程的物质流、能量流和信息流的系统工程。

(4)集成性。先进制造技术由于专业、学科间的不断渗透、交叉、融合,界限逐渐淡化甚至消失,技术趋于系统化、集成化,已发展成为集机械、电子、信息、材料和管理技术为一体的新兴交叉学科。

(5)技术与管理的更紧密结合。对市场变化做出更敏捷的反应及对最佳技术经济效益的追求,使先进制造技术十分重视生产过程组织管理体制的合理化和最佳化。

2.2 基于数字化的先进制造技术

数字化制造技术符合先进制造技术的上述五个基本特征。先进制造技术时代是数字化信息的时代,数字化技术是数字的生产、采集、存贮、变换、传递、处理及广泛利用的新兴科技领域。制造业从50年代数控机床的发明,标志着机械制造业向着数字化走出了第一步,随后制造信息化沿着三个方面推进,一是现场生产方面,如:NC/CNC/DNC/PLC/FMS/AC等;二是产品和工艺设计方面,如APT/CAD/CAM/CAE等;三是生产管理和集成方面,如MRP/PDM/ERP/CIMS等。可以说信息技术改变了当代制造业的面貌。

3 数字化是先进制造技术发展的核心

3.1 数字化先进制造的核心技术

数字化是先进制造技术的核心,它是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的。数字化先进制造主要包括以下几个核心技术[4,6]:

(1)制造过程的建模与仿真。制造过程的建模与仿真是在一台计算机上用解析或数值的方法表达或建模制造过程,建模通常基于制造工艺本身的物理和化学知识,并为实验所验证。

(2)网络化敏捷设计与制造。利用快速发展的网络技术,改善企业对市场的响应性。我国企业向国际接轨就必须在此领域开展研究,尽快掌握并赶上国外先进水平。

(3)虚拟产品开发。虚拟产品开发有四个核心要素:数字化产品和过程模型、产品信息管理、高性能计算与通讯和组织、管理的改变。

3.2 数字化对先进制造技术的实现

(1)数字制造的全球实现―网络制造。随着数字化技术、计算机网络技术及交通运输事业的迅速发展,这些企业可利用协同工作技术,在一定的时间、一定的空间内,利用计算机网络,小组成员共享通过数字网络在企业内部传递的知识与信息。

(2)数字制造的动态联盟―敏捷制造。为实现高增值、高产品质量及优质服务,只有借助于高性能计算机和高速网络,在数字化环境中,充分利用其他企业制造过程的信息流和数据库等有用的数字化资源,才能对变化市场做出快速的响应。对于某些产品一个企业不可能快速、经济地独立开发和制造其全部,必须根据任务,由一个公司的某些部门或不同公司按资源、技术和人员的最优配置。于是,一种以数字制造为平台的先进制造技术即数字制造的动态联盟―敏捷制造崭露头角。

(3)数字制造的计算机实现―虚拟制造。数字化表征与传递、建模与仿真是数字制造的核心科学问题。这种能实现制造形状与过程的数字化表征、非符号化制造知识的表征、制造信息的可靠获取及其传递的、由整个制造信息形成的数字空间,为计算机和计算机网络的应用提供了用武之地。

(4)数字制造的快速实现―快速原型制造。制造业面临两个重要的挑战:一是要大大减少开发时间,二是产品的个性化。虽然计算机辅助设计和制造(CAD和CAM)已在很大程度上改善了传统的产品设计和制造方法,但在计算机辅助设计和计算机辅助制造集成实践过程中仍有许多障碍。

虚拟制造技术在计算机上实现了产品实际的制造过程,对缩短产品开发的周期、减少开发费用、提高市场竞争能力做出了重大贡献。通过长期的探索与实践,催生了制造技术上的又一次新的变革―快速成型制造技术。

(5)数字制造的环保化实现―绿色设计与制造。制造业为人类的繁荣昌盛做出了巨大贡献的同时,每年产生了近55亿吨的无害废品和7亿吨的有害废品。因此,为了有效地保护环境,一定要在制造的各个阶段进行污染控制。有必要使用能在各个阶段评估环境被影响的后果的工具和方法学来支持设计和制造,一种具有意识的先进制造技术―绿色设计与制造ECD&M (EnvironmentallyConscious Design and Manufacturing )。

4 数字化是先进制造技术发展的未来

目前,计算机和网络已成为制造业企业的基础环境和重要手段,目前世界500强企业无一例外地建立了内部网。制造业在知识经济到来时呈现明显的信息化趋势,可以说信息技术在促进当代制造业发展过程中的作用是第一位的,信息技术将在更深层次上渗透和改造传统制造业。

当前,数字化制造正在深入发展,其主要趋势呈以下四点:

(1)由二维向三维的转变―形成以MBD/MBI(Model Based Definition,MBD 基于模型的定义/Model-BasedInstructions,MBI基于模型的作业指导书)为核心的设计与制造。MBD是用集成的三维实体模型来完整的表达产品生命周期各阶段的产品定义技术标准,为设计人员服务,解决的是要制造什么的问题;MBI是以三维模型表达的车间工作规范和方法,为加工、装配、检测人员服务,解决的是怎么制造的问题。MBD/MBI技术将使工程技术人员从繁琐的二维图纸和表格文化中解放出来,可将更多精力转移到需求分析和产品创新研发上。

(2)真正并行和协同的实现-数字化制造中的直观可视化工作环境以及建模和仿真技术,为并行和协同工作提供了友好的协同工作环境及有效的实验验证手段和评估优化工具。数字化制造是制造业信息化发展的新阶段,也是目前制造业的重要发展方向,如精密化、智能化、网络化、极端化等,无一不与数字化制造技术的发展密切相关。

(3)数字化装配与维修的应用―装配是产品生命周期中的重要环节。虚拟现实技术(VR, Virtual Reality)的发展为解决装配序列规划和装配性能仿真提供新的思路和方法,虚拟装配技术可在无物理样机的情况下对产品可装配性、可拆卸性、可维修性和装配过程中的装配精度、装配性能等进行分析、预测和验证,并支持面向生产现场的装配工艺过程的动态仿真、规划与优化。目前虚拟装配技术已从简单的几何装配正朝着考虑精度、物性、过程、环境等多方面因素的装配技术方向发展,这是推进虚拟装配技术实用化发展的重要一步。

(4)数字化车间与数字化工厂―数字化工厂是数字化制造技术在车间和和工厂集成应用和高效运营的全新生产模式。它在三维工艺过程、工艺装备、生产线布局和生产管理综合优化和集成的基础上,实现产品在工厂、车间和生产线上由设计到制造的数字化执行、管理和控制问题,是实现企业挖潜和增效的最有效形式。目前,生产线建模仿真技术和车间布局规划已日益受到重视,它为高效物流实施以及精益生产、可重构制造、单元化制造等先进制造模式提供科学分析工具,尤其对多品种、变批量和混线生产等复杂生产模式具有重要指导意义。

5 结束语

先进制造技术是改造传统制造业的有效手段,为了有效地在我国利用先进制造技术改造传统制造业,需要明确研究、开发和应用先进制造技术的重点。综观以上先进制造技术的现状和发展,可以看出数字制造实为先进制造技术的核心技术,是实施其他先进制造技术的平台。

数字化先进制造技术是席卷全球的数字化浪潮中的重要一环,其本质是支持数字化或信息化制造业的技术。充分运用当代数字化技术,大力发展数字化先进制造技术符合本世纪制造业的发展趋势。

【参考文献】

[1]杨叔子,吴波,李斌. 再论先进制造技术及其发展趋势[J].机械工程学报,2006,42(1):5-8.

[2]江征风,吴华春.以数字制造为基础的先进制造技术[J].组合机床与自动化加工技术,2005,6:5-7.

[3]张训杰,童伟国,陈林静,胡金泽.先进制造技术与数字化制造[J].装备制造技术,2007,11:106-107.

[4]张伯鹏.数字化制造是先进制造技术的核心技术[J].制造业自动化,2000,22(2):1-9.

[5]罗垂敏.数字化制造技术[J].电子工艺技术,2007,28(1):52-54.

数字化制造技术范文第2篇

关键词:数字化制造 机械加工 多品种 小批量

中图分类号:TQ1 文献标识码:A 文章编号:1007-9416(2012)07-0207-02

1、引言

广义的数字化制造涵盖了产品的生命周期的全过程,目前涉及数字化设计和数字模拟较多,而具体到车间数字化管理和数字化制造则相对显得比较薄弱。

十一五以来,军工企业主要由批产任务为主转化为型号研制任务为主的经营模式,直接决定了军工企业生产模式以多品种、小批量、交付周期短、高难度等为主的特点,对生产组织管理、合同履约率、成本控制、质量管控都带来严峻挑战。面对日益严峻的市场激烈竞争,只有按时交付高质量、低成本的产品才能赢得市场的青睐。

作为机械制造型的电子元器件为主的企业生产当前存在的关键瓶颈无疑是多品种、小批量、高难度的零件制造能力严重不足,后续装配零件齐套率低、产品制造周期长、无法满足市场要求。如何充分利用现有设备资源,提高机械加工零件生产效率成为当务之急,数字化制造(仅指狭义的计算机三维建模、计算机NC编程、仿真及程序传输、校车等)正是解决当前问题的最好途径。

2、数字化制造发展态势及方向

2.1 数字化制造定义

指将飞速发展的计算机技术应用于产品设计、制造以及管理等产品全生命周期中,以达到提高制造消息和质量,降低制造成本、实现快速响应市场的目的所涉及一系列活动的总称,本文所涉及的数字化制造仅指狭义的数字化制造(零件机械加工过程)。

2.2 数字化制造的起源及发展

20世纪中期,简易数控机床首次出现,60年代中后期计算机辅助设计软件及柔性制造系统诞生,80年代初,计算机辅助设计和计算机辅助制造融合,到了2000年,CAD/CAE/CAPP/CAM/PDM/MES/ERP高度集成运用于生产。

2.3 国内外数字化制造现状及发展方向

随着现在制造业的飞速发展,近几年来,我国数字化制造有了显著发展,尤其表现为数控机床的年产量(包括从国外进口的数控机床)在不断的上升,机床的产值数字控制化率将近30%。但我国数控设备总体运行效率还很低,即使在数控技术应用较好的航空航天部门,开机率仅50%~80%(工业发达国家95%)、主轴利用率仅40%~60%(工业发达国家95%)、加工效率仅达3 Kg/h~5Kg/h(工业发达国家30 Kg/h~50Kg/h),主要表现为数控机床性能没有完全发挥、多轴单用、数控普用、工艺水平落后等,其中影响机床利用率的一个最核心原因就是,机床停机时间太长。

在国外,以空客、波音为首的欧美航空企业很早就开始接触数字化制造领域,其数字化制造涵盖了整个产品生命周期的全过程,已经将CAD/CAE/CAPP/CAM/PDM/MES/ERP高度集成,系统运用于实际生产,数控生产也早已分工细化、并行实施到零件制造过程中。

3、军工企业实施数字化制造具备的基础

3.1 硬件平台

在十五、十一五期间,国家加强了对军工企业的建设投入,多数军工企业机械加工设备进行了淘汰升级,部分企业数控化率高达90%,尤其引进了大量的先进进口数控设备,为提高制造能力和开展数字化制造奠定了基础。

3.2 软件平台

现阶段,大多数军工企业软件建设基本齐全,包含了二维计算机辅助设计软件,三维设计软件,实现了数控机床DNC系统,借助计算机技术、通讯技术、数控技术等为基础,把数控机床与控制计算机集成起来,从而实现数控机床的集中控制管理,它有效的解决了计算机编程的在线加工,数控加工程序的输入、输出、调用、归档、管理。同时还开展实施了ERP系统、PDM、PLM系统,引进了计算机编程软件、仿真软件等,但是各环节未形成有机组合,系统集成运用效果差。

4、军工企业机械制造存在的主要问题

现阶段多数军工企业机加零件生产流程主要为:接收零件生产计划二维工艺图纸消化刀具、量具、原材料准备手工编程、校车首件加工鉴定批量加工的传统生产模式,该生产流程主要存在如下的不足。

4.1 二维图纸消化

操作人员掌握技术图纸信息是零件生产的前提基础,快速、高效的掌握图纸技术信息无疑对组织后续生产起到事半功倍的效果,现在企业发放用于指导零件生产的均是二维图纸,由于需要实体形象向抽象的视图表达方式的互相转换的思维,理解图纸困难,特别是一些新品零件,大部分需借助技术人员指导,对一些复杂的组件壳体零件,消化图纸的时间至少需要1小时以上,更有甚者需要工艺人员将二维图纸转化为三维图纸指导生产。

二维图纸本身也存在缺陷,设计、工艺人员的稍微疏忽使技术文件缺少尺寸标注、尺寸错误现象比较频繁,操作员工往往准备不充分,在编程、校车过程发现图纸问题时,停机咨询耽误时间。

4.2 操作人员手工编程差异化

当前,多数企业均是操作人员自行编制加工程序进行生产,不同操作者由于技能高低、思维模式不同、对机床设备性能掌握程度不同等多方面原因同一零件编制的数控加工程序千差万别,零件实际加工的时间也就大相径庭,操作人员只会根据各自最为熟悉的工作方式编程校车,所以导致每次加工同一类零件时不同的操作人员都要进行零件程序的再次编制,再一次增加了机床的停机时间,并且不同操作人员用各自的编程方式校车,根本无法知晓是否选用最优的加工流程及最合适的切削参数,恰好这些细节方面是不被也不易被基层管理者发现的,严重制约生产效率提高。

4.3 校车问题

数字化制造技术范文第3篇

关键词:数字化制造技术;数字化设计;数字化制造;应用

信息技术不仅已经被广泛应用到人们日常生活、生产等各个领域,同时也在很大程度上促进了工业制造领域智能化的高速发展。我国数字化制造技术在工艺设计、制造数据管理以及生产过程控制等环节发挥了一定作用,但是有些技术在该领域中的应用水平相对较低,因此,在未来发展中必须构建以企业产品为背景的数字化制造技术应用研究。

1.数字化制造技术概念简介

数字化制造技术基于虚拟现实技术、计算机网络技术、快速原型技术、数据库技术以及多媒体技术等多种现代化科学技术,可以根据不同制造企业的需求,实现资源信息收集和整理,产品信息、工艺流程信息、资源信息自动整合分析、规划以及重组,实现对产品进行设计、功能仿真以及原型制造,并根据用户对产品的实际需求进行功能调整或整体优化设计。

2.数字化制造技术的应用现状

(1)产品数字化设计。产品数字化设计是指产品在设计阶段充分利用计算机,在图形设备(CAD)的辅助下可以将产品的图形设计出来,同时也要完成产品功能设计、结构分析等多个产品设计环节,在数字化设计过程中使用了软件绘图、编辑图形以及分析等技术,技术人员也可以利用数字化设计程序对产品结构设计进行优化与完善,运用计算机强大的计算功能、分析功能以及比较功能在各种设计方案中选出最佳方案。

(2)数字化分析。数字化产品分析功能也是基于计算机辅助技术而成,可以对结构复杂的产品进行优化设计,产品优化设计过程中主要利用了力学性能对其进行分析,并运用CAE软件对产品的综合性能及安全性、稳定性、可靠性等方面进行模拟分析,通过模拟不同产品在实际上的运行状态来确定其是否存在设计缺陷,如果发现设计缺陷可以立即对产品设计进行优化,以确保最终产品在实际运用中的综合性能等方面可以满足用户需求。

(3)数字化生产工艺。数字化生产工艺是指产品在生产过程中利用计算机对生产过程进行控制,技术人员可以将产品零件的形状、尺寸、材料以及处理过程等数据输入计算机,并将该产品在生产设备中的工艺参数输入到计算机中,这样计算机便可以对该产品的生产工艺进行数值计算、逻辑判断以及推理,并根据所输入的参数编制出最佳的工艺内容及路线。

(4)数字化制造。数字化制造主要是基于CAM软件而成,该软件可以根据技术人员设计出的模型进行自动编程,并可以利用计算机与其他辅助软件实现仿真制造生产过程,并可以自动判断出产品生产过程中会遇到的干涉及碰撞等问题,计算机软件自动编写的程序需要技术人员对其进行修改,以便计算机编写的程序可以满足产品的制造要求,在程序加以处理后便可以传输到数控机床上进行产品的实际加工,如果发现产品加工中存有缺陷,技术人员可以在数控机床的控制端对其进行微调。

(5)数字化管理。产品数据管理是工业制造领域数字化管理中的核心内容,企业一般都是通过CAD/CAM系统实现对产品数据的数字化管理,并可以对所产生的产品进行全生命周期数据管理,不仅可以根据企业信息的管理要求对图纸、工艺文件进行整理,更可以根据企业的运行管理需求进行市场调研、产品更新等一切与生产有关的数据管理,而这也是在信息时代有效提高制造企业市场核心竞争力的有效途径之一。PDM技术不仅在我国工业制造领域中占有重要的地位,同时也是计算机领域中的核心技术,而在我国只有一部分大型企业在发展中运用了PDM技术,这也为这些大型工业制造企业带来了可观的经济效益,因此,在新时期我国工业制造领域应充分利用PDM技术。

(6)逆向工程。传统的产品设计无法实现产品的“复制”过程,而数字化制造技术的应用有效打破了这一限制,逆向工程可以根据已有的产品通过分析研究来获取其设计过程,而逆向工程在工业制造领域中一般都应用到企业无法获取产品设计方法的情况下,利用产品实物可以在很大程度上推导出产品的设计方法及工艺流程,所以该项技术在新时期已被广泛运用到新产品的开发或旧产品的改进等,对我国工业制造领域在新时期的高速发展有着重要意义。

3.结语

现阶段我国数字化制造技术正在不断向着产品集成化、管理网络化方向发展,同时产品生产过程的智能化、虚拟化、绿色化以及柔性化等都是该项技术未来发展中的必然趋势,其不仅对提高我国工业制造领域的生产效率及质量有着重要意义,同时也可以更好地促进工业制造领域在新时期向着可持续发展方向迈进。

参考文献:

[1]李铁刚.车铣复合集成数字化制造[J].组合机床与自动化加工技术,2013(02).

[2]刘瑞玲,杨喜娟,苘浩锋.数字化加工中产品建模关键技术的研究[J].科技信息,2013(08).

数字化制造技术范文第4篇

关键词:无图制造 钣金零部件 数字化系统

中图分类号:TP393 文献标识码:A 文章编号:1007-9416(2012)08-0195-01

随着数字化无图制造技术的发展,数字化制造系统已经演变成钣金零部件加工和制造的关键性工具,钣金数字化制造的信息载体已经完全由“模拟量”转换成“数字量”。众所周知,“数字量”信息其做大的优势就是安全、精确、并行分布式处理、传递易行、容量大。钣金数字化制造系统的信息所表达出来的“数字化”,往往会引发信息处理上的一些变化,譬如:其所引发的技术革新和操作手段都有了巨大的变化和更新,因此,我们必须要在数字空间的实际运行模式中不断的完善和探索。

1、钣金数字化制造现状分析

激光切割制造技术的出现,完全替代了“剪切-冲”的工艺流程,它的特点就是灵活且具有较大的柔性,其缺点就是运作成本比较高。这种制造技术最常见于一些形状不规则的产品或器件上,随着小批量零部件的大量生产,激光切割制造技术越来越受到人们的重视。因为激光切割具有高柔性和高精度以及三维设计技术的不断完善和成熟,使用者可以完全从新设计和流程中取得收益,这样就可以大大降低生产成本,而且还能够有效地缩短工期。所以新的钣金工艺其实就是从设计开始的,及设计+激光切割+折弯+焊接/铆焊。多重折弯工艺在国内的箱体制造业已经比较普及。好处是省掉了传统的加强筋。在实际生产过程中我们发现激光具有切缝细,精度高的优秀特点。通常情况下,都是一次性进行切割,然后配合4次的折弯,从而实现4个工件。这种制造方式,完全超越了传统工艺的设计思路,所以为缩短工期奠定了基础。激光切割的不断普及,市场要求提高速切割,只有这样才能降低待机的时间,向厚板,高反射材料进行扩展,降低电耗成本等。例如雅马哈2010年所推出的by speed机型,其切割的速度可高达40m/min,加速度为3g,它能够切割20毫米厚的不锈钢,12毫米厚的铝合金,6毫米厚的紫铜等,而所耗电只有60kW左右。机器的有效利用率能够达到95%以上。

2、钣金数字化制造系统模式

2.1 数据源的整合与集成

钣金零部件的数字化制造数据大都是采用集中的管理与存储,这样就可以形成一个惟一的数据源。每一个系统都是经过产品的具体数据管理系统进行访问制造相应的模型、工装和工艺信息,从而改变了模拟量的传递模式,满足了所有信息在不同的用户之间与不同的应用系统之间的集成和共享。钣金零部件制造数字化数据库所有的知识组元可以随时更新而且还能够多次使用,钣金数据库知识系统的完善和建立,极大程度地满足了所有信息的数字自动化表述,同时,在每一个数字化的设计当中都可以重新使用所有者的制造技术,这就完全颠覆了传统意义上,单凭经验和多次的试验设计模式。集成系统协同设计就是把数据库、知识重用工具以及应用系统整合到一个相同的平台,该平台为工程设计的统一介质,使得整个数字化流程固定化,对所有数字化制造流程进行统一的控制和管理,从而进一步集成了各大子系统制造工艺,完成了其要素的设计。

2.2 数字量控制与传递

在传统钣金制造模式中模拟量主要是依靠传递实现的,所有零部件的生产流程中所有的环节都缺少一个整体的数字化定义,其所生产的成品难以确保精度和准度。数字化制造则是通过前提准备,将每一个使命的设计要素准确地进行了数字化的表述,凭借数字化的信息驱动生产材料加工的所有过程。通过对零部件模型的设计,就能得到所需产品的具体尺寸和形状,不过由于在零部件生产过程中出现很多的中间不确定状态,所以很难对设计信息向制造延伸。设计和制造模型属于相同对象的不同组成部分,其分别用于两个不同的生产阶段。确定了内容与工序之后,制造模型主要是结合工艺生产过程中的具体因素,对产品做出的一个详细描述,把以往制造模式中通过模拟量表达零件尺寸与形状的所有信息进行了数字化的定义,是工艺过程设计和工艺资源设计的依据。

3、钣金制造要素设计

3.1 知识建模

知识建模其实就是根据钣金零部件生产过程中所出现的知识,通过钣金零部件将其串联起来,把钣金制造和加工过程中所有知识作为一个整体系统,从横向和纵向两个方向进行归纳建模。纵向方面主要是从宏观到微观组元进行构建知识系统,同时依据不同知识组元易难程度进行分层建模,通常都是将该系统划分为型、域、属、族四个不同的层次。知识分类的最基本的单元就是型,它是根据知识具体求解对象的疑难程度进行分类,主要包含实例、基型和典型知识。横向方面,通过进一步地分析所有组元间的相互依赖关系,建立一个如同记忆网一样的模型,把钣金相关知识转化为由制造要素所组成的网络,建立一个完整、科学、便于管理的钣金知识库。

3.2 知识使用

基本类型的知识对形成问题解方案的作用方式分为表型和典型两种。知识可直接形成问题的解方案,基型知识则部分形成问题的解方案。钣金制造指令设计、成形模具设计等问题求解,根据知识的层次模型使用对应的属及基类知识,开发不同的推理方法,如:基于表型知识的推理、基于典型知识的推理、基于基型知识的推理等。以工艺流程设计为例,对于典型钣金零件,通过归纳总结典型方案,根据各种条件检索得到合理的工艺流程;对于非典型零件可以依次采用基于实例的设计或创成式方式来完成;知识检索采用基于编码的精确匹配方法。

4、结语

无图制造技术的发展,为钣金零部件的生产和加工提供了一个巨大的发展空间,其主要就是因为无图制造技术不但涵盖了最新信息和最前端技术,而且更重要的是它促进了生产技术的数字化智能化的发展。本文通过对钣金零件数字化制造系统模式的研讨和分析,提出了钣金数字化制造模式和解决思路,其中制造模型是面向制造过程对钣金零件信息的组织,采用集成管理的方法形成了钣金数字化制造的数据源。

参考文献

[1]王俊彪,刘闯,韩晓宁.面向制造的钣金零件多态模型[J].航空学报,2011,28(2):504—507.

数字化制造技术范文第5篇

关键词:陶瓷机械;数字化技术;应用研究

我国陶瓷机械装备虽然近几年来有了一定的进步,但在整个陶瓷行业的发展中仍没有发挥很好的同步发展效应,更没有起到引领行业发展的作用。当前科技迅猛发展,数字化设计技术作为一支重要的生力军,在各行各业都发挥着巨大的作用。现代陶瓷机械装备应加速向“数字”和“精确”陶瓷行业发展。推行CAD/CAE/CAN、MIS 和加工柔性化系统、建立FMS 示范工程、加快我国陶瓷机械装备数字化设计与制造技术的应用研究等。已成为历史赋予我国陶瓷机械装备技术人员的责任。

一、数字化设计制造技术概述

数字化(Digital)是指信息(计算机)领域的数字(二进制)技术向人类生活各个领域全面推进的过程,是基于产品描述的数字化平台,建立基于计算机的数字化产品模型,并在产品开发全程采用,达到减少或避免使用实物的一种产品开发技术。这种设计全面模拟产品的设计、分析、装配、制造等过程。数字化设计与制造技术的应用可以大大提高机械产品开发能力,缩短产品研制周期,降低开发成本,实现最佳设计目标和企业间的协作,使企业能在最短时间内组织全球范围的设计制造资源共同开发出新产品,大大提高企业的竞争能力。数字化设计与制造技术集成了现代设计制造过程中的多项先进技术,包括三维建模、装配分析、优化设计、系统集成、产品信息管理、虚拟设计与制造、多媒体和网络通讯等,是一项多学科的综合技术,其目的是通过建立数字化产品模型,利用数字模拟、仿真、干涉检查、CAE 等分析技术,改进和完善设计方案。数字化设计含盖了现代设计的最新技术,同时也是现代设计的前提。涉及的主要内容有:

1.CAE/CAPP/CAM/PDM CAD/CAE/CAPP/CAM 分别是计算机辅助设计计算机辅助工程、计算机辅助工艺过程设计和计算机辅助制造的英文缩写,它们是制造业信息化中数字化设计与制造技术的核心,是实现计算机辅助产品开发的主要工具。PDM 技术集成是管理与产品有关的信息、过程及人与组织,实现分布环境中的数据共享,为异构计算机环境提供了集成应用平台,从而支持CAD/CAPP/CAM/CAE 系统过程的实现。

2.异地、协同设计在因特网/ 企业内部网的环境中,进行产品定义与建模、产品分析与设计、产品数据管理及产品数据交换等,异地、协同设计系统在网络设计环境下为多人、异地实施产品协同开发提供支持工具。

3.基于知识的设计将产品设计过程中需要用到的各类知识、资源和工具融入基于知识的设计(或CAD)系统之中,支持产品的设计过程,是实现产品创新开发的重要工具。设计知识包括产品设计原理、设计经验、既有设计示例和设计手册“设计标准”设计规范等,设计资源包括材料、标准件、既有零部件和工艺装备等资源。

4.虚拟设计、虚拟制造综合利用建模、分析、仿真以及虚拟现实等技术和工具,在网络支持下,采用群组协同工作,通过模型来模拟和预估产品功能、性能、可装配性、可加工性等各方面可能存在的问题,实现产品设计、制造的本质过程,包括产品的设计、工艺规划、加工制造、性能分析、质量检验,并进行过程管理与控制等。

二、陶瓷机械设计领域的特点

1.当前行业发展中存在的主要问题

1.1技术、装备水平低。大多数陶机专业厂技术力量不足,产品设计多用传统的设计方法,CAD 等现代化设计方法应用还不普遍,工厂装备落后,数控机床和加工中心为数不多,计量、检测、控制手段较差,生产机械化程度低;

1.2产品质量差、档次低。陶机产品外观质量落后,有的性能不稳定,机电一体化产品很少,尚有许多空白,成套性差,产品附加值低,在国际市场上缺乏竞争力;

1.3产业组织结构不合理,生产专业化水平和企业管理水平低。我国陶机工业虽然己经形成一定体系,但专业化分工、集约化程度很低,标准化程度也不高,产品零件互换性差,难以满足高档瓷生产的要求。这种生产方式极大地限制了现代化科技的应用,日用陶瓷和建筑陶瓷机械始终没有赶上国际先进水平。

2.陶瓷机械设计领域的特点

2.1结构类型多、型号多。例如在真空练泥机设计中,有单轴、双轴和三轴真空练泥机等;泥浆泵设计有单、双缸,立式、卧式等;

2.2常用设备功能结构比较稳定,结构复杂程度较小。例如球蘑机、练泥机、滚压成型机等一般由机架、传动系统、执行机构等组成,不同型号的设备采用的部件类型和结构参数有区别,但产品功能基本相同。这种结构稳定性非常便于采用模块化变型设计技术和参数设计技术;

2.3常用陶瓷机械产品受企业投产规模、陶瓷原料性能的影响,研究开发周期长,采用ICAD 技术能缩短产品研究开发周期,节约成本。

三、结语

数字化制造技术范文第6篇

【关键词】工艺生产 模具 数字化 制造技术

引言

模具生产在塑形类工艺装备中需求量非常大,尤其是近年来发展越来越快,市场的需求量越来越高,传统的模具加工工艺已经无法满足现代化的市场与工艺需求。因此,为了能够提高工业生产中模具的质量和生产效率,基于计算机技术的数字化生产制造工艺引入模具生产加工中,从而实现了质量与效率上的双重飞跃,达到满足市场的质量需求。本文通过解析数字化制造与生产工艺,并结合当下的模具生产理念,探究基于数字化制造工艺的模具生产技术。

1 工业生产中模具生产的模式与需求分析

工业生产领域中,一个相当重要的生产模式就是模具生产。由于工业化与车间流水化的不断进步,塑形等重要工艺设备开始大规模发展,从而导致市场需求不断攀升。于是,传统工业领域中的模具生产的质量和市场需求就开始进一步增加。因此,需要在原有的生产基础上进行进一步的提高与技术引入。那么,对于传统的工业生产中,模具的生产模式与需求是怎样的呢?

1.1 传统工业生产中模具的生产模式分析

传统工业生产中,集成化与量化生产概念相对比较淡薄,并没有得到进一步发展。尤其是在批量化的生产过程中,流水车间的生产方式虽然已经得到了应用,但是在庞大的市场需求环境下,依然无法满足要求。因此,为了能够更进一步地实现模具生产的市场质量与数量需求,就需要对传统的模具生产工艺进行改革。传统的模具生产中,存在以下一些问题。

第一,生产批量化与质量之间的生产矛盾。批量化生产过程中,由于传统生产工艺与技术无法达到较高的要求,从而造成在批量化生产过程中,经常出现大批量生产造成质检不合格的现象。这在一定程度上反映了在传统模具生产加工工艺中,工艺技术存在一定弊端,面对大批量的生产与加工过程,无法实现真正意义上的批量高质量生产,造成批量与质量之间的生产矛盾。

第二,高精准模具生产过程中的质量要求无法满足。在生产加工模具的过程中,对于一些高精端的模具产品而言,无法真正达到质量要求或者是精准要求。因为在传统的加工工艺中,精度的标准并没有实现真正的提升,而市场对于模具精准度的要求则越来越高,尤其是小型以及微型模具的生产与加工,更是存在非常严重的精度不够的问题。因此,造成了一段时间内,生产与加工存在非常多的问题。

第三,生产理念依然存在着传统生产模式的思想;传统生产模式中,对于一些质量要求的思维模式依然存在。模具的误差指数随着技术的发展越来越低,但是一些生产制造加工企业并没有随着时展,而是一直采用传统的质量标准进行加工,从而造成了技术上落后,生产产品质量的不达标。

总之,传统模具生产存在一些问题,这些问题直接导致了在竞争激烈的市场中,传统的生产模式越来越不符合市场需求。

1.2 模具生产技术的需求分析

模具的生产模式存在问题是其中的一个方面,在生产技术方面,传统的模具加工与制造依然存在问题。因此,对于技术的需求而言,传统的技术也存在问题。

首先,传统的模具生产技术标准并没有进一步改善。工业生产领域中,技术标准的完善和规定,是有一定的周期性的。由于生产批号与批量的原因,无法随时更改生产工艺的技术标准。但是,市场经济时代的市场需求变化越来越快,导致在一些生产领域中,技术标准已经无法满足市场的需求,尤其是模具生产领域中,造成了技术标准落后市场需求的现象。因此,传统的模具生产技术标准有待进一步完善。

其次,精准化生产技术的拓展。模具生产过程中,最为重要的指标就是模具的精度,在传统的模具加工制造工艺中,精度的标准依然无法达到市场的最高需求标准。由于技术的落后,造成在精度方面无法达到标准,从而影响模具加工的进一步发展与市场拓展。

最后,质量检测的技术需求提升。质量检测依然需要满足现有市场的标准,因此对于传统的模具质量检测而言,依然需要在质量检测方面进行技术标准的提升,从而满足市场需求,保证生产流程的一体化。

2 数字化生产制造工艺解析

数字化生产制造工艺,是未来工业生产的主要应用工艺之一。数字化的制造工艺优势非常明显,不仅可以提高工业加工产品的质量与精度,更可以利用全自动控制系统,实现一体化的生产模式,从而大大提升传统工艺生产领域中的生产效率。数字化生产技术,是基于计算机平台的一种先进技术,在工业生产与加工领域中应用非常广泛,其技术优势非常明显,满足现有市场对于工业生产技术以及产品的需求,在质量上能够保证产品的高质量与高精度,在流程化方面,其生产流程更加科学高效,质量检测方面做到了更加严格的标准,从而对产品的质量更加有保障,对未来市场的拓展以及发展有非常重要的意义。因此,数字化生产制造工艺,在传统工业生产领域中的应用是非常必要的。

3 基于数字化生产制造工艺的模具加工工艺分析

通过对传统模具生产与加工的弊端进行详细的分析,可以了解到在技术层面上对模具生产进行拓展,才可以实现与市场需求的无缝对接。数字化生产制造工艺,是未来工业生产领域中最为重要的技术之一,因此,基于数字化生产制造工艺的模具加工才是未来的发展方向。在实际的应用过程中,需要从以下几个方面进行探讨。

第一,数字化生产制造工艺,确保了模具加工的精度更高。数字化技术的优势之一就是高精度,而对于模具加工制造而言,精度是非常重要的技术要求标准。那么,对于数字化制造工艺而言,需要进行哪些配套设计呢?对于模具加工技术设备而言,需要引入全自动数字化生产标准设备。利用计算机平台为基础的智能操作模块,完成全自动化的控制操作。模具的成型以及切割,都利用数字化标准与技术进行完成,从而在一定程度上提高了模具加工的精度问题。

第二,模具的生产流程的数字化技术应用。在生产流程的环节中,依然需要采用数字化技术来实现传统加工工艺的提升。数字化的加工与生产流程,可以实现真正意义上的无缝对接,实现生产流程过程中的高量化标准。数字化加工流程的对接方式非常简便快捷,可以实现高效率的生产流程,在对接的过程中进行高效率的流程转化,提高了生产效率。

第三,模具质量检测的数字化技术应用。质量检测是工业生产领域中不可缺少的一个环节,当然也是非常重要的一个环节。在质量检测的过程中,依然可以利用数字化技术,从而将检测精度进一步提升。实际上,在数字化生产工艺的应用过程中,这些流程都是一体化的,不会出现其他的冗余环节。在彼此流程之中,实现无缝对接,从而有效地提升加工效率与生产质量。

总之,数字化生产工艺,在模具生产的过程中起到了非常大的作用,不仅仅提高了模具生产的质量以及精度,在生产流程方面也起到了优化的作用。在最后在质量检测过程中,满足市场的标准,从而保证了模具投放市场以后,能够最大面积地覆盖原有市场,甚至是拓展全新的市场。

结语

本文通过对模具生产与加工工艺进行分析,了解到在传统生产领域中存在的问题,为了解决存在的这些问题,引入了数字化加工工艺,从而在生产质量和模具精度等方面有了显著的提升。此外,对于生产流程的进一步优化,实现了在市场投放过程中,更加高效快捷地实现模具的量化生产,从而改善了传统的生产滞销现象,为模具生产的市场拓展以及未来的发展奠定了基础。

参考文献

[1]陆东.无线射频识别技术的应用及发展研究[J].科技资讯,2007(14):103.

[2]李泉林,郭龙岩.综述RFID技术及其应用领域[J].射频世界,2006(01):51-62.

[3]王伟,张嘉宝,王树仁.基于RFID技术的射出成形车间模具管理系统[J].中国机械工程,2010(01):65-68.

数字化制造技术范文第7篇

[关键词]汽车设计;数字化;制造

中图分类号:D622 文献标识码:A 文章编号:1009-914X(2016)25-0013-01

前言:汽车制造业的发展进程在一定程度上反映一个国家或地区的现代化进程。我国很早以前就将汽车生产作为国家发展的重点,在过去的几十年间,我国汽车制造业实现了从无到有以及不断发展的过程,汽车生产技术水平也在发生着日新月异的变化。我国在提升产量的同时,要实现产业结构的转换,实现技术、设备以及管理手段的提升。本文通过对数字化技术在汽车生产与制造中应用介绍,分析了目前汽车行业常见的数字化技术以及信息系统,以推动我国汽车设计制造的发展,提升行业水平。

1. 数字化技术在汽车设计制造中应用概况

1.1 数字化技术的概念

数字化技术利用计算机系统、数据库、多媒体技术等,进行信息获取、信息处理,并与实际生产需求相结合,进行产品外观及结构的设计、性能的模拟以及生产制造,以生产出符合需求的产品。在此过程中,计算机及信息技术发挥了重要的作用。例如,数据库中的交互图形系统,可以实现快速计算和数据分析处理。计算机辅助软件的开发和使用可以实现产品设计的可视化和便捷化。数字化技术能够有效缩短产品开发时间、降低产品开发成本、提高产品质量,在今天产品制造日益精密化、复杂化的环境下,具有十分重要的意义。在企业的数字化体系建设过程中,包含着设计与生产平台的构建,以及评审体系的建立,涉及范围广、部门多,且一定程度上取决于公司运行和管理的结构。因此,实现汽车设计制造中的数字化,需要对企业进行全方面的考量,从而企业提升开发能力和核心竞争力。

1.2 数字化技术应用于汽车设计制造时遵循的原则

针对数字化技术的特点,汽车设计制造应遵循两个原则:科学性和实用性。科学性主要体现在汽车设计方案中,设计者需对汽车制造技术要求、数字化技术要点以及影响制造效果的因素全面了解,使数数字化技术在汽车设计生产中得到最大化利用。除了设计方法的科学化,设计理念和精神、设计手段等都要遵循科学方法,只有将数字化技术贯穿到汽车的实际设计生产中,才能更好的发挥其优势,实现行业新技术的探索和研发。实用性原则建立在汽车的实际生产情况上,由于汽车实际制造车间较科研场所来说比较简陋,生产能力较为落后,因此,一些精度高、难度大的生产任务难以实现。因此,为了使设计方案尽可能满足实际生产能力,数字化技术的容错率应适度提高,并充分考虑影响设计方案的外部因素。此外,企业坚持实用性能够避免不必要的投入,最大限度保证技术可靠性和经济性,提高汽车生产制造水平,提升产品竞争力。

1.3 数字化技术之于汽车设计制造的意义

数字化技术对于汽车设计与制造环节具有十分重要的意义。数字化技术较传统制造技术具有许多优势。首先,数字化技术的分散性和独立性能够将复杂整体分解化、详细化,并转化为数据,方便查找及实用。其次,数字化技术建立在计算机技术的基础上,因此能够进行个几何数据的计算,同时可以对模型进行和修正。例如,力学、声波等信息通过计算、建模的步骤,可以将具体信息直观的反映出来,且易于修改。此外,由于数字化技术大量使用信息系统,因此广泛使用于汽车产品设计等需要数据处理和融合、数据传输以及数据选择的环节。未来信息计算的发展也将带动汽车数字化水平的提高,汽车设计制造过程的现代化将是汽车行业发展的必然趋势。

2.数字化技术在汽车设计制造中的具体应用

2.1 数字化技术在汽车设计中的应用

数字化技术广泛应用于汽车新产品的开发,其中逆向工程技术最为常见。逆向工程技术将多种技术进行结合,常用于产品的快速改造或仿制,是新技术应用的关键。在使用中,根据可用数据信息,制作出自由曲面并对其进行反求设计,和实体设计,从而得到所需模型产品。目前,逆向工程技术广泛应用于激光快速成型中。在汽车设计中,由于设计师常通过油泥模型制作进行构思创作,因此需要对制作好的油泥模型进行信息采集,这时可以采用非接触式三坐标测量技术。该技术主要通过三坐标测量机获汽车模型的三维数据信息。由于其不需要接触,因此能够适用于大多数测量实体,并节省测试时间。在汽车模型的测量中,除了以上部分,还需对数据噪声点进行处理,避免尖角或边沿对数据的影响。此外,数字化技术还常用于汽车覆盖模具尤其是拉伸模型的设计。通过对覆盖模件的三维模型设计,配以部分优化,实现模件的构建。以拉延筋为例,通过构建二维特征曲线得到拉延筋曲面,将其与光滑曲面相连接,从而得到所需模件,可以大大提升设计效率,提高设计方案的准确性。

2.2 数字化技术在汽车制造中的应用

在汽车制造中,数字化技术的优势不仅体现在产品质量上,还体现在企业的生产效率以及生产成本上。数字化技术能够对汽车模型进行数据更改,尤其是复杂的曲面,能够有效简化加工工作,降低成本,同时提高产品精度。企业对数字化系统的建立能够改善企业整体生产状况,提升生产水平,而具体工件和刀具的数字化使用则对产品质量及生产效率有着重要的意义。刀具和工件的科学化是汽车数字化生产技术的关键。将确立好的模型参数输入到计算机系统中,通过刀具对工件毛坯、原材料等进行加工。采用这种方法,可以实现加工过程的科学测量,同时可以检测加工状态,并对紧急状况及时采取措施。除此之外,数字化技术还常见于刀具轨迹的设置中,由于汽车制造道具走向多样,因此针对不同生产要求,应选择合适的刀具轨迹。目前较为常用的为平行切法,采用这种方法不仅可以实现加工质量的最大化,同时操作难度较低,能够缩短生产周期,减小企业成本。实际生产过程中,针对可能出现的球头铣刀运动过大的情况,要及时进行参数处理,同时对基本参数如坐标系进行检查,以保证生产过程的稳定和高效化。

2.3 数字化技术在汽车评审体系中的应用

汽车评审体系的数字化技术主要体现在评审模型构架上。企业的数字化评审体系应包含四个部分,分别是产品造型、零部件开发、总布置、整车分析和制造工程。后两种为评审过程的重点。在此过程中,通过创建数据标准以实现汽车评审的直观性和统一性。定义模数成熟度要求,将不同的生产环节模数成熟度差异化。例如模具制造要求最终的三维模型,而计算机辅助分析等后续工作则对模数要求不高,能够反映相关特征即可。此外,规范数据流程,是评审工作的基础。将重要节点的数据冻结,保证下游系统数据使用的可靠性,保证评审工作的顺利进行。

3 结语:

数字化已成为汽车行业未来的发展趋势。数字化技术已逐渐应用于设计和制造的各个环节。计算机技术、数据库以及软件等的革新推动着汽车生产与制造业现代化进程的发展。高质量、高效率的数字化生产逐渐取代原有的生产模式,产品设计和研发研发体系也得到了有效的提升。我国的汽车制造数字化水平还有很大的发展空间,未来将有更多的先进技术投入到实际设计与生产中,将推动汽车行业实现更大的进步。

参考文献:

[1] 王书林.数字化技术在汽车制造中的应用[J].工业设计,2016(4):168一169.

数字化制造技术范文第8篇

近年来,随着国民经济的快速发展,我国机械制造业发展迅猛,我国的冲压模具企业逐渐实现数字化、智能化,且随着数字化技术的应用,我国机械冲压模具设计水平不断提高,但其与发到国家仍旧存在一定的差异,文章研究冲压模具设计和制造中的数字化技术应用,以此来改善传统的模具,促使我国冲压模具的高速发展。

关键词:

冲压模具;数字化技术;设计应用

0前言

目前我国以航空制造业和汽车工业为主的机械类制造业发展迅速,促使我国冲压模具以年20%的速度持续增长。冲压模具本质上属于技术密集型产品,冲压生产中的冲压产品的智联、生产效率等与模具设计具有较大的关联,大力发展模具的数字化设计与制造技术的分析与研究,将数字化技术广泛应用在模具工业中,促使现代机械制造业得到快速发展。

1冲压模具设计和制造中的数字化关键技术

在冲压模具的使用上,要将数字化技术应用在模具制造的全过程,实现自动化制造和精确化制造,促使冲压模具的高效开发。模具制造的数字化技术主要是将计算机技术应用在模具制造的过程中,实现每一制造环节的精确控制,从而满足冲压生产的要求。数字化关键技术具体包括以下几种:(1)冲压成形CAE技术。冲压成形CAE技术本质上是利用计算机技术制造计算机软件,并将计算机通用软件应用在模具自动化质量控制过程中,促使该技术能够满足模具制造的精确度要求,也显著提高冲压模具的使用周期。如AutoForm/PAM-STAMP软件应用在模具制造过程中,通过计算机分析、模拟机械用材的流动、厚度的变化以及材料的破坏、起皱等,以此来对模具产品零件的成形、工艺设计进行准确的预见和建议,实现模具的形变。(2)模块化的快速设计系统。对于冲压模具的制造与设计,要重视结果设计,能够将技术系统应用于模具制造上,提高模具设计的质量。如随着现代计算机技术的发展,冲压CAD/CAM的一体化技术应用在模具设计上,可以有效避免单一软件使用的弊端。CAD通用软件主要是应用在交互绘图和造型层次的设计上,一般是以模具设计人员的设计经验为主来进行模具绘图和造型设计,这种软件设计方法不能够及时发现模具设计中的不足之处,一定情况下会延误模具设计周期,影响模具的设计质量。因此在数字化关键技术的使用上,可以将模具设计的技术结合起来,弥补单一技术应用中的不足之处。

2冲压模具设计和制造中的数字化技术的优点

(1)数字化装配技术的优点。冲压模具的装配方法一般分为4种,包括互换装配法、分组装配法、修配装配法以及调整装配发等具体内容,在模具设计上,可以将这四种装配法按照先后顺序应用在设计环节中,有利于进行精加工,减少装配过程中模具标准件的损毁。(2)计算机仿真技术的优点。在传统的冲压模具设计上,高度钢材在循环加载条件的作用下,会产生较强的包辛格效应,而计算机仿真技术的应用极大程度上改变了冲压设计现状,通过计算机仿真模拟将设计参数设计在固定范围内,进行冲压设计,提高了模具设计的精确度。(3)数字化参数的程编优点。参数化程编应用在冲压模具的加工制造上,在数字化技术的作用下,逐渐从单纯的型面加工扩展到结构面加工,由中低速加工变化为高速加工,从小切深变为高进给,有效改善工件加工质量,减少加工打磨面;减少试模的工作量,提高模具制造的精度;刀具使用上以小型加工模具为主,注重细节制造,以此既满足模具的设计精确度要求,也有效降低使用费用。

3冲压模具设计和制造中的数字化技术的应用

3.1软件技术在模具产品设计同步工程中的应用

在模具产品的同步开发中,要想满足冲压模具的建设要求,就要将冲压工艺贯穿于冲压模具的同步开发过程中。在冲压模具的开发设计上,要求设计人员全员参与,从冲压模具的生产工艺、产品的冲压技术再到模具的具体开发,都要依据冲压成形的物理规律进行模具设计,借助计算机数字化技术真实的反映模具与板料的的关系,并将计算机软件应用在模具变形设计的全过程中。在冲压模具的设计上,可以应用非线性理论、有限元方法以及各项计算机软硬件,以此来对产品零件的成行进行精确的预算,全面提高冲压模具的技术机控制质量与效率。

3.2模块结构化的快速设计应用

在数字化技术使用上,要预先消化模具的任务要求(冲压要求),结合现场模具生产经验,应用模具结构库,进行模具的初设计;其次再要进行模面设计,这一阶段调用标准机械件库,组装成一套完整的模具。在参数化模块设计上,要实现典型结构模板化和重复工作智能化,以此来提高冲压模具的制造水平。典型结构模块化,主要是基于模块化的思想,对冲压模具的典型结构进行分类总结,应用数字化技术进行模具设计参数的控制,生成智能化模板,以此在模具设计过程中完成建模;重复工作智能化应用上,主要是将模具设计过程的重复工作利用智能化模板和二次开发工具来实现缩短设计周期的目的,以此来实现冲压模具的智能化、自动控制化进程。

3.3信息系统的应用

在冲压模具设计上,要将数字化技术应用在制造业的每一环节中,如可以将数字化技术应用在机械自动化管理、绘图设计、参数分析、模具制造以及模具检测中,在这一过程中应用信息化系统,可以实现产品信息的共享,并将模具制造信息以计算机信息化的形式固定下来,从而为冲压模具的制造设计提供借鉴意见,降低模具设计人员的工作量。

4结语

随着信息技术以及科学技术的发展,我国的冲压模具已经由传统的机械模具形式转变为机械自动化体系,将先进的数字化技术应用在模具制造上,极大提高了我国冲压模具的发展速度,也提高了冲压模具的精确度和使用周期,推进了我国冲压模具的行业的发展进程。

参考文献:

[1]潘宇祥.探讨数字化技术在冲压模具设计与制造中的应用[J].工程技术:全文版,2016(07):00258.

[2]肖乐.数字化技术在冲压模具设计与制造中的应用[J].工业c,2016(06):00201.

[3]王秀丽,魏永辉.数字化技术在冲压模具设计与制造中的应用[J].科技与创新,2016(18):78-79.

数字化制造技术范文第9篇

时代的快速发展,使得汽车的社会需求量也大大提高,人们对于汽车产品的质量以及汽车产品的更新的速度也有更高的要求。为满足社会的需要及人们的需要,汽车制造企业必须想办法提升汽车产品质量、提高产品生产效率以及加快产品更新速度。这样,企业才能在激烈的市场竞争中具有较强的竞争力。数字化技术的诞生为汽车制造的发展创造了一个有利条件,使这一切成为现实。本文详细介绍了数字化技术的概念,以及数字化技术的理论基础,分析了数字化技术在汽车设计制造中的应用,包括了拉延模及拉延面等方面的设计,并且提出了汽车制造采用数字化技术所存在的优势。

【关键词】

数字化技术;汽车设计;制造;应用

最近几年,随着汽车制造业的快速发展,其市场竞争也越来越激烈,为了提高市场竞争力,企业必须加快新产品推出的速度。企业需要降低汽车生产成本,同时提高汽车生产的效率,并且要保证汽车的性能。在这个背景下,数字化汽车制造技术应运而生。数字化技术是先进的、科学的以及系统的现代科学技术。数字化技术在汽车制造的各个环节的应用较为广泛,较大程度上提高了产品生产的效率和质量,在汽车制造企业的发展过程中起到了重要而又积极的作用。

1数字化技术的概念

二十一世纪,人们已经进入数字化时代,数字化技术也使人们生活的各个方面发生翻天覆地的变化。关于数字化技术,其是指借助于计算机系统、数据库以及多媒体等先进技术,结合实际生产的需要,快速进行相关信息的获取,对产品各方面的信息进行处理,以此来完成产品外观及结构的设计、性能的模拟以及生产制造,从而较快地制造出能满足客户需要的产品。计算机的快速发展和相关计算机软件的大量研发,促进了计算机辅助设计()系统的诞生。系统的最重要的部分是数据库,其采用的软件为交互图形系统,其具有较强的计算和数据分析能力。系统对于产品结构的设计可以在二维或者三维的空间里进行,具有较高的准确度,系统的应用使产品的生产效率与质量得到了较大程度上的提高,系统和数控机床及数控技术等一起为机械制造业中数字化的广泛使用创造了有利条件。

2数字化技术应用于制造业的理论依据

数字化制造相比传统制造具有较大的优势:数字化技术能够系统地、独立地、灵活地对产品进行设计和制造,制造参数的数字化是其本质特征。其中,数字化技术最典型的特点是其具有分散性、独立性,能够将复杂的、不明确的相关信息进行具体化、详细化,并以数据的形式进行代替。并且,计算机制造学是数字化制造中的基本理论。所谓计算机制造学,是指在建立各种设计模型的基础上,采用计算机对其几何数据进行计算,其中包括计算机智能运算的使用。通过计算机计算,将制造所需要的具体信息例如振动、声波以及力学等计算出来,再建立设计模型,对设计模型进行调整和修正。模型中的一系列信息用具体的数字进行表示,从而使模型变成包含大量数据信息的“系统”,实现产品设计制造时的精确性、灵活性和合理性。计算机制造学涉及多方面的理论,其中计算机几何数据融合理论是其最关键的部分。计算机几何和组合几何、代数几何等都是解决制造中的几何问题的重要办法,而且均对产品制造中困难的处理起到了较大的作用。几何模型、空间计算、计算机模拟等都是其理论结构,其中包含了数据和信息融合的过程。信息和数据的融合实际上是对诸多信息进行整理合并,其处理的顺序应由低至高进行,在低层往高层递增的过程中,其信息抽象性也逐步增强。数字化技术中数据融合的办法包括信息互补以及传感器信息的传输。信息互补能够将现有的相关数据进行处理,进行优胜劣汰的选择,最终确定最为合理的产品设计方案。

3数字化技术在汽车设计中的应用

就目前而言,在新产品的开发过程中,逆向工程技术是其中各种先进技术中的关键,在汽车、家用电器、飞机、摩托车等新产品的研发中被广泛应用,其能够将其他技术进行有效结合以及利用。新产品的快速设计及生产离不开逆向工程技术的应用。逆向工程技术被普遍被应用于原有产品的快速改造或者快速仿制中,从而实现产品的快速更新,简单来说,逆向工程技术的设计是反向进行的,其根据该技术获取到的相关数据信息,制作出一张具有抽象性的自由曲面,接着利用曲面反求软件对其进行反求设计,然后把其引入或者等实体化设计软件中,进行相关设计。需要注意的是,逆向工程技术对于激光快速成型制造的影响越来越明显,其起到的作用越来越大。除此之外,在开发新产品时,产品设计师一般会凭借自己的想象及构思来设计汽车产品原型,而且往往采用油泥塑造的方式,制造出理想的汽车模型。之后,利用三坐标测量机,获取汽车模型的三维数据信息。其中,三坐标测量机分为两种,其分别是非接触式及接触式。非接触式相比接触式具有一定的优势,比如其使用范围广、测量的速度快,在汽车模型设计中的应用更为广泛。本文针对的汽车的车身三维数据的获取就是利用非接触式三坐标测量机完成的。因为获取的数据都必定会将噪声点带入,尤其是位于尖角及边沿周边的位置的噪声点比较突出,并且通过激光扫描得到的大量数据信息也会对曲面重建的算法造成严重的影响,于是一定要处理其相关数据。因为大多数测量系统的软件自带对点云进行初步处理的功能,其中包括对异常数据及噪声数据的处理,以及还包括对数据进行整合、补充遗点、使其三角面片化等。所以,为满足设计的需要,可以对获得的数据进行简化处理,然后进行相关操作,比如变换坐标及获取截面等。

4数字化技术在汽车覆盖件模具设计中的应用

数字化技术在汽车覆盖件模具设计中也得到了较为有效的应用。拉延模型的设计,是基于覆盖件产品的三维模型上进行,对其边界进行创造性设计。其凹模圆角、工艺补充面、拉延筋、压料面的设计均可以在数字化软件平台上进行。压料面、工艺补充面、拉延筋和覆盖件产品模型一起,组成了一个完整的拉延模型面几何模型。

4.1拉延模型面的设计设计工艺补充面时,冲压方面的确定是第一步,尽可能保证各个部位具有相似的拉延深度,方便其拉延成形。设计压料面采用了三种方法,其分别是边界法、扫描法和延展法。拉延筋的设计步骤如下所示:第一、制作类似半圆弧的二维特征曲线;第二、通过扫描生成拉延筋曲面;第三、旋转圆角将拉延筋和两边的光滑曲面相连接。按照实际需求选择拉延筋尺寸的大小。进行凹模圆角的设计应按以下步骤进行:在工艺延伸面和压料面的相交线位置进行倒圆角变尺寸的处理,并且应该根据其金属流动性进行圆角大小的取值。

4.2拉延模结构的设计拉延模结构的设计包括凹模、凸模和压边圈三大方面的内容。并且拉延模其三大方面的设计高度需要根据压力机的特点而定。以下是凹模设计的基本步骤:第一、创建凹模二维特征轮廓的曲线;第二、进行拉伸操作制造出实体,利用拉延模型除去多余的部分;第三、在以上基础上,进行布尔计算,对其局部特征进行细致处理,例如建凸台、挖孔、建导柱、增加肋板等;第四、进行倒角操作,制造出凹模、凸模以及压边圈;第五、进行垫块、顶杆、挡料销等零件的设计。

5数字化技术在汽车模具制造中的应用

汽车自动化制造业也普遍采用了数字化技术,其不仅能够对模具进行动态仿真、展示加工的具体步骤,也能马上进行改变,其不但提高了模具设计和制造的效率,而且使复杂曲面的加工精度得到提升。

5.1工件和刀具的设置将上文所提到的汽车覆盖件模具以统一的格式进行保存,并将其引入到数字化设计软件中,对工件毛坯、原材料及原点等进行加工。打开工件设置选项,对工件进行设置,对毛坯尺寸的外形进行设定以及创建加工坐标系,之后调整其刀具号、下刀量以及冷却量等相关参数,还应整理、检查刀具名称以及相关刀具材料。

5.2NC刀具轨迹的生成在数字化设计软件中的走刀模式有许多种。按照模具的特征,适合采用平行切法,其不但能够保证加工的质量,没有较长的代码,而且能缩短加工的时间。完成以上程序后,系统会立刻将刀具轨迹制作出来,接着把刀具以刀位点的形式进行离散,操作完成后进行数控程序的加工。而且,需引起重视的是:假如数控加工采用的球头铣刀的半径比曲面的曲率半径更大,就会造成过切的状况。此外还需注意的是,刀具的半径如果比刀位点到曲面的距离更大,在操作过程中也会造成误差,比如过切,需要重新调整相关参数进行加工。已经产生过切的位置可以采用一些方法进行处理,比如绕行或者抬刀。之后利用程序进行加工,借助坐标变换的方法使模具下模的坐标系与机床的坐标系相吻合,才能实现模具的初步加工。

5.3生成后置处理代码通过软件的公用管理模块进行加工报表的制定,报表的制定需要根据数控系统的换刀指令、坐标系、刀具说明等具体信息来定,在使用前还需做进一步的检查与修改。

6结语采用先进的数字化技术投入到汽车的设计及制造中,能够较大程度上节约汽车的设计、调试、制造等方面的时间,并且也能使汽车的生产成本降低。通过数字化技术,可以使汽车的质量及安全性得到保障,同时提高汽车制造多方面的要素,包括质量、精度和效率,有利于企业及汽车行业的快速发展。

【参考文献】

[1]金艳,胡建军,周全义.数字化技术在汽车设计制造中的应用[J].重庆工学院学报(自然科学版),2008,06:16-18.

[2]王燕萍.数字化制造技术在汽车质量管理中的应用[J].汽车工艺与材料,2012,07:12-16.

[3]季金花,陆剑峰,朱志浩,张浩.数字化工厂技术在汽车制造企业布局规划中的应用研究[J].汽车工程,2009,11:1104-1107+1103.

[4]杨汉,刘安明,祝云.数字化技术在冲压模具设计与制造中的应用[J].航空制造技术,2013,10:48-51.

[5]王大川,刘惊涛.数字化设计技术在汽车新产品开发中的应用[A].中国计量测试学会.企业计量测试与质量管理——中国科协2005年学术年会论文集[C].中国计量测试学会:,2005:11.

[6]舒志强.汽车覆盖件模具数字化设计制造规范的研究[D].昆明理工大学,2011.

[7]王慧,李刚炎,崔卫华,杨丽颖.数字化设计制造技术在塑窗锯铣加工设备中的应用[J].制造业自动化,2003,10:60-62.

数字化制造技术范文第10篇

关键词:数字化;人机协同;加工;制造;通信

一、数字化技术与自然人结合

数字化技术与自然人在车间生产中各有特点。数字化技术能够对车间内的控制信息、设备信息、库存信息等进行管理和控制,但是缺乏灵活性,而人却能够随机应变。将数字化技术控制的各种设备和数据通过无线通信网络传到自然人的数字化设备,自然人通过数字化设备能够全面的掌握车间的运行状态。

二、数字化人的特点

因为数字化设备与自然人结合后,人成为车间内的移动控制者,他能够不断地来回移动,对正在运行的设备状况进行随时监控,也能够对产品加工工艺进行调整。车间内采用的无线局域网技术,使得人的这种移动控制成为可能。软件上车间各种信息应能快速反映到数字设备上,并按照人的操作发出指令,控制设备。

数字设备功能多,体积小,因此集成是必然的选择。硬件上要集成多种芯片,包括WIFI、蓝牙等通信芯片,还包括存储器、处理器、其他模块和各种接口、电池、显示器等。软件上要与上层工作站通信,发送各种信息,与设备通信,这么多功能都要集成在一款软件之内,占用资源要小,功能要齐全。

人在车间内要能够监控所有运行设备,但现在企业内加工设备往往五花八门,因此兼容性是非常重要的,也是非常难以实现的。其原因第一个是不同厂家的设备运行模式不同,要想兼容就要研究所有的通信协议,然后才能通信,从而获取设备的信息并进一步控制设备,单就这一步已经极为困难;第二个,不同时期的设备控制方式是变化的,新的设备容易通信,旧的设备通信难度大。

另一个问题是操作问题,大量的各种设备,操作方式不同而且操作复杂,加之各种信息,使得实际上的操作任务是很繁重的,如果人机界面操作不简易,那么很难完成所有任务。因此人机界面的易操作性非常重要,好的人机界面会给操作带来便捷,从而提升工作效率。

三、以数字化设备为主导的人机协同制造

1.运行模式

数字化设备管理系统能够对车间进行监控,但人脑的决策和判断同样重要而且无法为数字化系统实现。人不再是具体的操作加工设备,而是根据设备状况,对工艺、物流等进行安排和调整。数字化设备与人的结合,对设备之间的组合、加工工艺的规划、数控加工程序、刀具工具的使用做出具体安排,并实时监控。

2.以数字化设备人机协同制造的特点

传统加工制造,所有的任务、工艺、操作都由管理层设定,下达到生产现场,这个过程中,最上层是办公室里负责设计和工艺的管理层,下面设备层只是命令的执行者,这是绝大部分的数字化制造中都采用的模式。

在新的加工制造模式中,上面的被颠覆,由于数字化设备连接了管理层和现场设备层,因此设备层的操作人员同样是车间的管理者,并且由于操作人员更接近生产设备,可以直接观察生产现场的状况,因此对于车间的直接控制其效果还要优于上面的管理层。

传统车间,产品的设计人员一般在技术部门,而现场的操作人员则完全按照计划完成加工任务,这使得加工中如果出现问题就无法及时的修补,带来时间和经济上的损失。新的加工模式很好地解决了以上问题,生产工艺的制定者是身处生产第一线的操作数字化设备的人员,这样的工作人员通过对数字化设备监控车间,发现问题能及时处理,消除了设计人员和操作人员间的距离,减少了处理问题的时间,提高了生产效率。

数字化设备与人的结合,最大限度地弥补了数字化设备和自然人各自的缺点,发挥了二者的长处和优点,最大限度的使得通信技术和人的判断得以结合,为新一代的生产制造模式提供了良好的平台,是新型制造技术发展的重要方向,一部分已经为现代企业所采用,其余的也必将成为制造业未来发展的潮流之一。

参考文献:

[1]雷源忠.我国机械工程研究进展与展望[J].机械工程学报,2009(5):1―11.

[2]周祖德,余文勇,陈幼平.数字制造的概念与科学问题[J].中国机械工程,2001,12(1):564―571.

上一篇:翻转课堂教育学范文 下一篇:线上线下课程教学范文

友情链接