开关电源无源PFC电路优化设计探析

时间:2022-10-27 04:51:30

开关电源无源PFC电路优化设计探析

【摘要】正如我们所知道的,强制性是电磁兼容标准的特点之一,因此对相应的电磁兼容标准进行合理化的深入研究是PFC的一项重要内容。众所周知,无源PFC技术是相对简单且成本较低的,在一些应用到小功率的场合可以尝试推广使用。本文就是基于优化设计开关电源无源pfc电路所做的探讨,立足开关电源PFC的效果进行了研究和分析,并且对单相的无源PFC(PFC)进行了仿真模拟研究,从中探究出接入电感的大小对PFC效果的影响。

【关键词】开关电源;无源功率;因数校正;优化设计

中图分类号:S611文献标识码: A

1.前言

我国早在2002年就开始在全国范围内实行中国强制认证要求,即所谓的3C认证,3C认证有如下的要求:第一,要采用更加严格的电磁兼容(EMC)的要求标准,并型号提供电磁兼容性能简要报告以及相关的文件;第二,对谐波电流的限定和控制的强度需要加强,其实际过程中是添加了PFC(功率因数校正)电路。采取二极管整流、电容滤波的非线性是电路计算机开关电源的原理,它具有输入功率比较低,很强的谐波电流的特点和优势,从而可以用PFC电路来提高功率的因数,对谐波起到一定阻碍效果。这也就意味着功率因数的高低及其谐波电流失真状况是影响计算机电源的一个非常重要的因素。

2.功率因数的校正

根据我们所能掌握的情况来说,PFC(功率因数校正)分为无源PFC和有源PFC两种模式。

如图1所示,便是无源PFC电路的典型代表。

图1 无源PFC电路的运用代表图

事实上,为了防止开关电源的电磁干扰通过进线干扰开关电源外的其它电路或设备,通常会将电感接在整流器的前面,正如下图2所示,这样的改进消除了无源PFC电路中的电感的直流分量,可以防止电感铁芯饱和的情况发生。

应用无源PFC的优势表现在很多方面:方法简略、靠得住,不用进行控制,而且还能够使得输入的电流的总谐波含量和基波比下降到30%以内,输入电流的总谐波的含量及其3、5、7等奇次谐波可以获得很好的改善,功率因数也可以获得很好的提升。由于在电路中应用了串联电感补偿的方法,这样就会在必然程度上降低了成本。

图2 改进型的无源PFC电路

当然,从辨证的角度出发客观的研究无源PFC电路,也不难发现它也具有一些缺点,由于它增加了无源的元件,所以体积就会变得很大而且也会比较的笨重,导致校正之后的功率因数也不是非常的高,一般为0.8左右,并且还会释放大量的热,也有可能引发工频共振和噪声。

有源PFC和无源PFC相比,有源的PFC主要是使用了全控开关器件构成的开关电路,这样来使输入电流的波形跟随电压波形变化,从而能使电流和电压达到同相的目标。

使用有源PFC电路的开关电源的优势主要表现在两个方面,其一,能够使得总谐波的含量下降到5%以内,而功率因数则会跨越0.99,而且还能把开关电源输入电压的区域扩大为全域电压。其二,它还具有稳定性好、振动和噪声比较小的好处。

有源PFC技术的采用是可以很好的降低谐波的含量、增大功率的因数的,如此就满足了谐波含量的要求。但是,由于电路和控制都是比较复杂的,因而会产生较高的成本费用,并且开关器件的高速开关会导致电路开关的耗损增大,这样效率就会比无源PFC电路的效率低一些。

3.无源的PFC的工作原理

假设电源电压是正弦波,它的表达式可以表示为es=Essint;假设非线性负载从交流电源汲取的电路是周期性非正弦波形,可用以下式子进行表示:

Il=Insin(nt+n)

=I1cos1sint+I1sin1cost+I0+Insin(nt+n)

在上式中,等号右边的第1项是基波有功电流的分量,被记为ip;其次是基波无功电流的分量ir;第3项是直流分量;第4项是负载电流iL的高次谐波分量之和,被记为ih。

先计算出在一个周期内的平均功率,从而求得有功功率

P=iLdt=[ip+ii+I0+ih]dt

由此式积分以后演变可得

P=EsI1cos1

视在功率为

S=EsIL

则功率因数为

=P/S=I1/ILcos1=PF

4.无源PFC电路的仿真

在无源PFC的基础原理上,使用了下图3所示的电路进行仿真。

图3 无源PFC仿真的电路图

单相PFC电路的输入电路的电压和电流都是属于正弦波的模式的,输入的电压E=220V,C=300μF。

在PFC的电路中,选取合适大小的电感值L,这一点对于功率因数的校正是十分重要的。本文应用的就是MUTISIM仿真,在负载功率不同的情况下,经过对系统结构中的电感的参数大小的改变来观察系统的输出电流的波形,以及各个谐波的比例。

在负载不变的条件下,无源PFC电路的电感L取值不一样会对电路的功率因数有较大的差异,并且会呈一定的提高趋势,电感L值越大,高次谐波的分量就会越小,这时的电流波形类似于正弦波,相对应的电压相位的差值会越大。表1就为电感及其负载不同的时候的仿真的结果。

表1 电感L及不同负载情况下的功率因数

负载电阻

电感(mH) 100Ω 200Ω 300Ω 400Ω 500Ω 600Ω 700Ω 800Ω 900Ω

5 0.713 0.696 0.678 0.665 0.638 0.624 0.621 0.615 0.610

10 0.749 0.731 0.725 0.697 0.674 0.661 0.658 0.650 0.643

20 0.712 0.705 0.698 0.699 0.637 0.612 0.633 0.637 0.632

30 0.695 0.688 0.679 0.673 0.512 0.611 0.632 0.615 0.613

40 0.745 0.733 0.731 0.728 0.715 0.724 0.725 0.721 0.720

50 0.643 0.667 0.695 0.682 0.685 0.667 0.643 0.631 0.620

60 0.737 0.723 0.731 0.736 0.741 0.721 0.715 0.707 0.702

70 0.688 0.733 0.718 0.722 0.737 0.729 0.724 0.714 0.716

80 0.698 0.718 0.719 0.743 0.753 0.755 0.757 0.746 0.752

90 0.674 0.688 0.716 0.723 0.715 0.721 0.718 0.721 0.726

100 0.669 0.701 0.728 0.711 0.724 0.716 0.723 0.734 0.738

200 0.482 0.625 0.681 0.699 0.720 0.725 0.734 0.735 0.733

250 0.712 0.582 0.628 0.639 0.671 0.689 0.711 0.715 0.716

300 0.494 0.599 0.602 0.598 0.603 0.614 0.625 0.634 0.642

从表1我们就能够看出,当负载一定的时候,电感L的取值不同会造成校正后的功率因数有所变化。电流和电压的相位差与电感L的取值呈同向发展的态势,也就是说电感L的取值越大,电流和电压的相位差就越大,由此导致功率因数下降。当电感L的取值越小时,奇次谐波就会越大,如此也会降低功率因数;当电感L取定值时,跟着负载的增大,功率因数就会下降,而且负载变大,输入的电流就会越大,就会更容易使得电感铁芯趋于饱和,与此同时也会使得电源的输入功率降低。所以只有电感L取得合适值的时候,校正的效果才能达到最佳的状态。

依据表1中的数据,我们可以做出不同负载下功率因数与电感L之间的曲线关系图(如图4所示)

图4 功率因数与电感L的关系曲线图

从上附表和图中,我们可以看出,PFC技术运用在小功率的开关电源电路的时候,校正的效果是比较好的。然而,在许多的实际应用的案例中,很多的电源工作是都是达不到额定功率的,而且多数情况下都是处在轻载的状态的。无源PFC电路当处于轻载和满载的时候,校正的效果也是有所不同的。据我们所知,轻载时校正的功率因数是比满载的时候略微低点,这是在当无源PFC电路在处于轻载的时候会出现的状况。

按照表1 的数据、功率因数和电感L之间的曲线关系及其输入电压和电流相位的关系可以推断找到适合的电感值,而且是能够满足高次谐波的水平的。

一般情况下,在做PFC的分析时,大部分应用的是如图1所示的典型的无源PFC电路,它的电感是接在整流器的后面的,但是实际应用中常常使用如图2所示的经过改进的PFC电路,它的电感是接在整流桥的前面的,这种接法对于去除直流分量是很有效果的。如图5和图6所示,当L=0.06H,RL=300Ω的时候,分别使用图1 和图2的两种电路结构仿真得到的输入电流的频谱图。

图5无源PFC仿真的输入电流频谱图

图6 改进型的无源PFC仿真的输入电流频谱图

从图5所反映的结果来看,较大的直流分量很明显是运用了无源PFC电路结构的,同时我们也能看出电源功率的下降也是很明显的,谐波主要是来自偶次谐波,这样也会导致较大的无功分量的。所以说,现实中的电路中的电感L通常都是接在整流桥的前面的。

5.结束语

通过对分析仿真的无源PFC电路,可以得到下列的几个结论:

(1)输入电流谐波成分会因为PFC技术的应用而得到比较好的作用,同时,正确、合适地使用PFC技术能够适当减小输入的电流和电压的相位的差值。因此,校正功率因数的技术是提高整个电路功率因数质量的一个好的方法。当然,作为输入输出能量传递关键的电感元件,它的作用也是不可小觑。此外,对PFC的结果有作用的因素还包括电感的取值。

(2)无源PFC电路的优势在于:成本较低、较为简单、可以消除可能会产生的各种干扰噪声或信号,同时可以通过控制浪涌的电流来获得较为满意的有功分量。因此,无源PFC技术可以在小功率的场合推荐使用。

【参考文献】

[1] 于强. 无源功率因数校正电路的应用研究[J]. 济南职业学院学报. 2005(03)

[2] 邓卫华,张波. 一种新颖的无源功率因数校正电路[J]. 电源技术应用. 2002(12)

[3] 曹幼章,孙绍伍. 无源功率因数校正电路的实验研究[J]. 物理实验. 2001(10)

[4] 林维明,何塞安,林慧聪. 新型单相无源功率因数校正整流器的电路拓扑、工作原理和设计分析[J]. 电工技术学报. 2004(01)

作者简介:朱守民(1985-),男,山东泰安人,供职于宁波奥克斯空调有限公司,研究方向:控制工程

上一篇:氢气站工艺系统方案的选择 下一篇:浅谈声波透射法在基桩完整性检测中的应用