浅谈数控机床主轴驱动变频控制

时间:2022-10-02 05:17:59

浅谈数控机床主轴驱动变频控制

一、数控机床对主轴驱动变频系统的要求

数控机床集高效、高精度和高柔性为一体,能适应不同零件的加工,它要求驱动变频系统具有较高的动静态性能,能频繁的启动、制动、正转、反转及实现准停。从工件和刀具相对运动的关系来分,数控机床可大致分为两种类型。一类是使工件旋转的车床类,另一类是使刀具作旋转运动的钻床和铣床类等。各种数控机床所完成的加工任务不同,对主轴和进给驱动变频系统提出的要求也不相同,但大致都包括以下几点基本要求:

1、调速范围

由于加工刀具、被加工材质以及对零件加上要求不同,为保证在任何的情况下,都能得到最佳切削条件,这就要求传动系统必须具有足够宽的调速范围。同时在不同转速下又有具体的要求:高速下,要求速度稳定,尽可能提供主轴电机的最大功率,即恒功率范围要宽;低速下,要求提供大转矩输出,以满足重切削的要求。

2、速度控制精度和加减速性能

为保证各种机床的加工精度和表面粗糙度,以及完成攻丝等一些特殊的高级加工,一般都要求传动系统具有较高速度控制精度,并且要求加减速时间短,有良好的快速响应特性,由负载变化引起的动态降速小。动态降速大,会严重影响加工的精度和表面粗糙度。

3、精确的准停功能和角度分度控制

在加工中心上,自动更换刀具,一个接一个地完成各种不同的加工任务。需要对主轴做高精度停止定位控制,这是一种伺服动作。在车削中心上,要求主轴具有旋转进给轴的功能,完成任意角度分度控制,这时主轴坐标有了进给坐标的位置控制功能,称为“C”轴控制。

目前,异步电动机数控机床主轴驱动变频系统是当前商用主轴驱动变频系统的主流,其功率范围从零点几个kW到几百kW,广泛地应用于各种数控机床上。异步电动机的定子结构和其它三相数控机床电机的定子结构相同,在定子铁心内放置着空间位置互差2n/3的三组线圈构成的三相绕组。电机转子结构一般为笼型,转子绕组是由铜条或铝条构成的状如鼠笼的短路绕组。笼型异步电动机的结构简单、坚固,并能在高温和高速的条件下长时间运行,其价格远低于同样速度和功率范围的直流电机,而功率和体积比却是直流电机的两倍,同时其起动电流不再受换向器的限制。异步电动机基速以上的恒功率运动范围可达到1:3~1:5,采用绕组切换技术的电机,其恒功率运动范围可达到1:10,甚至更宽。

二、现代数控机床主轴驱动变频系统的控制策略

数控机床异步电动机虽然具有多变量、强耦合、非线性的特点,但是随着现代数控机床调速技术的发展,现代电力电子器件和电机控制用数字信号处理器的不断推陈出新,数控机床异步电动机主轴调速系统已经逐渐成为机床主轴驱动变频系统的主流,数控机床调速系统在性能上已经可以和直流调速系统相媲美。目前,数控机床上数控机床异步电动机的调速主要有以下几种常规控制策略:

1、恒压频比控制与转差频率控制

恒压频比控制即通过调节驱动变频器输出侧的电压频率比的方法,来改变电动机在调速过程中机械特性的控制方式。开环恒压频比不能对转矩进行调节,可满足一般平滑调速的要求,动态性能有限。转差频率控制采用转子转速闭环控制,转速调节器的输出是转差角频率,逆变器输出的实际角频率是由转差信号和电机的实际转速信号相加后得到的,它随着电机转子角速度同步上升或下降。在分析转差频率控制规律时,是从异步电动机的稳态等效电路和稳态转矩公式出发的,并不能真正控制动态过程中的转矩特性。

2、变频定向控制

变频定向控制的基本原理是以转子变频这一旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与变频同方向,代表定子电流励变频分量,另一个与变频方向正交,代表定子电流转矩分量。这样,在旋转坐标系上,数控机床电机可以等效为直流电机,在励变频电流恒定时,通过控制转矩电流,获得与直流电机同样优良的静动态性能。变频定向控制技术又分为间接变频定向和直接变频定向两种实现方式。在直接变频定向中,变频定向位置直接采用传感线圈进行测量,或通过电动机输入端的信号进行估计,不适用于电机运行于低速的情况,且成本较高。而间接变频定向控制是基于异步电动机的数学模型,通过计算转差角频率,进而来估算转子和变频的相对位置,实现比较简单,但运行中转子参数的变化会使变频和转矩偏离指令值,不能达到准确的变频定向,从而引起额外损耗和最大转矩降低,另一个问题是随着电机速度要求越来越高,在恒功率变频范围运行时,当转子变频发生变化,而转差增益无法实现动态补偿,将引起变频通和转矩的振荡。

3、直接转矩控制

不同于变频定向控制技术,直接转矩控制无需将数控机床电动机与直流电动机作比较、等效、转化,不需要模仿直流电动机的控制,也不需要为解耦而简化数控机床电动机的数学模型。它是在定子坐标系下,利用空间矢量的概念,通过易于测量的定子电压和转速等,直接对变频和转矩进行控制,省掉了矢量旋转变换等复杂的变换与计算。由于选用了定子变频,只要知道定子电阻就可以把它观测出来,因而避开了未知且时变的转子参数,参数鲁棒性好。转矩与定子变频调节器借助于空间电压矢量理论,采用Bang-Bang控制,可以获得快速的动态响应,但同时带来了转矩脉动、调速范围受限的缺点,低速时调速性能明显下降。如果采用六边形变频控制方案,转矩脉动、噪声都比较大,但有利于减小功率器件的开关频率,适用于大功率领域;而采用近似圆变频的控制方案,则比较接近理想情况,电机损耗、转矩脉动及噪声均很小,侧重于中小功率高性能调速领域。

一般而言,高性能的数控机床调速系统离不开速度的闭环控制。然而,速度传感器的安装带来了系统成本增加、体积增大等缺点。无速度传感器的数控机床传动控制技术也已成为近年研究热点。无速度传感器控制技术解决问题的出发点是利用测量到的定子电压、电流等信号综合电机转速。目前代表性的方案有:(1)动态速度估计器;(2)PI控制器法;(3)模型参考自适应方法;(4)扩展卡尔曼滤波法;(5)基于神经网络的速度估计器;(6)转子齿谐波法。然而,这些速度辨识方法在转速估计精度、抗参数变化、抗噪声干扰的鲁棒性以及计算复杂程度上同实际要求还有一定的距离。

上一篇:高校高水平网球队与高校网球文化互动发展研究 下一篇:营造现场直播的交响效果