钢结构施工中机械焊接

时间:2022-10-01 07:16:38

钢结构施工中机械焊接

摘 要:随着社会的不断发展,对焊接技术提出了愈来愈高的要求。所选用的焊接方法、焊接工艺、焊接材料和焊接设备首先应保证焊接接头的高质量,同时必须满足高效、低耗、低污染的要求。

关键词:机械焊接;控制措施;安全隐患

目前,钢结构焊接技术在我国的发展尚处于探索阶段,与西方发达国家还存在一定的差距。最早在焊机的设计上往往功能单一、结构简单,只能完成最基本的焊接与切割工作,对焊接工作的多样化考虑不足,即便是后来的焊接机器人的诞生,其灵活性也颇受局限,经常在实际操作当中发生错误。此外,在对外引进的焊机当中,除了高昂的价格以外,国外对我国出口的焊机技术上也相对粗糙,没有达到当时国际的先进水平。

1.机械焊接技术

机械、石化、冶金、造船、航空航天的建设都离不开焊接,而机械焊接技术种类繁多,工艺复杂,如何在生产实践中做好质量控制成为当前最主要的课题。机械焊接技术分类焊接工艺种类繁多,按焊接过程的特点不同可分为:气保焊压力焊手工电弧焊和钎焊三大类:第一种,气体保护焊:简称气保焊,其焊接保护是依靠从喷嘴里连续喷出的气体将四周空气隔开,机械地保护电弧和焊接区域以完成焊接的焊接方式气体保护焊的保护气体主要有氮气和氢气以及二者的混合气体;第二种,压力焊:主要有电阻焊摩擦焊扩散焊旋转电弧焊和超声波焊等几种,其中以电阻焊最为常用。第三种:钎焊,它是将焊件和钎料加热到高于钎料熔点,低于母材熔点的温度,利用液态钎料湿润母材,填充接头间隙并与母材相互扩散实现连接焊件的一种方法;第四种:手工电弧焊,用手工操纵焊条进行焊接的电弧焊方法称为手工电弧焊,简称手弧焊,就是我们通常所说的电焊。

2.焊接技术的质量控制

焊接的质量问题至关重要,因为焊接技术关系到整个钢结构的安全性和稳定性,尤其是大型的钢结构中,焊接技术的质量要求更为严格。要保证焊接技术的质量,就要重点关注焊接接头处的焊接质量,因为接头处关系着两部分之间的联系,尤其是两种不同材料之间的焊接,实质上相当于两种不同金属材料重新融合的过程。焊接接头处是影响焊接质量的主要部位,因此在焊接时应该重点加强对接头处的质量控制,保证技术的规范性,采取一定的措施加强对焊接效果的检测,及时消除质量隐患,能够有效地提高焊接质量,保证钢构件的安全性。在焊接时,要保证技术操作的规范性,获得良好的焊接效果,要重点做好焊道的尺寸、强度、外观、漏水试验要求和焊接变形等工作。焊接技术工人在进行焊接工作时,一定要熟悉焊接要求,根据焊接图谱进行焊接,要保证程序化的操作焊接技术,在焊接开始时,首先要检查焊接材料以及焊接接头处的材料表面情况,保证材料的光滑清洁卫生,以免影响焊接效果。在焊接时要遵照工艺图开展工作,同时要注意焊接后的材料的实用性,保证焊接处的圆滑过渡以及适当的余高,留下改进空间,保证不影响材料的使用。按规定,焊缝的余高应该在0.5~3.5mm之间。同时焊接完成后要进行质量检修,及时地处理不合格的构件,同时要限制返修的次数,因为反复焊接会影响焊接处金属的物理质量,影响材料性能的稳定性。

3.焊接技术新工艺的发展

随着现代焊接工艺的发展和建筑钢结构新的技术要求,未来的焊接技术主要的发展趋势可以从两个方面进行具体分析:一是新技术的研发方面,主要是为了提高焊接的质量,扩大焊接技术的范围;二是要创新焊接工作的技术设备,将计算机人工智能技术引进焊接领域,提高焊接现代化水平。

3.1 研发新的焊接反变形技术

实际生活中,由于焊接技术的限制和钢构件的使用环境所致,经常会出现焊接处变形的情况。这种情况限制了领域内技术的发展和业务的扩大。从实际情况来看,变形主要分为纵向、横向收缩变形、弯曲变形、角变形和波浪变形等,因此有必要研发焊接反变形技术。实际应用中主要是通过完善焊接工作各个环节以提高焊接质量的方法避免变形的程度。而对于新的反变形技术,虽然也有研究,但是成果并不丰富。目前反变形技术的一个创新是利用残余角变形的方法,主要的技术规范是在焊接开始前对焊接材料进行技术处理,施加弹性的反向变形,利用热弹塑性有限元法来模拟结构的焊接过程,确定焊接结构的弹性反变形规律:焊接前施加弹性反变形的结构在焊接后角变形趋于零,效果十分理想。

3.2低温焊接

焊接钢构件有时候也会出现断裂的问题,主要是由于低温造成的,尤其是当钢构件中存在缺口的时候,断裂发生的概率更大。科学研究焊结构件断裂的原因,结果表明低温焊接能够有效地减少断裂事件的发生。因为低温焊接比较重视焊接时对焊件的预热,并根据周围的环境温度进行调节预热与后热。同时也可以通过调整焊缝金属的微合金化的程度,同焊接规范相配合,使焊缝金属产生针状铁素体而获得理想的焊缝强韧性,从而取得焊接工艺评定试验的成功,确保工程实体质量。焊接工艺参数设定:冷却条件的改变影响相变,热影响区的组织取决于钢材的化学成分和焊接的冷却条件,同时也影响扩散氢的逸出和焊接应力的改变。焊接热影响区的冷裂纹大多数在马氏体内部产生,焊接区冷却速度过大易产生马氏体组织。焊缝所处的工况完全不同,焊缝中心产生偏析,低温焊接防治冷裂纹的同时,还须防范由于结构拘束度大,照搬工艺试验的结果很可能适得其反,甚至造成严重后果。电加热可以使预热区域受热均匀,有效防止局部受热造成接头附加应力;升温速度均匀、可控,防止造成母材过热等现象,可达到母材充分均匀预热。由于液-固态氢溶解度不同,在结晶温度下液态溶氢量是固态时的4倍以上,溶氢较多的半溶化晶界起了“通道”作用,氢很容易沿着该通道从焊缝――熔合区――热影响区扩散。在低温施工中,控制AV≥0.6的前提下,采用控制不同焊接位置的AV,实现大电流,防止淬硬组织的产生。

参考文献:

[1]潘海珍.焊接缺陷产生的原因预防检验[J].科技创新与应用,2012

[2]张辉.钢材焊接裂纹成因与防治措施[J].科技创新与应用,2013.

上一篇:变电检修危险点分析及预防 下一篇:桥梁裂缝问题控制分析