纤维素酶在食品工业的应用

时间:2022-09-29 09:31:26

纤维素酶在食品工业的应用

1纤维素酶的结构

1.1葡萄糖内切酶

该酶作用于纤维素分子内的非结晶区,随机水解β-1,4-糖甘键,截短长链纤维素分子,产生许多带有非还原性末端的小分子纤维素,但不能单独作用于结晶的纤维素。同时它也能水解小分子的纤维寡糖。

1.2葡萄糖外切酶

这类酶作用于纤维素分子的末端,依次切下纤维素分子中的纤维二糖,可作用于纤维素分子内的结晶区、无定形区和羧甲基纤维素。

1.3β-葡萄糖苷酶

也称纤维二糖酶,是一种可将纤维二糖、纤维三糖和纤维六糖等水解为葡萄糖的非专一性酶;在水解过程中低聚糖对外切酶和内切酶的产物产生抑制作用,这种酶的存在可以显著降低抑制作用,提高水解效率。

2食品工业纤维素酶的来源

纤维素酶的来源非常广泛,昆虫、动物体、微生物(细菌、放线菌、真菌、酵母)等都能产生纤维素酶。由于动物体和放线菌的纤维素酶产量极低,所以很少研究。细菌所产生的酶是胞内酶,或者吸附在菌壁上,很少能分泌到细胞外,提取纯化的难度大。而且产量也不高,主要是中性和碱性的葡萄糖内切酶。因其多数对结晶纤维素没有活性,所以主要用于棉织品水洗整理工艺及洗涤剂工业中,在食品工业中应用也较少[4]。目前,报道较多的是真菌,其产生的纤维素酶通常是胞外酶,酶一般被分泌到培养基中,用过滤和离心等方法就可较容易地得到无细胞酶制品。丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物,其中木霉纤维素酶产量高、酶系全,故而被广泛应用,尤其是里氏木霉、绿色木霉的研究较多。

2.1产纤维素酶里氏木霉的研究进展

由于里氏木霉产纤维素酶量高、稳定性好、适应性强,便于生产和管理,因此具有突出的研究和利用价值。目前,在菌株选育上普遍采用人工诱变和基因工程改造两种方案获得高效分解纤维素的菌株。诱变的方法一般是传统的物理诱变(紫外线)和化学诱变(亚硝基胍)。IKEM等以里氏木霉ATCC66589为出发菌株,经紫外线诱变,获得两株突变菌株M2-1和M3-1。其滤纸酶活分别达到257U和281U。张素敏等利用紫外线诱变里氏木霉T306,得到突变菌株的CMCA活力达到64.2U/mL[5]。在化学诱变剂中,烷化剂可与巯基、氨基和羧基等直接反应,故更易诱发基因突变。DURANDH等用亚硝基胍诱变里氏木霉QM9414,得到一株稳定性较好的突变菌株CL847,FPA酶活最高达到5.2U/mL,较出发菌株提高了4倍[6]。也有紫外线与亚硝酸钠、亚硝基胍等化学试剂复合诱变的研究,取得了较好的效果。这些研究对里氏木霉高产纤维素酶菌株的选育及其工业化应用具有显著意义。基因工程改造可以从不同产纤维素酶菌株中筛选出比活力高、酶学性质稳定的基因重组在一起并高效表达,具有定向性,是选育出高产纤维素酶菌株的有效途径。目前已成功在里氏木霉中克隆表达的基因有纤维二糖酶基因、celEn、pBGL1、af211、Neg[7]。

2.2产纤维素酶绿色木霉的研究进展

绿色木霉酶活较大,是目前公认较好的纤维素酶生产菌。目前的研究主要集中于绿色木霉产纤维素酶生产工艺的研究。陈莉等采用固态发酵方法研究了不同条件对其产纤维素酶活的影响。得出绿色木霉固态产酶发酵的最优条件是培养温度30℃,培养时间5d,接种量5%,含水量250%。在实际发酵过程中,不同的酶组分达到最大酶活的时间也有不同,例如FPA酶活在发酵2d后达到最高值,Cx酶活在发酵3d后达到最高值。以蛋白胨为唯一氮源时,纤维素酶活力最高,以尿素为唯一氮源时,纤维素酶活力最低。绿色木霉分泌的酶系偏酸性,发酵液初始pH值为4.5时,FPA酶活和Cx酶活都出现最高值。因此在实际应用中也可以根据需要来调整不同酶组分的含量,以及合适的氮源,适宜的pH值等[8-9]。黄发等人对绿色木霉产β-葡聚糖酶的工艺条件研究也得出了类似的结果[10]。

3纤维素酶在食品工业的应用

3.1在果蔬加工中的应用

在果蔬的加工过程中,为了使得植物组织快速软化和膨润,常常采用加热蒸煮或酸碱处理等方法。这样一来就使得蔬菜、果实的香味和维生素等损失很大。通过使用纤维素酶来进行蔬菜的软化可以避免这一缺点。除此以外,通过采用纤维素酶对蔬菜和果实进行分解,可以使加工的果酱口感增加;还可以用纤维素酶来分解蘑菇,制造一种很好的调味料;在糖果品加工工艺中也可以采用纤维素酶来缩短砂糖进入果实当中的时间,以更快地达到浸透效果[11]。朱莉莉等研究了羊栖菜汁浸提工艺条件,通过研究最适范围各个单因素发现,在复合酶酶解提取羊栖菜汁的最佳浸提方案中,添加纤维素酶与果胶酶配比3:2可以大大提高浸提率[12]。

3.2在大豆加工中的应用

纤维素酶用于对大豆的处理,可以促使其大豆快速脱皮,与此同时,由于纤维素酶可以破坏其细胞壁,从而使得包含在细胞中的油脂和蛋白质完全的分离开来,导致大豆和豆饼中提取优质的水溶性蛋白质和油脂的得率明显增加,不但降低了生产成本,而且还显著地缩短了生产时间,更是提高了生产产品的品质。

3.3在茶叶加工中的应用

随着茶饮料工业的快速发展,茶水饮料生产的方式渐渐地由最初饮料厂的全程生产方式向由原料厂商只是生产茶浓缩汁这一方式过度,这就使得我国的茶叶浓缩汁、速溶茶等生产发展快速。随着近现代生物技术的快速发展,外源的生物酶在茶叶提取、加工中得到充分的应用。酶法提取的原理为利用其纤维素酶、半纤维素酶、果胶酶等水解酶分解茶叶的细胞壁,使得细胞结构破坏,导致茶叶中的有效成分快速扩散与浸出,有利于提高固形物的溶出和浸提率。在茶叶提取生产的过程中,纤维素酶可以提升其可溶性糖类的含量以及水浸出物得率,并且还可以促进氨基酸、茶多酚、咖啡碱等物质的溶出,有利于释放出芳香性物质,有显著的增香效果[13]。

4纤维素酶在酿造、发酵工业中的应用

4.1在酱油、食醋酿造中的应用

酱油酿造主要是利用蛋白酶及淀粉酶等酶类对原料进行相应的酶解,而在该过程中如果添加使用纤维素酶,就可以使大豆等原料的细胞膜软化、膨胀等细胞破坏作用更加明显,使得包藏在细胞中的碳水化合物、蛋白质等顺利释放,从而缩短酿造时间,并且可以显著提高产率及品质,使酱油中的还原糖和色度明显增加,风味得到明显改善[14]。在食醋酿造过程中,通过纤维素酶与糖化酶混合使用,可以显著提升原料利用率及出品率。郝建新等以绿原酸为评价指标,进行了添加纤维素酶发酵醋的工艺研究。结果发现,利用纤维素酶等酶后,得到的发酵醋色泽澄清,并具备醋特有的香气,口感也很柔和,而且具有比较好的体外抗氧化的效果[15]。

4.2在啤酒加工过程中的应用

把纤维素酶利用在啤酒工业的麦芽生产当中,可以增加麦粒等的溶解性,减少糖化液中R-葡萄糖的含量,明显提高过滤性能。张麟等对啤酒糟进行了研究,发现预处理过程中添加纤维素酶水解比只用机械处理得到的可溶性糖含量有明显提高[16]。

4.3在饮料中的应用

冯丹等用新鲜的豆渣为原材料,利用纤维素酶对原料进行酶解,可以获得其水溶性膳食纤维等提取液,添加辅料可混合调配成一类酸甜适口,体系均一,滋味纯正,并且具有一定保健功能的膳食纤维类饮料。且研究发现其具有较好的稳定性[17]。

4.4在酒精发酵中的应用

通过在原料中添加纤维素酶来酿酒,可以增加出酒量,节约粮食20%左右,而且酿出的酒酒味醇香,杂醇油含量低。尤其是白酒当中,添加纤维素酶以后,可以同时将淀粉和纤维素转化为可发酵性的糖,再经过酵母分解而全部转化为酒精,提高出酒率且酒的品质纯正。在实际生产中应用纤维素酶,不仅可以提高发酵产率,而且能够显著缩短发酵时间[1]。此外,利用纤维素酶水解木质素生产乙醇用于化工、能源等方面对于目前的全球资源短缺现状的缓解也具有重要意义。

5纤维素酶在纤维废渣回收利用方面的应用

利用其纤维素酶或微生物,把农副产品、城市废料中的纤维素进一步转化成为酒精、葡萄糖和单细胞蛋白质等产品,这对于开辟食品工业的原材料来源、提供新型能源和变废为宝等方面具有十分重要的价值和意义。例如纤维素酶应用于动物饲料的添加剂、纺织、造纸、医药保健、石油开采、新型能源、环保等领域都具有很大的潜力。

6展望

在食品加工工业中,用纤维素酶对农产品进行预处理相较于传统的加热蒸煮或酸碱处理有很多优点,如使植物组织膨化松软,减少农产品香味和营养物质的损失,改善口感,更利于消化,节约处理时间等。另外,纤维素酶也应用于发酵和酿造甚至动物饲料等工业中。纤维素酶目前已经广泛地应用于包括食品在内的各个不同领域,今后也必然将会在应用的深度与广度上进一步发展。虽然纤维素酶的应用还存在不少方面的问题,其主要是在生产菌种等的优化问题,以及应用的成本问题,想要解决这些问题,其主要的方式在于现代生物技术的进一步应用和酶工程的深入探索。另外,若纤维素酶生产菌的生产能力得到进一步提高,纤维素在食品工业及其他行业中的应用将更为广泛和深入。总之,纤维素酶是大有前途的新兴产业,其发展前景广阔。

作者:赵国萍 李迎秋 单位:齐鲁工业大学食品科学与工程学院

上一篇:社区应急管理问题及对策分析 下一篇:煤矿机电管理中网络信息论文