固定式全热交换器的研究

时间:2022-09-17 06:13:18

固定式全热交换器的研究

摘要: 全空气系统甚至采用全新风空调系统是最好的选择,由此带来能耗增加的问题只有通过增设能量回收装置才能解决。本文所介绍的固定式全热交换器就是一种很好的能量回收装置。本文通过介绍固定式全热交换器在国内外的研究情况,和国外的相关测试标准,指出全热交换器作为一种很有发展潜力的能量回收装置,对提高室内空气品质和节约空调能耗都有非常重要的意义。建议我国也尽快建立该类型全热交换器的相关测试标准,以规范我国对固定式全热交换器的研究行为,并为市场上出现的该类产品提供相应的测试依据。

关键词: 全热交换器 内核 热湿交换 测试标准

1 引言 2003年出现的SARS疫情,使我们人类的健康面临严峻的挑战,我们的空调系统曾被质疑为传播疾病的罪魁祸首。为了澄清事实,说明问题,暖通空调界的专家学者纷纷召开各种论坛,探讨目前的空调系统所面临的问题,为暖通空调的发展指明方向。

关于人居环境的空气品质问题多有讨论,提出“由舒适空调迈向健康空调”是今后空调的发展方向。面对这场突如其来的疫情,我们更加认识到空调系统解决的不仅只是舒适问题,还应关注健康问题。于是什么健康空调,反恐空调等所谓的空调新概念纷纷出现。但究竟什么是健康的空调,怎样去实现健康舒适的空调,从而去创造一个良好的人居环境,是需要去认真研究探讨的问题,而不仅仅是停留在概念的角度。关于这个问题,有关专家学者也进行了一些分析,指出全空气系统是最佳的空调系统,它可以实现对建筑热湿控制及空气品质的全面控制,同时也为充分利用自然资源,进行全新风运行提供条件。[1]

加大新风量是实现良好空气品质的最好方法,只从空气品质的角度来说,进行全新风运行的空调系统才是最好的系统,可是由此带来的能量消耗确实是非常大的。根据上海的气象资料计算,当室内设计值在26℃,60%时,对于公共建筑,处理1m3/h新风量,整个夏季需要投入的冷能能耗累计约9.5kw·h左右[2]。可见加大新风量后,能量消耗就有很大增加。因此,需要在新风与排风之间加设能量回收设备。

目前市场上的能量回收设备有两类:一类是显热回收型,一类是全热回收型。显热回收型回收的能量体现在新风和排风的温差上所含的那部分能量;而全热回收型体现在新风和排风的焓差上所含的能量。单从这个角度来说,全热性回收的能量要大于显热回收型的能量,这里没有考虑回收效率的因素。因此全热回收型是更加节能的设备。

按结构分,热回收器分为以下几种:

(1)回转型热交换器

(2)热回收环热交换器

(3)热管式热交换器

(4)静止型板翅式热交换器

在以上几种热交换器中,热回收环型和热管型一般只能回收显热。回转型是一种蓄热蓄湿型的全热交换器,但是它有转动机构,需要额外的提供动力。而静止型板翅式全热交换器属于一种空气与空气直接交换式全热回收器,它不需要通过中间媒质进行换热,也没有转动系统,因此,静止型板翅式全热交换器(也叫固定式全热交换器)是一种比较理想的能量回收设备。

2 固定式全热交换器的性能 2.1 固定式全热交换器

固定式全热交换器是在其隔板两侧的两股气流存在温差和水蒸气分压力差时,进行全热回收的。它是一种透过型的空气——空气全热交换器。

这种交换器大多采用板翅式结构,两股气流呈交叉型流过热交换器,其间的隔板是由经过处理的、具有较好传热透湿特性的材料构成。

2.2 三种效率的定义

全热交换器的性能主要通过显热、湿交换效率和全热交换效率来评价,它们的计算公式为[3]:

显热交换效率: SE=

湿交换效率: ME=

全热交换效率: EE=

其中:Gmin——质量流量小的一侧的空气流量

i1、i2——分别为两侧空气入口的焓值

t1、t2——分别为两侧空气入口的温度

——分别为两侧空气入口的焓值

cp ——质量流量小的一侧的空气的比热

各种文献中对效率定义的表达式很多,但最本质的定义还是上述的文献[3]中对效率的表达式。这三种效率最本质的定义都是:实际交换的量(热量或者湿量)与可能达到的理想的最大的交换量的比值。

2.3 效率的影响因素

对全热交换器的效率有以下影响因素:

(1)所用材质的热物性参数

(2)隔板两侧空气的进风参数(包括:风量、速度、温度、相对湿度等)

在上述的第二个因素中,新风的热力参数,也就是室外的气象条件,对全热交换器的效率也是影响很大的。文献[4]中分析了材质的热物性参数以及室外气象条件对三种效率的影响,指出这两种因素对潜热效率的影响要比对显热效率的影响明显。文献[5]从能耗的角度分析了全热交换器在香港的使用情况,指出气候条件越潮湿,全热交换器比显热交换器更有优势,并得出香港地区的潜热回收效率在一年中的大部分时间保持在60%的结论。

关于效率的影响因素,文献[2]也进行了分析,并得出下列结论:

(1)静止型板翅式全热交换器的显热效率和潜热效率取决于材质的热物性参数、平隔板两侧的界面风速和风量比,而与进风参数无关。

(2)用纤维性多孔质基材制成单元体的全热交换器在传递能量和湿量时,温度效率与基材的工艺处理无大关系,而潜热交换效率主要由材质的透湿特性决定。

(3)在显热效率不等于潜热效率时,全热效率与进风的温湿度条件有关。

3 固定式全热交换器的关键问题 固定式全热交换器性能的高低,除了与使用地区的气候条件有关外,主要取决于所用材质的热物性能的好坏。

目前的文献或已有的产品中所提到的材质有两种:一种是特殊的纸,另外一种是膜。但是不管用哪种材质,从传热传质机理来讲,可以分为两种:一种是多孔渗水材料,它的传质机理是对流扩散,传递动力是压力差;另一种是非渗水材料,传质机理是纯分子扩散,传递动力是浓度差 [6] 。

对于材质的性能,大部分研究者关注的都是它的传热传湿性能。但是,材质的传递气体(特别是各种污染气体)的性能应该是更加值得关注的。尤其是当全热交换器用于一些特殊场合(比如医院)的空调系统时,空调系统的排风中带有污染的气体,在回收排风中的热量的同时,不能使污染气体也扩散到新风中去。即便是在普通的大型中央空调系统中,当有大规模的空气传播流行病(比如SARS)爆发时,空调系统需要切换到全新风运行模式,此时的排风中携带有各种病毒,因此也不能使这些病毒通过全热交换器的材质传递到新风中去。所以,从空调系统的健康性和安全性考虑,材质的传递污染气体的性能是更应值得关注的。

4 理论模型的建立 用多孔介质传热传质的理论建立模型,分析材质的传热传湿性能。目前的大部分研究所建立的模型都如文献[3]一样建立下列的数学模型:

通过材质的传热传质过程简化为三个步骤:

(1)材质一侧的吸附过程

(2)通过材质的扩散过程

(3)材质另一侧的解析过程

模型的质量和热量守恒方程:

新风侧:

排风侧:

材质:

其中:m---- 单位横断面积的质量流量 kg/m2.s

cp---- 比热 kJ/kg .K

T ---- 温度 K

h---- 对流换热系数 kw/ m2.K

H---- 通道断面高度 m

k---- 对流传质系数 m/s

w--- 相对湿度 kg/kg.干

D--- 湿量传递率 kg/s

从上面的模型中可以看出:对于两侧空气内的传热传质过程,只考虑了一维的情形,而对于材质内的导热过程考虑了三维情形。对于通过材质的质传递过程所建立的方程用到的是Fick定律,也就是说材质内的质扩散过程只考虑了单一的扩散规律。

根据文献[7]的多孔介质传质理论可知,多孔介质中的质量传递属于分子扩散形式。但是随着空隙尺寸大小的不同,这种分子扩散质量传递的特点与规律有所不同,所遵守的质量传递定律的表达式亦有所差别。简要分析为:

(1)当空隙的定性尺寸远大于分子自由程时,遵守Fick定律,称为Fick扩散。

(2)当空隙的定性尺寸远小于分子自由程时,发生的是Knudsen扩散。此时,流体分子同璧面的碰撞品率比它们之间碰撞的频率高很多,当流体分子撞击璧面时,避免就会对其产生瞬时吸附,这种吸附使得流体通量减少了。Knudsen扩散不再遵守Fick定律。

(3)当空隙的定性尺寸与分子自由程相当时,多孔介质中流体的质量扩散,既不遵守Fick定律,也不符合Knudsen扩散分析的结果,也称为过渡扩散。

所以,材质内的质扩散过程不能只用Fick定律来表示,需要根据材质的内部空隙结构,建立不同的质扩散模型。

5 相关实验测试标准 目前,关于全热交换器的测试标准国内还没有。下面是一些国外的相关标准:

(1) ANSI/ASHRAE 84-1991

(2) BS EN 305:1997

(3) ISO 9360-2

(4) CEN PREN 308

(5) ASTM TEST METHOD E 96-93

这些标准详细规定了全热交换器的测试实验方法,所用的测试仪器以及测试中应注意的问题。ASTM TEST METHOD E 96-93 是测试材料的水蒸气传递特性的标准。

全热交换器是一种很好的节能设备,有广泛的应用前景,在国内也掀起了研究的热潮,生产各种热回收器的厂家也纷纷出现,为了规范市场和引导正确的研究方向,我国也应该尽快建立相关的测试标准。

6 结论 随着空调健康性和安全性问题的提出,如何创造一个既舒适又健康安全的人居环境越来越成为暖通空调界的紧迫课题。但同时带来的能量消耗大的问题也需要迫切解决,固定式全热交换器作为一种很好的能量回收装置,必将有很广泛的应用前景。国内外都对固定式全热交换器作了些研究,但是传质传热模型有待于进一步的完善,以从理论上更好地分析如何选择材质。我国也需要建立相关的测试标准,以规范可能出现的巨大的市场,也为研究和测试提供相应的依据。

参考文献: 1 彦启森. 空调与人居环境. 暖通空调,2003,33(5):1-5

2 陈沛霖,编著. 空调技术问答. 上海:同济大学出版社,2003.5

3 L.Z.Zhang,Y.Jiang. Heat and mass transfer in a membrane-based energy recovery ventilator. Journal of Membrane Science 163(1999) 29-38

4 J.L.Niu, L.Z.Zhang. Membrane-based enthalpy exchanger: material considerations and clarification of moisture resistance. Journal of Membrane Science 189(2001) 179-191

5 L.Z.Zhang, J.L.Niu. Energy requirements for conditioning fresh air and the long-term savings with a membrane-based energy recovery ventilator in Hong Kong. Energy 26(2001) 119-135

6 Phillip W. Gibson. Effect of temperature on water vapor transport through polymer membrane laminates. Polymer testing 19 (2000) 673-691

7 林瑞泰,编著. 多孔介质传热传质引论. 北京:科学出版社,1995,10

上一篇:应用流量分配器的分离热管壁挂式太阳能热水器... 下一篇:土壤源热泵间歇运行冬季工况的试验研究