电力系统中的谐波检测及谐波抑制

时间:2022-09-11 06:15:33

电力系统中的谐波检测及谐波抑制

摘 要:目前电力系统谐波危害已经引起了各个部门的关注,为了整个供电系统的供电质量,必须对谐波进行有效的检测和治理。

关键词:谐波 检测 治理

前言

随着我国工业化进程的迅猛发展,电网装机容量不断加大。电网中电力电子原件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波于电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,演技和清除供配电系统中的高次谐波,对于改善供电质量、确保电力系统安全、经济运行都有着十分重要的意义。

一、电力系统谐波危害

①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。

②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。

③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。

④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。

⑤谐波会使电气测量仪表不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。

⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪音,境地通信质量;重则导致信息丢失,使通信系统无法正常工作。

⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。

⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪音干扰和图像紊乱。

二、谐波检测

1.模拟电路

消除谐波的方法很多,既有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为现金的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波复制误差很难控制在10%以内,严重影响了有源滤波器的控制性能。

2.傅立叶变换

利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信号为x(t),采样间隔为t秒,采样频率=1/t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(n t),并且采样信号总是有限长度的,基n=0,1……N-1.这相当于对无限长的信号做了截断,因而造成了傅立叶变换的泄露现象产生误差。此外,对于离散傅立叶变换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。

3.小波变换

小波变换已广泛应用与信号分析、语音识别与合成、自动控制、图像处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,利用小波变换对数字信号进行处理,从而实现对谐波的精确测定。小波可以看作是一个双窗函数,对一信号进行小波变换相当于从这一时频窗内的信息提取信号。对于检测高频信息,时窗变窄,可对信号的高频分量做细致的观测;对于分析低频信息,这时时窗自动变宽,可对信号的低频分量做概貌分析。所以小波变换具有自动“调焦”性。

三、电力系统谐波治理

基于改造谐波源本身的谐波抑制方法一般有以下几种。

(1)增加整流变压器二次侧整流的相数

对于带有整流元件的设备,尽量增加整流的相数或脉动数,可以较好地消除低次特征谐波,该措施可减少谐波源产生的谐波含量,一般在工程设计中予以考虑。因为整流器是供电系统中的主要谐波源之一,其在交流侧所产生的高次谐波为tk1次谐波,即整流装置从6脉动谐波次数为n=6K1,如果增加到12脉动时,其谐波次数为n=12K1(其中K为正整数),这样就可以消除5、7等次谐波,因此增加整流的相数或脉动数,可有效地抑制低次谐波。不过,这种方法虽然在理论上可以实现,但是在实际应用中的投资过大,在技术上对消除谐波并不十分有效,该方法多用于大容量的整流装置负载。

(2)整流变压器采用Y/或/Y接线

该方法可抑制3的倍数次的高次谐波,以整流变压器采用/Y接线形式为例说明其原理,当高次谐波电流从晶闸管反串到变压器副边绕组仁保其中3的倍数次高次谐波电流无路可同,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在型绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势。从以上分析可以看出,三相晶闸管整流装置的整流变压器采用这种接线形式时,谐波源产生的3n(n是正整数)次的谐波激磁电流在接线绕组内形成环流,不致使谐波注入公共电网。

(3)尽量选用高功率因数的整流器

采用整流器的多重化来减少谐波是一种传统方法,用该方法构成的整流器还不足以称之为高功率因数整流器。高功率因数整流器是一种通过对整流器本身进行改造,使其尽量不产生谐波,其电流和电压同相位的组合装置,这种整流器可以被称为单位功率因数变流器。该方法只能在设备设计过程中加以注意,从而得到实践中的谐波抑制效果。

(4)整流电路的多重化

整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而得到接近正弦波的阶梯波。重数越多,波形越接近正弦波,但其电路也越复杂,因此该方法一般只用于大容量场合。

当然,除了基于改造谐波源本身的谐波抑制方法,还有基于谐波补偿装置的功能的抑制方法,它包括加装无源滤波器,加装有源滤波器、装设静止无功补偿装置等等。

随着现代信息技术,计算机技术和电子技术的发展,电能质量问题已经越来越引起用户和供电部门的重视。应用先进的电能质量测试仪器不仅能大大提高电能质量监测网络,及时分析和反映电网的电能质量水平,找出电网中造成电能质量谐波及故障的原因,采取相应的措施,为保证电网的安全、稳定、经济运行提供重要的保障。

参考文献:

[1]电能质量―公用电网谐波 GB/T14549-1993[J]

[2]吕润虞.电力系统高次谐波。[M].北京:中国电力出版社,1998

[3]陈伟华.电磁兼容技术使用手册.北京:机械工业出版社,1998

上一篇:浅析新时期技工学校学生的思想政治教育 下一篇:试论小学生意志品质教育