浅谈医学影像中的核磁共振成像技术

时间:2022-09-10 07:49:35

浅谈医学影像中的核磁共振成像技术

【摘要】核磁共振成像技术是继CT后医学影像学的又一重大进步,对医学技术的进步起到了很大的推动作用。全文讲述了核磁共振成像技术原理、核磁共振成像的优势、核磁共振成像的不足和核磁共振检查时注意事项

【关键词】核磁共振成像术 弛豫时间 强静磁场 磁共振

中图分类号:R445.2 文献标识码:B 文章编号:1005-0515(2012)1-323-02

核磁共振成像术又叫磁共振成像术,简称核磁共振、磁共振或核磁,是80年展起来的一种全新的影像检查技术。它的全称是:核磁共振电子计算机断层扫描术(简称MRI--CT或者MRl)。什么是核磁共振成像技术呢?简单地说,就是利用核磁共振成像技术(英文简写MRI、MR或NMR,法文简写RMN)进行医学诊断的一种新颖的医学影像技术。核磁共振是一种物理现象,早在1946年就被美国的布劳克和相塞尔等人在医学教育网收集整理 。作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。到1981年,就取得了人体全身核磁共振的图像。使人们长期以来,设想用无损伤的方法,既能取得活体器官和组织的详细诊断图像,又能监测活体器官和组织中的化学成分和反应的梦想终于得以实现。

1 核磁共振成像原理

原子核带有正电,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之能进行空间分辨,就得到运动中原子核分布图像。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫弛豫时间。弛豫时间有两种即T1和T2,T1为自旋-点阵或纵向驰豫时间T2,T2为自旋-自旋或横向弛豫时间。

氢核是人体成像的首选核种,人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。

影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血液和脑脊液的流动;(d)顺磁性物质(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。

核磁共振成像技术信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则核磁共振成像技术信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是核磁共振成像技术用于临床诊断最主要的物理基础。

当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。

人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来。

核磁共振成像技术所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了剖胸或剖腹探查诊断的手术。由于核磁共振成像技术不使用对人体有害的X射线和易引起过敏反应的造影剂,因此对人体没有损害。核磁共振成像技术可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。对全身各系统疾病的诊断,尤其是早期肿瘤的诊断有很大的价值。

核磁共振的另一特点是流动液体不产生信号称为流动效应或流动空白效应。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈黑色。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。

2 核磁共振成像优势

与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。核磁共振成像技术提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。核磁共振成像技术对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。具体说来有以下几点:

1.对软组织有极好的分辨力,对人体没有损伤。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

2.各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效。例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;

3.通过调节磁场可自由选择所需剖面。能得到其它成像技术所不能接近或难以接近部位的图像。对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等。不像CT只能获取与人体长轴垂直的横断面;

4.原则上所有自旋不为零的核元素都可以用以成像,例如氢(H)、碳(C)、氮(N和N)、磷(P)等。

3 核磁共振成像可能对人体造成的伤害

3.1 强静磁场 在有铁磁性物质存在的情况下,不论是埋植在患者体内还是在磁场范围内,都可能是危险因素;

3.2 随时间变化的梯度场 可在受试者体内诱导产生电场而兴奋神经或肌肉。外周神经兴奋是梯度场安全的上限指标。在足够强度下,可以产生外周神经兴奋(如刺痛或叩击感),甚至引起心脏兴奋或心室振颤;

3.3 射频场(RF)的致热效应 在核磁共振成像技术聚焦或测量过程中所用到的大角度射频场发射,其电磁能量在患者组织内转化成热能,使组织温度升高。RF的致热效应需要进一步探讨,临床扫描仪对于射频能量有所谓“特定吸收率”(specific absorption rate, SAR)的限制;

3.4 噪声 核磁共振成像技术运行过程中产生的各种噪声,可能使某些患者的听力受到损伤;

3.5 造影剂的毒副作用 目前使用的造影剂主要为含钆的化合物,副作用发生率在2%-4%。

4 核磁共振检查时的注意事项

由于在核磁共振机器及核磁共振检查室内存在非常强大的磁场,因此,装有心脏起搏器者,以及血管手术后留有金属夹、金属支架者,或其他的冠状动脉、食管、前列腺、胆道进行金属支架手术者,绝对严禁作核磁共振检查,否则,由于金属受强大磁场的吸引而移动,将可能产生严重后果以致生命危险。一般在医院的核磁共振检查室门外,都有红色或黄色的醒目标志注明绝对严禁进行核磁共振检查的情况。

身体内有不能除去的其他金属异物,如金属内固定物、人工关节、金属假牙、支架、银夹、弹片等金属存留者,为检查的相对禁忌,必须检查时,应严密观察,以防检查中金属在强大磁场中移动而损伤邻近大血管和重要组织,产生严重后果,如无特殊必要一般不要接受核磁共振检查。有金属避孕环及活动的金属假牙者一定要取出后再进行检查。

有时,遗留在体内的金属铁离子可能影响图像质量,甚至影响正确诊断。

在进入核磁共振检查室之前,应去除身上带的手机、呼机、磁卡、手表、硬币、钥匙、打火机、金属皮带、金属项链、金属耳环、金属纽扣及其他金属饰品或金属物品。否则,检查时可能影响磁场的均匀性,造成图像的干扰,形成伪影,不利于病灶的显示;而且由于强磁场的作用,金属物品可能被吸进核磁共振机,从而对非常昂贵的核磁共振机造成破坏;另外,手机、呼机、磁卡、手表等物品也可能会遭到强磁场的破坏,而造成个人财物不必要的损失。但近几年科学发现由于钛金属不受磁场的吸引,在磁场中不会移动。因此体内有钛金属内固定物的病人,进行核磁共振检查时是安全的。

总之,快速扫描技术的研究与应用,核磁共振成像技术越来越多地应用到医学领域,继续向微观和功能检查上发展,对揭示生命的奥秘将发挥更大的作用。

参考文献

[1]汪红志 张学龙 武杰:《核磁共振成像技术实验教程》 科学出版社.

[2]史全水:《核磁共振技术及其应用》 《洛阳师范学院学报》2006年第2期.

[3]Lauterbur P C Nature, 1973, 242:190.

[4]叶朝辉《磁共振成像新进展》《物理》,2004,(01).

[5]田建广、刘买利、夏照帆、叶朝辉《磁共振成像的安全性》《波谱学杂志》,2002,(06).

[6]Levy LM, Di Chiro G. MR phase imaging and cerebrospinal fluid flow in the head and spine. Neuroradiol, 1990,32.

上一篇:三种不同检测方法对诊断结核病的比较 下一篇:彩色多普勒超声诊断胎儿脐带绕颈的临床价值