银杏叶提取物防治阿尔茨海默病的研究新进展

时间:2022-08-09 12:44:44

银杏叶提取物防治阿尔茨海默病的研究新进展

[摘要] 阿尔茨海默病(AD)是严重危害中老年人健康的神经系统退行性疾病,积极寻求防治AD的有效策略,已经成为重大的公共卫生问题。银杏叶提取物银杏叶提取物(EGb)是目前临床防治AD的常用药物之一,并且具有较为理想的效果。EGb761可保护血脑屏障结构与功能,其机制与EGb761改善细胞活力、抑制细胞凋亡与内源性活性氧生成和下调晚期糖化终产物受体表达等密切相关;EGb可明显促进热休克蛋白70和葡萄糖调节蛋白表达,激活内质网应激和Akt信号通路,从而抑制β-淀粉样蛋白(Aβ)的神经毒性,保护神经,以免受损。本文对EGb在防治AD中的作用与机制研究新进展进行综述。

[关键词] 阿尔茨海默病;银杏叶提取物EGb;机制

[中图分类号] R961.1 [文献标识码] A [文章编号] 1673-7210(2016)04(c)-0061-04

[Abstract] Alzheimer's disease (AD) is a serious nervous system degenerative disease, which damages to the health of middle-aged and elderly people. It is a major public health problem to seek effective strategies for prevention and treatment of AD. Ginkgo biloba extract (EGb) is one of the common drugs to prevent and to treat AD and has an ideal effect. EGb761 has protective effects on the structure and function, which may be related to the decrease in Aβ-triggered cell injury, cells apoptosis and intracellular reactive oxygen species generation, and down-expression of receptor for advanced glycation end-products. EGb has neuroprotective effects, which may be related to endoplasmic reticulum stress activation and upexpression of HSP70 and GRP78 expression, and subsequent activation of Akt signaling pathway. The novel progress of effects and mechanisms of EGb for the prevention and treatment of AD was summarized in the present paper.

[Key words] Alzheimer's disease; Ginkgo biloba extract; Mechanism

阿尔茨海默病(Alzheimer's disease,AD)是一种以认知功能障碍和近期记忆障碍为主要临床表现和以进行性中枢神经系统(central nervous system,CNS)退行性变化为主要特征的疾病,其脑部主要病理学特征为大脑皮质萎缩和神经细胞丧失等,是痴呆的最常见类型[1-2],严重危害中老年人的健康和生活质量。AD发病机制尚未完全阐明,临床上也缺乏有效的防治措施。深入阐明AD的发生机制,积极寻求防治AD的有效策略,这已经成为重大的公共卫生问题。中医药在防治AD方面展示其独特优势和前景,如银杏叶提取物(Ginkgo biloba extract,EGb)在防治AD中具有较为理想的效果[3],本文对此研究领域的最新进展进行综述。

1 AD发生的主要新机制

Aβ沉积在脑实质引起CNS损伤是AD的特征性病理改变。近期研究发现血脑屏障损伤新机制:Aβ除引起CNS损伤,Aβ沉积于脑微血管壁可引起血管内皮细胞损伤和血脑屏障功能障碍,这也是AD的重要病理变化特征[4]。Aβ沉积于脑血管系统,破坏血脑屏障结构的完整性,导致血脑屏障功能受损和脑血流减少,脑内毒性代谢产物堆积,从而加速AD病变进展[4-7]。

2 EGb的应用

银杏属于银杏科植物(Ginkgo biloba L.),银杏叶为银杏科植物银杏的叶,EGb是从银杏叶中提取的具有独特药理活性的混合物。国际上标准银杏叶提取物是按德国Schwabe专利工艺生产的EGb761[8]。一系列研究认为,EGb的主要活性成分有:①黄酮类,主要有三羟黄酮等,约占EGb总成分的24%[9];②萜内酯类,主要包括银杏内酯类和双叶内酯,约占EGb总成分的6%[10];③有机酸类,主要包括香草酸等,其中喹啉酸属于兴奋性氨基酸拮抗剂,具有减轻神经细胞损伤和脑部缺血的作用,占EGb总成分的5%~10%[11]。还含有聚戊烯醇类酯等[12]。活性成分总黄酮醇苷及银杏内酯有扩张血管和改善微循环等作用[13]。EGb对多种疾病都具有一定的治疗作用[14]。

3 EGb在防治阿尔茨海默病中的效果与机制

EGb可明显改善AD患者认知功能和学习记忆功能,被认为是“记忆增强剂”,具有清除活性氧自由基、改善线粒体功能、抑制Aβ神经毒性和促进神经元再生与修复等作用[15-16]。EGb具有促进血液循环和改善认知等功能,是临床改善脑缺血和AD等疾病认知功能的重要药物[15]。夏世金[17-18]课题组研究最新发现,EGb761可抑制Aβ诱导的血脑屏障损伤,其机制与EGb761改善细胞活力、抑制细胞凋亡与内源性活性氧(reactive oxygen species,ROS)生成和抑制晚期糖化终产物受体(receptor for advanced glycation end-products, RAGE)表达密切相关;EGb可促进热休克蛋白70(heat shock protein 70,HSP70)和葡萄糖调节蛋白78(glucose-regulated protein 78,GRP78)表达,激活内质网应激(endoplasmic reticulum stress,ERS)和Akt信号通路,抑制Aβ神经毒性,保护神经功能。

3.1 EGb保护血脑屏障

血脑屏障是机体重要屏障之一,对维持脑内环境稳定和保证大脑正常功能极为重要[19-20]。脑微血管内皮细胞(brain microvascular endothelial cells,BMEC)是血脑屏障的基本骨架[19]。BMEC以其显著的特异性在血脑屏障特性及物质转运功能中发挥重要作用[21-22]。Hartz等[23]证实,AD患者存在血脑屏障结构完整性受损,紧密连接(tight junction, TJ)蛋白水平显著降低。在体动物及体外细胞研究也发现Aβ可引起TJ蛋白水平下降和血脑屏障通透性增加[23-25]。血脑屏障功能及其低渗性主要依赖于内皮间TJ,后者是血脑屏障功能的重要结构基础和功能保障。各种原因引起的TJ破坏都将导致血脑屏障损伤,继而出现CNS内环境紊乱,加速中枢病变进展[26]。TJ主要由相关铰链蛋白ZO(ZO-1、2、3)、Claudin(Claudin-1、3、5、12)和Occludin构成[19-20,27]。血脑屏障结构完整性与TJ正常组合开放及关闭有关,TJ蛋白表达减少或蛋白分布异常均能引起TJ结构改变,导致血脑屏障结构完整性破坏和通透性增加。研究中血脑屏障通透性增加可能与TJ蛋白减少有关。Wan等[17]研究发现, Aβ处理内皮细胞后,ZO-1、Claudin-5及Occludin等内皮细胞间紧密连接蛋白含量减少,血脑屏障受损;而EGb761能抑制Aβ诱导的血脑屏障损伤,上调ZO-1, Claudin-5 和Occludin表达,保护血脑屏障,其机制与EGb761改善细胞活力、抑制细胞凋亡与内源性ROS生成等相关。

3.2 EGb抑制RAGE表达

RAGE是晚期糖化终产物(advanced glycation end-products,AGEs)的一种特征性细胞表面受体,属于免疫球蛋白超家族成员。RAGE除与AGEs结合,还能与高迁移率族蛋白-1(high mobility group box 1,HMGB-1)和Aβ等多种配体结合调节细胞生命活动[28]。Aβ-RAGE相互作用还能激活核因子-κB(nuclear factor-κB, NF-κB),上调RAGE表达,激活Aβ介导的正反馈损伤效应[28-30]。脑内RAGE表达上调与AD神经元损伤相关。BMEC上极微量表达的RAGE是参与血脑屏障转运Aβ的重要载体之一,其与低密度脂蛋白受体相关蛋白-1(LDH receptor related protein,LRP-1)协同维持脑内Aβ正常水平[31]。LRP-1将脑内Aβ转运至外周血液循环,经肝脏代谢清除,RAGE则将血液中Aβ转运入脑沉积。在AD中,LRP-1表达减少,RAGE含量显著增加[31]。Ma等[32]研究表明,基质金属蛋白酶(matrix metalloproteinases,MMPs)与多种病变引起的血脑屏障通透性增加有关,而抑制MMP活性能阻断血脑屏障损伤途径。RAGE是Aβ诱导血脑屏障损伤过程的重要环节,其机制与RAGE介导Aβ细胞毒性、激活RAGE下游信号途径、引起MMP-2与MMP-9表达相关[26]。Wan等[17]研究发现,EGb761能显著抑制RAGE表达,从而改善AD中血脑屏障功能。

3.3 EGb激活内质网应激

ERS与AD密切相关[33-34]。Song等[35]研究显示,Aβ可通过激活ERS介导细胞凋亡,从而加速AD进程。淀粉样蛋白假说(Amyloid cascade hypothesis)认为,Aβ沉积可进一步引起SP形成、tau蛋白的过度磷酸化和神经元凋亡等一系列事件[36-37]。HSP70可作为分子伴侣蛋白指导错误折叠蛋白的再折叠,增强HSP70的表达可抑制蛋白质错误折叠所引起的神经毒性,还能增强细胞的抗氧化应激和抗凋亡能力,从而保护细胞,以免其受损[38-39]。此外,HSP70的过表达在AD动物模型及细胞模型中被认为具有保护作用[40-41]。Aβ亦可引起内质网应激,并激活线粒体和内质网介导的细胞凋亡途径[42-43],而具有内质网应激的标志蛋白之称的GRP78则被募集,GRP78与异常堆积蛋白结合,维持内质网内环境稳态,增强细胞抗应激能力[44]。Liu等[18]研究发现,EGb能明显减少细胞凋亡发生,明显上调细胞内HSP70和GRP78蛋白表达,以激活内质网应激,减缓内质网途径细胞凋亡,从而抑制Aβ1-42神经毒性,EGb的这种神经保护作用可能与其激活Akt信号通路有关。

然而,上述研究仅仅以体外研究为主,对RAGE在AD中血脑屏障损伤中的作用仍需更多和更深入的探索,需要开展在体研究加以验证,同时还将从炎症等角度进一步阐述RAGE参与血脑屏障损伤的机制,为揭示RAGE的关键作用与机制提供更多实验依据,对深入阐明EGb防治AD的作用与机制具有重要的理论意义和应用价值。

[参考文献]

[1] Pomara N,Sidtis JJ. Alzheimer's disease [J]. N Engl J Med,2010,362(19):1844.

[2] Shrestha P,Klann E. Alzheimer's disease:Lost memories found [J]. Nature,2016,531(7595):450-451.

[3] Andrieu S,Ousset PJ,Coley N. GuidAge study:a 5-year double blind,randomised trial of EGb 761 for the prevention of Alzheimer's disease in elderly subjects with memory complaints. i. rationale, design and baseline data [J]. Curr Alzheimer Res,2008,5(4):406-415.

[4] Carrano A,Hoozemans JJ,Van der Vies SM,et al. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy [J]. Antioxid Redox Signal,2011,15(5): 1167-1178.

[5] Hartz AM,Bauer B,Soldner EL,et al. Amyloid-beta contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy [J]. Stroke,2012,43(2):514-523.

[6] KaniaKD,Wijesuriya HC,Hladky SB,et al. Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells [J]. Brain Res,2011,1418:1-11.

[7] Wijesuriya HC,Bullock JY,Faull RL,et al. ABC efflux transporters in brain vasculature of Alzheimer's subjects [J]. Brain Res,2010,1358:228-238.

[8] 邹健,蒋晓燕,徐晓明.银杏叶提取物EGb761神经保护作用研究进展[J].中草药,2005,36(11):1734-1736.

[9] 王成章,陈祥,谭卫红,等.银杏叶中黄酮类化合物及其分析方法[J].林产化学与工业,1998,18(1):83-88.

[10] 王成章,谭卫红,陈祥,等.银杏叶中萜内酯的化学成分及分析方法[J].林产化工通讯,1997,31(5):11-14.

[11] Van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts [J]. J Chromatogr A,2002,967(1):21-55.

[12] 徐艳芬,张丽娟,宋新波.银杏叶提取物的研究进展[J].药物评价研究,2010, 33(6):352-356.

[13] Wang GX,Cao FL,Chen J. Progress in researches on the pharmaceutical mechanism and clinical application of Ginkgo Biloba extract on various kinds of diseases [J]. Chin J Integr Med,2006,12(3):234-239.

[14] 齐惠珍,周霞瑾,王明霞.银杏叶提取物的药理作用及其临床应用研究进展[J].河北中医,2013,35(12):1899-1901.

[15] Rhein V,Giese M,Baysang G,et al. Ginkgo bilobaextract ameliorates oxidative phosphorylation performance and reduces abeta-induced failure [J]. PLoS One,2010,5(8):e12359.

[16] Tian X,Zhang L,Wang J,et al. The protective effect of hyperbaric oxygen and Ginkgo biloba extract on Aβ25-35-induced oxidative stress and neuronal apoptosis in rats [J]. Behav Brain Res,2013,242(1):1-8.

[17] Wan WB,Cao L,Liu LM,et al. EGb761 provides a protective effect against Aβ1-42 oligomer-induced cell damage and blood-brain barrier disruption in an in vitro bEnd.3 endothelial model [J]. PLoS One,2014,9(11):e113126.

[18] Liu L,Zhang C,Kalionis B,et al. EGb761 protects against Aβ1-42 oligomer-induced cell damage via endoplasmicreticulumstress activation and Hsp70 protein expression increase in SH-SY5Y cells [J]. Exp Gerontol,2016,75:56-63.

[19] CorrealeJ,Villa A. Cellular elements of the blood-brain barrier [J]. Neurochem Res,2009,34(12):2067-2077.

[20] Shen S,Zhang W. ABC transporters and drug efflux at the blood-brain barrier [J]. Rev Neurosci,2010,21(1):29-53.

[21] Luissint AC,Artus C,Glacial F,et al. Tight junctions at the blood brain barrier:physiological architecture and disease-associated dysregulation [J]. Fluids Barriers CNS,2012,9(1):23.

[22] Liu WY,Wang ZB,Zhang LC,et al. Tight junction in blood-brain barrier:an overview of structure, regulation,and regulator substances [J]. CNS Neurosci Ther,2012, 18(8):609-615.

[23] Hartz AM,Bauer B,Soldner EL,et al. Amyloid-beta contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy [J]. Stroke,2012,43(2):514-523.

[24] Kook SY,Hong HS,Moon M,et al. Abeta(1)(-)(4)(2)-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca(2)(+)-calcineurinsignaling [J]. J Neurosci,2012,32(26):8845-8854.

[25] Tai LM,Holloway KA,Male DK,et al. Amyloid-beta-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation [J]. J Cell Mol Med,2010,14(5):1101-1112.

[26] Wan W,Cao L,Liu L,et al. Aβ1-42 oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases,and down-regulation of tight junction scaffold proteins [J]. J Neurochem,2015,134(2):382-393.

[27] Ronaldson PT,Davis TP. Blood-brain barrier integrity and glial support:mechanisms that can be targeted for novel therapeutic approaches in stroke [J]. Curr Pharm Des,2012,18(25):3624-3644.

[28] Fritz G. RAGE:a single receptor fits multiple ligands [J]. Trends Biochem Sci,2011,36(12):625-632.

[29] Wan W,Chen H,Li Y. The potential mechanisms of Abeta-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in Alzheimer's disease [J]. Int J Neurosci,2014,124(2):75-81.

[30] Han SH,Kim YH,Mook-Jung I. RAGE:the beneficial and deleterious effects by diverse mechanisms of actions [J]. Mol Cells,31(2):91-97.

[31] Deane R,Bell RD,Sagare A,et al. Clearance of amyloid-beta peptide across the blood-brain barrier:implication for therapies in Alzheimer's disease [J]. CNS Neurol Disord Drug Targets,2009,8(1):16-30.

[32] Ma Y,Chiao YA,Clark R,et al. Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence [J]. Cardiovascular Research,2015,106(3):421-431.

[33] Doyle KM,Kennedy D,Gorman AM,et al. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders [J]. J Cell Mol Med,2011,15(10):2025-2039.

[34] Vlana RJ,Nunes AF,Rodrigues CM. Endoplasmic reticulum enrollment in Alzheimer's disease [J]. Mol Neurobiol,2012,46(2):522-534.

[35] Song J,Park A,Lee WT,et al. Apoptosis Signal Regulating Kinase 1 (ASK1):Potential as a Therapeutic Target for Alzheimer's Disease [J]. International journal of molecular sciences,2014,15(2):2119-2129.

[36] Gilbert BJ. The role of amyloid beta in the pathogenesis of Alzheimer's disease [J]. J Clin Pathol,2013,66(5):362-366.

[37] Kayed R,Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity [J]. J Alzheimers Dis,2013,33(Suppl 1):S67-78.

[38] Lu RC,Tan MS,Wang H,et al. Heat shock protein 70 in Alzheimer's disease [J]. Bio Med,2014,2014:435203.

[39] Magrane J,Smith R C,Walsh K,et al. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons [J]. J Neurosci,2004,24(7):1700-1706.

[40] Bobkova NV,Garbuz DG,Nesterova I,et al. Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer's disease [J]. J Alzheimers Dis,2014,38(2):425-435.

[41] Tsai YC,Lee YM,Lam KK,et al. The role of heat shock protein 70 in the protective effect of YC-1 on beta-amyloid-induced toxicity in differentiated PC12 cells [J]. PLoS One,2013,8(7):e69320.

[42] Costa RO,Ferreiro E,Cardoso SM,et al. ER stress-mediated apoptotic pathway induced by Abeta peptide requires the presence of functional mitochondria [J]. J Alzheimers Dis,2010,20(2):625-636.

[43] Song S,Lee H,Kam TI,et al. E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated abeta neurotoxicity [J]. J Cell Biol,2008,182(4):675-684.

[44] Hendershot LM. The ER function BiP is a master regulator of ER function [J]. The Mount Sinai Journal of Medicine,New York,2004,71(5):289-297.

(收稿日期:2016-01-12 本文编辑:赵鲁枫)

上一篇:显微镜3D视频系统在组织肿瘤细胞观察及诊断中... 下一篇:普拉康唑中四种光学异构体的HPLC法测定