高层建筑中钢筋混凝土结构抗震设计

时间:2022-07-22 12:32:52

高层建筑中钢筋混凝土结构抗震设计

【摘要】:要想提高高层建筑的钢筋混凝土的抗震性能,加强和控制钢筋混凝土结构在地震作用下损伤机制非常重要,损伤机制控制主要体现在体系的设计、构件设计和需求分析三个主要方面。本文主要对高层结构抗震设计所涉及到的结构体系、结构受力特点,结构布置以及结构的抗震措施等问题进行了论述。

【关键词】:高层建筑;钢筋混凝土结构;结构设计;抗震;结构体系

【前言】:随着我国城市建设中越来越多的高层钢筋混凝土结构设计形式的出现,如何提高该种结构类型的抗震性能也成为了人们关注的焦点。尤其是近年来我国频频发生一些较大震级的地震,使得一些抗震性能较差的建筑物倒塌,不但给社会经济带来极大损失,更重要的是严重威胁了人民的生命财产安全。因此建筑的抗震设计再次受到了人们的广泛关注,我国的建筑结构抗震设计遵循三水准、两阶段的设计原则,三水准即“小震不坏、中震可修、大震不倒”。本文通过分析高层钢筋混凝土结构在地震荷载作用下的受力情况,来探讨其抗震设计要素。

一 高层建筑结构的特点

多层与高层建筑结构的相同点有:都是承担竖向荷载和水平荷载作用,设计原理和设计方法也是基本是相同的,不同点是在高层建筑中,需要用来抵抗外荷载(特别是水平荷载)的结构材料更多,因此高层建筑结构设计的主要问题就是抗侧力结构的设计,设计抗侧力结构时也就有更多要求了。实践证明在建筑物的高度越大,水平力作用下结构设计的优化程度对材料用量的影响也就越大,特别是在地震地区,地震作用给高层建筑带来的危害也要比多层建筑的危害大,因此,应该更加重视高层建筑结构的抗震设计。从结构特点看,凡是水平荷载起主要作用的建筑就可以认为进入了高层建筑结构的范畴了,水平荷载主要是地震作用和风荷载为主,在地震区基本上就是地震荷载起主控作用。

二 高层建筑结构抗震设计要素

1正确选择合理的抗侧力结构体系其实高层建筑结构设计的重中之重就是设计抗侧力结构。高层建筑基本的结构构件是梁、柱、支撑、墙和墙组合的筒,用这些构件可以组成高层建筑众多的抗侧力结构。

(1)框架结构:框架结构由梁、柱通过节点组成的结构单元,框架只能在自身平面内抵抗侧向力,必须在两个正交的主轴方向设计框架以抵抗各个方向的侧向力。抗震框架结构的梁柱不允许铰接,必须采用刚接,使梁端能传递弯矩,同时使结构具有良好的整体性和较大的刚度。抗震设计的框架结构不宜采用单跨框架。抗震设计时,若采用砌体填充墙,填充墙的布置应避免形成上、下层刚度变化过大,避免形成短柱,尽可能对称布置,以减小偏心造成的扭转;砌体墙的抗侧刚度大、变形能力小,混合使用不利于结构抗震。(2)剪力墙结构(也称抗震墙结构):剪力墙结构承受竖向荷载和抵抗水平荷载是通过钢筋混凝土墙(亦抗震墙)来实现的,采用现浇钢筋混凝土,整体性好,承载力及侧向刚度大。剪力墙的延性设计的好坏直接影响着它的的抗震性能。在以往的地震灾害中,剪力墙结构的的震害一般比较轻。(3)框架―剪力墙结构:框架―剪力墙结构体系就是把框架和剪力墙两者结合起来,共同抵抗竖向荷载和侧向力,相互弥补,从此产生更好的结构效果。框架―剪力墙结构既有框架结构的特点,又具备剪力墙结构的优点。剪力墙刚度大主要承担层间剪力,而框架的延性要好一些,在遭遇地震作用下,先屈服剪力墙的连梁,这样是剪力墙的刚度会减小,剪力墙抵抗的层间剪力会转移到框架上,框架利用足够的承载力和延性来抵抗地震作用,那么这两种抗侧力结构的优势可以充分发挥出来,在遭遇地震作用时避免严重破坏甚至倒塌。因此建造较高的高层建筑通常采用这种结构型式,目前在我国得到广泛的应用。要根据所设计的建筑高度,是否需要抗震设防及抗震设防烈度等因素,选择一个与其匹配的、经济的结构体系,是结构效能得到充分发挥,建筑材料也能充分的被利用,最终会形成完美的结构设计。

2 正确认识高层建筑的受力特点高层建筑可以简化成一个竖向悬臂结构,结构轴向力主要是垂直荷载所产生的,它与建筑物高度是一次方的关系;结构的弯矩则是由侧向力所产生,弯矩与建筑物高度是二次方的关系。由此可以看出,在高层结构中,垂直荷载的影响不如侧向力影响大,结构设计的控制因素也就是侧向力,结构除了应有较大的强度来抵抗侧向力产生的弯矩、剪力以及拉应力和压应力,同时结构还要具备足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。

3 建筑体型和结构总体布置建筑体型和结构总体布置在高层建筑的设计中也特别重要。建筑的平立面表现的是建筑体型,结构构件的平面布置和竖向布置反映的就是结构的总体布置,布置结构构件应该根据结构抵抗竖向荷载、抗风、抗震的要求来布置。结构平面布置对称、均匀并且有较好的抗扭刚度。结构竖向布置也要均匀,结构的刚度、承载力和质量分布均匀,无突变。

三 抗震设计方案

根据高层建筑的钢筋混凝土结构遭遇地震的强度可以分为罕遇地震、设防地震和多遇地震,在不同强度地震作用下,钢筋混凝土结构的抗震性能不同。抗震设计方案首先需要确定损伤部位,进而建立等效线性化结构模型,从而确定钢筋混凝土结构在地震作用下的弹塑性变形能力和承载力需求。下面将对不同地震强度下的抗震设计方案:

1多遇地震的损伤部位设计方案在多遇地震作用的弹塑性变形能力和承载力只需要按照GB50011-2010《建筑抗震设计规范》设计即可,也就是对多遇地震的重力荷载效应和作用效应分别乘以荷载分项系数和相应的作用就可以得到结构的设计内力,然后根据钢筋混凝土结构的材料强度来进行该结构的承载力计算和设计。

2 罕遇地震的损伤部位设计方案必须对罕遇地震下钢筋混凝土结构响应点的层间位移是否符合GB50011-2010《建筑抗震设计规范》的规定也非常重要。如果满足可以直接采用等效线性化分析法计算的弹塑性变形能力进行钢筋混凝土构件的弹塑性变形能力设计;如果不满足,需要增加结构的配筋或者增大结构构件截面来满足GB50011-2010《建筑抗震设计规范》对于层间位移的要求。

3 罕遇地震下的非损伤部位的承载力设计方案可以利用等效线性化分析法来计算非预期损伤构件在罕遇地震下的承载力,不同之处在于,非预期损伤部位的承载力会随着预期损伤部位承载力的增加而增加。根据等效线性化分析法可知,钢筋混凝土结构的响应点在罕遇地震作用下所对应的承载力可以作为非预期损伤部位的承载力,在设计过程中由于罕遇地震发生的可能性很小,可以采用重力荷载效应和地震作用效应的组合,再结合建筑材料强度的标准值来计算构件的承载力需求,如下式所示:SG+SEK≤RK其中:SG为重力荷载效应;SEK为地震作用效应;RK为按材料强度标准值计算的构件承载力。等效线性化分析法能够直接反应构件结构在地震响应阶段的弹塑性内力分布,有助于增强预期损伤部位的承载力,合理性和一般性更强。

【结语】:通过了高层建筑的受力特点、结构体系、结构布置、抗震设计等多方面的规定,在保证结构安全的前提下,尽可能将结构设计做到最合理、最经济和最优化。

【参考文献】:

[1]曲哲,叶列平.建筑结构弹塑性地震响应计算的等价线性化法研究[J].建筑结构学报,2010,31(9):95-102.

[2]钱稼茹,徐福江.钢筋混凝土梁基于位移的变形能力设计方法[J].四川建筑科学研究,2007,33(2):1-3.

[3]曲哲.摇摆墙-框架结构抗震损伤机制控制及设计方法研究[D].北京:清华大学,2010.

[4]GB50011―2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.

上一篇:探究暖通设计问题与对策 下一篇:简论加强房建结构设计的措施及其注意事项