对大体积混凝土裂缝及质量控制措施探析

时间:2022-07-06 04:43:47

对大体积混凝土裂缝及质量控制措施探析

摘要:随着中国经济的迅猛发展,掀起建设高潮,大体积砼在各类构筑中被广泛应用。本文主要对大体积混凝土裂缝的成因、施工工艺因素进行分析,并针对混凝土裂缝的产生采取了有效的施工质量控制措施

关键词:大体积混凝土 , 裂缝分析,施工因素,质量控制,措施

Abstract: with the rapid development of China's economy, bring about construction upsurge, mass concrete in all kinds of building is widely used. This article mainly discusses the cause of cracking of concrete construction technology, analyzes the factors, and in the light of the cracking of the concrete to the effective construction quality control measures.

Keywords: mass concrete, fracture analysis, construction factors, quality control, measures

中图分类号: TV544+.91文献标识码:A文章编号:

1 大体积混凝土裂缝的成因分析

混凝土在凝固初期产生大量的水化热,致使内部温度迅速升高,体积膨胀扩大,此时由于受基岩或前期混凝土的约束产生压应力。在混凝土凝固后期冷却收缩时,则产生拉应力,且拉应力大于升温膨胀产生的压应力值。当拉应力超过混凝土的极限抗拉应力时,则会在混凝土内部产生裂缝,可能发展成贯穿裂缝,对结构造成极大的破坏。

在混凝土浇筑后外界气温突然下降,在混凝土内外部产生较大温差,使混凝土表面产生很大的温度拉应力,形成表面裂缝。

混凝土在浇筑后,因塑性收缩和缩水收缩而产生的表面收缩裂缝。

其中,由于后两方面原因引起的裂缝,只要我们按照规范要求进行正常的养护,均可以得到有效控制和避免。而第一方面由水泥水化热引起的较大温差则是大体积混凝土产生温度裂缝最直接、最根本的原因,也是我们在施工中必须克服的难题之一。

2 施工工艺因素

在混凝土结构浇筑、构件制作、起模、运输、堆放、拼装及吊装的过程中,若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、竖向的、斜向的、水平的、表面的、贯穿的等各种裂缝,特别是细长薄壁结构更容易出现。裂缝出现的部位与走向、裂缝宽度因产生的原因而异,通常有:

2.1振捣方式不当引起裂缝

不正确的振捣方式会造成混凝土分层离析、表面浮浆而使混凝土面层开裂,或造成混凝土砂浆大量向低处流淌致使混凝土产生不均匀沉降收缩而在结构厚薄交界处出现裂缝。

商品混凝土由于采用搅拌车运输、泵送浇筑,混凝土坍落度比较大,凝结时间比较长,一般混凝土初凝时间都在10h以上甚至更长,即使在炎热的夏天,在掺了高效缓凝减水剂后,浇捣好的混凝土表面被太阳暴晒,水分蒸发很快,形成一层几毫米厚的“被子”,看上去混凝土似乎已凝结,实际内部还远未达到初凝,甚至还能流动。曾多次用贯入阻力仪测定掺了高效缓凝减水剂的混凝土砂浆在太阳直晒之下的凝结时间,结果初凝时间都在12~16h。这样的混凝土若不进行二次振捣和多次抹面,混凝土表面不可避免会出现裂缝。

2.2养护不当引起混凝土开裂

现场养护不当是造成混凝土收缩开裂最主要的原因。混凝土浇筑后,若表面不及时覆盖进行潮湿养护,表面水分迅速蒸发,很容易产生收缩裂缝、特别是在气温高、相对湿度低、风速大的情况下,干缩更容易发生。有资料表明,当风速为16m/s时,混凝土中的水分蒸发速度是无风时的四倍。

对于高性能混凝土,由于水灰比小,胶凝材料用量大,混凝土密实性好,泌水少,若保养不好,干缩情况更为严重。对于保湿养护的时间,肯定是越长越好[2]。养护14天的混凝士的收缩比只养护3天的收缩降低约20%。但由于工程工期的制约,绝大多数施工人员做不到,所以混凝土出现干缩裂缝就在所难免了。

3大体积混凝土施工质量控制措施

3.1 大体积混凝土配合比设计

3.1.1 原材料选用 由于水泥的用量直接影响着水化热的多少,大体积混凝土应选用水化热较低的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等,并尽可能减少水泥用量。细骨料宜采用2区中砂,因为使用中砂比用细砂可减少水及水泥的用量。在可泵送情况下粗骨料,选用粒径5—20 mm连续级配石子,以减少混凝土收缩变形。使用掺合料,应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,推移温升峰值出现时间。

3.1.2 外加剂的使用。采用减水剂,如缓凝高效减水剂;采用膨胀剂,如广泛使用u型膨胀剂无水硫铝酸钙或硫酸铝。试验表明,在混凝土添加了膨胀剂之后混凝土内部产生的膨胀应力,可以抵消一部分混凝土的收缩应力,这样,相应地提高混凝土抗裂强度。

3.2 温控措施及施工现场控制

3.2.1温度预测分析。根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场和温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准,进行保温养护优化选择。

3.2.2混凝土浇筑方案。采用延缓温差梯度和降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度、前后浇筑的搭接时间;控制混凝土温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振和过振,确保混凝土均匀密实;做好现场协调 组织管理,要有充足的人力、物力、保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理,一般浇筑后3~4h内初步用木长刮尺刮平,初凝前用铁滚筒碾压2遍,再用木抹子搓平压实,以控制表面龟裂;混凝土浇灌完后,立即采取有效的保温措施并按规定覆盖养护。

3.2.3混凝土温度监测。在混凝土内部外部设置温度测点,设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析。每一测点的温度值、各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。

3.2.4为反映温控效果可在少数混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置检测水平方向应力分量。

3.2.5通水冷却。采用薄壁钢管在一些混凝土浇筑分层中埋冷却水管,冷却水管使用前进行试水,防止管道漏水和阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。

3.3 构造设计上对大体积混凝土采取防裂措施

3.3.1设计合理的结构形式,可以减少工程数量,减低水化热。如可根据悬索桥锚碇受力特点,设计挖空非关键受力部分混凝土体积,利用土方压重方案,来减少混凝土结构体积。

3.3.2充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下形成一定的预压力,补偿混凝土内部温度 收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。

3.3.3大体积混凝土体积庞大,施工周期一般较长,依据结构受力情况可合理地确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而降低设计标号,达到减少混凝土水泥用量降低水化热的目的。

3.3.4由于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层等时,可在接触面上设滑动层来减少温度应力。在外约束的接触面上全部设滑动层,则可大大减弱外约束。

3.3.5还应重视合理有益作用,可采取增配构造钢筋。配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间。在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。

4 结语

综上所述对混凝土的施工与裂缝进行了实践上的初步探讨,对混凝土裂缝的成因有不同的理论,随着施工技术的突飞猛进,大体积混凝土的应用越来越多,只要我们在设计、施工工艺以及质量控制过程中能够充分考虑的各种因素的影响,针对性地控制裂缝的方法,以保证施工的质量,就可以避免裂缝的产生。

注:文章内所有公式及图表请用PDF形式查看。

上一篇:浅谈沥青路面裂缝成因分析及其解决措施 下一篇:大连万达中心酒店钢板造型浅谈与分析