基于断裂力学方法的冷再生基层材料疲劳寿命研究

时间:2022-06-26 06:58:16

基于断裂力学方法的冷再生基层材料疲劳寿命研究

【摘 要】利用断裂力学方法对冷再生基层材料的疲劳裂纹扩展进行分析,选择合适的断裂力学公式及参数,进而推导出疲劳寿命预估方程,分析方程中参数的取值并给出算例。通过算例得到的结果对影响疲劳寿命的因素进行分析,并与通过试验得到的数据进行对比。结果表明,用断裂力学方法预测含裂缝冷再生基层材料的疲劳寿命更合理。

【Abstract】 The method of fracture mechanics was used to analyse the propagation of fatigue cracks of cold recycling base material. The suitable fracture mechanics formula and parameters were chosen and then the fatigue life forecast equation was deduced. The parameters determination method was analysed and the example was

giren. The conclusion was gained through comparing with the database obtained from the tests. The results show that it is more reasonable to forecast the fatigue life of materials of cracked cold recycling base based on the method of fracture mechanics.

【关键词】断裂力学;疲劳寿命;参数;寿命预估方程

【Key words】 fracture mechanics; fatigue life; parameter; life forecast equation

中图分类号:U416.03 文献标志码:B 文章编号:1000-033X(2012)04-0060-04

0 引言

沥青路面基层冷再生技术是一种较新的且具有良好的应用前景的城市道路沥青路面养护技术。近年来,对沥青路面基层冷再生技术的研究取得了一系列成果,但这些成果主要集中在路用性能研究方面,对冷再生材料疲劳性能的研究还相对匮乏。对于冷再生材料疲劳寿命的预估通常是进行冷再生材料的疲劳试验,通过试验结果拟合疲劳预估方程。但是拟合得到的疲劳预估方程和实际寿命间存在较大差距,这主要是因为室内冷再生材料试件的受力状况与实际路面的受力状况之间存在很大差异,而且考虑的因素也较为单一。

在20世纪40年代末和50年代初,断裂力学在金属材料中得到了广泛的应用,后来拓展到岩石、混凝土、石膏等非金属材料领域。70年代以来,疲劳断裂力学有了很大发展,逐渐成为对结构疲劳寿命分析预测的有力工具[1-3]。本文通过分析影响冷再生材料疲劳寿命的主要因素,选择合适的参数,利用断裂力学方法推导出冷再生材料疲劳寿命预估方程,估算冷再生材料的疲劳寿命。

1 基本假定

分析冷再生材料的细观组成,发现材料中含有过渡区相组成,这与常规半刚性基层材料有所不同。过渡区相主要包括新界面过渡区和老界面过渡区,新界面过渡区是指集料与新水泥组成的界面,老界面过渡区是指再生集料内原始集料与旧水泥之间的界面,如图1所示。界面过渡区是冷再生混合料力学性能和耐久性的薄弱点。由于水泥在水化和硬化时会产生化学收缩,并放出热量,而集料的作用对收缩产生制约,加上各种材料的热膨胀系数不同,在各个界面处会产生初始应力和微裂纹。此外,在回收沥青路面材料时采用的是机械破碎和铣刨,在老界面处难免也会产生内部微裂纹和初始损伤。

目前,断裂力学的理论与方法较少用于研究路面结构半刚性基层材料。一般情况下,路面材料的断裂都属于脆性断裂,断裂前没有明显的预兆,在材料中也不会发生宏观的塑性区域,破坏是突然发生的,对于脆性断裂一般运用线弹性断裂力学。

通过以上分析,可以作如下假定。

(1) 所有冷再生基层材料试件都存在微裂纹,也就是说对冷再生基层材料只进行裂纹扩展寿命的计算。

(2) 所有冷再生基层材料都是线弹性或准线弹性裂纹体。

本文基于以上两个假定,利用裂纹扩展速度公式对冷再生基层材料的疲劳寿命进行估算。

2 冷再生基层材料疲劳寿命方程

构件的疲劳寿命通常由裂纹形成寿命和裂纹扩展寿命两部分组成,裂纹扩展寿命占主要部分。疲劳裂纹扩展特性可以分成三个区,如图2所示。 区内存在一个门槛值ΔKth,在此区域内循环应力强度因子范围ΔK低于门槛值ΔKth,疲劳裂纹基本不扩展。 区为中速扩展区,在此区域内具有应力强度因子范围ΔK大于ΔKth的疲劳裂纹扩展特性,裂纹扩展速率da/dN与应力强度因子幅值ΔK的关系服从Paris公式。Ⅲ区为高速扩展区,在此区域内应力强度因子最大值达到材料的断裂韧性,裂纹扩展速率急剧增加,直至断裂。

Paris公式虽然在裂纹扩展寿命的计算中取得了较大成功,但仍然具有局限性,因为它只考虑了Ⅱ区的影响。

随后,Forman等人进行不断的完善,提出了更合理的公式。本文基于Forman公式,推导出了冷再生基层材料疲劳寿命计算公式。

Forman公式是考虑了Ⅱ区、Ⅲ区和平均应力对疲劳裂纹的影响,关于平均应力对疲劳裂纹的影响,选用应力比R作为主要参数, Forman公式为

=(1)

式中:C,m——材料试验参数;

ΔK——应力强度因子幅,ΔK=K-K;

R——应力比,R=;

K——材料的断裂韧性。

在所有影响裂纹扩展的因素中,弹性模量、扩展门槛值ΔK和断裂韧性K三个因素的变化是导致裂纹扩展行为变化的最直接原因,而其他因素对裂纹扩展的影响则是间接的。若不考虑弹性模量对裂纹扩展的影响,不同材料所表现出来的不同扩展行为,根本上是由K和ΔK的不同而引起的,其他因素则通过对K和ΔK值的影响进而影响到裂纹的扩展速率。除材料本身所具有的状态和性能外,应力水平对裂纹扩展也有很大的影响,在不同应力水平下,疲劳寿命有明显的不同。刘浩文在研究金属薄板在反复荷载作用下的裂纹扩展过程中,首先推导出影响疲劳裂纹扩展速率最重要的应力参量是应力变程Δs。基于上述分析,选用冷再生基层材料的断裂韧性KIC、应力比R和应力幅值Δs作为主要参数来推导其疲劳寿命公式。

上一篇:橡胶粉改性沥青在高等级公路中的应用研究 下一篇:两侧减振器的刚度差异对压路机压实轮振动的影...