浅谈GPS技术及其相关应用

时间:2022-06-22 06:11:32

浅谈GPS技术及其相关应用

摘要:GPS系统就是利用卫星在全球范围内实时进行定位、导航的系统,全称为全球卫星定位系统,简称GPS。本文作者结合多年工作实际和经验,主要探讨了全球定位系统(GPS)及其相关应用,希望对相关从业人员有一定帮助。

关键词:GPS;特点;实例;原理;应用

中图分类号: D035.39文献标识码:A

引言

20世纪80年代以来,随着GPS定位技术的出现和不断发展完善,使测绘定位技术发生了革命性的变革,为工程测量提供了崭新的技术手段和方法。下面,本人结合多年工作实际,就全球定位系统(GPS)及其相关应用浅谈几点看法,仅供参考研究。

1 全球定位系统(GPS)概述

1.1 GPS系统简介

GPS是英文Global Positioning System(全球定位系统)的简称。GPS起始于1958年美国军方的一个项目,1964年投入使用。20世纪70年代,美国陆海空三军联合研制了新一代卫星定位系统GPS 。主要目的是为陆海空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,经过20余年的研究实验,耗资300亿美元,到1994年,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。在机械领域GPS则有另外一种含义:产品几何技术规范(Geometrical Product Specifications)-简称GPS。

1.2 GPS系统的组成部分

(1)空间部分。GPS的空间部分是由24颗卫星组成(21颗工作卫星;3颗备用卫星),它位于距地表20200km的上空,运行周期为12h。卫星均匀分布在6个轨道面上(每个轨道面4颗),轨道倾角为55°,卫星的平均高度为20200 km,运行周期为11h58 min。卫星用L波段的两个无线电载波向广大用户连续不断地发送导航定位信号,导航定位信号中含有卫星的位置信息,使卫星成为一个动态的已知点。在地球的任何地点、任何时刻,在高度角15°以上,平均可同时观测到6颗卫星,最多可达到9颗。(2)地面控制系统。地面控制系统由监测站(Monitor Station)、主控制站(Master Monitor Station)、地面天线(Ground Antenna)所组成,主控制站位于美国科罗拉多州春田市(Colorado. Springfield)。主控站根据各监测站对GPS卫星的观测数据,计算各卫星的轨道参数、钟差参数等,并将这些数据编制成导航电文,传送到注入站,再由注入站将主控站发来的导航电文注入到相应卫星的存储器中。

(3)用户设备部分。由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。GPS接收机可捕获到按一定卫星高度截止角所选择的待测卫星的信号,跟踪卫星的运行,并对信号进行交换、放大和处理,再通过计算机和相应软件,经基线解算、网平差,求出GPS接收机中心(测站点)的三维坐标。

1.3 GPS种类

GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。

2 GPS测量的特点

相对于常规测量来说,GPS测量主要有以下特点:

2.1 全球全天候定位。GPS卫星的数目较多,且分布均匀,保证了地球上任何地方任何时间至少可以同时观测到4颗GPS卫星,确保实现全球全天候连续的导航定位服务(除打雷闪电不宜观测外)。

2.2 测量精度高。GPS观测的精度明显高于一般常规测量,在小于50 km的基线上,其相对定位精度可达10-6m,1000km可达10-9m。在300-1500m工程精密定位中,1小时以上观测时解其平面位置误差小于1mm,与ME-5000电磁波测距仪测定的边长比较,其边长较差最大为0.5mm,校差中误差为0.3mm。

2.3 测站间无需通视。GPS测量不需要测站间相互通视,可根据实际需要确定点位,使得选点工作更加灵活方便。

2.4 观测时间短。随着GPS测量技术的不断完善,软件的不断更新,在进行GPS测量时,静态相对定位每站仅需20 min左右,动态相对定位仅需几秒钟。

2.5 仪器操作简便。目前GPS接收机自动化程度越来越高,操作智能化,观测人员只需对中、整平、量取天线高及开机后设定参数,接收机即可进行自动观测和记录。

2.6 提供三维坐标。GPS测量可同时精确测定测站点的三维坐标,其高程精度已可满足四等水准测量的要求。

3 GPS技术应用的优点

3.1用途广泛

GPS技术可以应用于国民经济的各个领域,对于测绘工作者而言,GPS定位系统己应用:大地测量,地壳板块运动监测,建立各种工程监测网和进行各种工程测量等。GPS技术在工程测量中的应用有着广泛的前景,特别是自动变形监测系统、工程施工的自动控制系统是未来应用研究的重要方。

3.2自动化程度高

用GPS接收机进行测量时,仅需一人将天线准确地安置在测站上,量测天线高,接通电源,启动接收单元,仪器即自动开始工作,在结束测量时只需关闭电源,接收机便完成野外数据采集,若在一个测站上需要作长时间的连续测量,还可实行无人值守的数据采集,通过数据传输,将所采集的定位数据传输到数据处理中心,实现自动化的GPS测量和计算。

3.3定位精度高

短距离(15公里以内)精度可达毫米级,中、长距离(几十公里甚至几百公里)相对精度可达到10-7至10-8。差分导航的精度可达米级至厘米级。大型建筑物、构筑物变形监测,在采用特殊的观测措施、精密星历和适当的数据处理模型和软件后,平面精度可达亚毫米级,高程精度可稳定在1mm左右。

3.4全天候实时动态观测

应用GPS定位、导航,不受天气的影响,可以全天候地工作。这一特点保证了变形监测的连续性和自动化。

3.5可消除或削弱系统误差的影响

在变形监测中我们关注的是两期的变形量,而不是变形监测点本身的坐标,两期变形监测中所含的共同的系统误差虽然只会分别影响两期的坐标值,但却不会影响所求得的变形量。即在变形监测中,接收机天线的对中误差、整平误差、定向误差、量取天线高的误差等并不会影响变形监测的结果,只要天线在监测过程中能保持固定不动即可。

4 实例说明

4.1工程概况

某工程占地70hm2多,属两山夹一沟地形,山地面积约占三分之二。最高处约100 m。山上树木茂盛,地形复杂,通视困难,行走不便。为了该工程的设计和施工,需建立首级控制网。考虑到工程复杂,工期较紧,测区通视困难,地形起伏大等因素,决定采用GPS测量。

4.2 GPS测量的技术设计

(1)设计依据

GPS测量的技术设计主要依据1999年建设部的行业标准《城市测量规范》、1997年建设部的行业标准《全球定位系统城市测量技术规程》及工程测量合同有关要求制定的。

(2)设计精度

根据工程需要和测区情况,选择城市或工程二级GPS网作为测区首级控制网。要求平均边长小于1km,最弱边相对中误差小于1/10000,GPS接收机标称精度的固定误差a≤15mm,比例误差系数b≤20×10-6。

(3)设计基准和网形

控制网共12个点,其中联测已知平面控制点2个(I12,I13),高程控制点5个(I12,I13,105,109,110,其高程由四等水准测得)。采用3台GPS接收机观测,网形布设成边连式。

(4)观测计划

根据GPS卫星的可见预报图和几何图形强度(空间位置因子PDOP),选择最佳观测时段(卫星多于4颗,且分布均匀,PDOP值小于6),并编排作业调度表。

4.3 GPS测量的外业实施

(1)选点

GPS测量测站点之间不要求一定通视,图形结构也比较灵活,因此,点位选择比较方便。但考虑GPS测量的特殊性,并顾及后续测量,选点时应着重考虑:①每点最好与某一点通视,以便后续测量工作的使用;②点周围高度角15°以上不要有障碍物,以免信号被遮挡或吸收;③点位要远离大功率无线电发射源、高压电线等,以免电磁场对信号的干扰;④点位应选在视野开阔、交通方便、有利扩展、易于保存的地方,以便观测和日后使用;⑤选点结束后,按要求埋设标石,并填写点之记。

(2)观测

根据GPS作业调度表的安排进行观测,采取静态相对定位,卫星高度角15°,时段长度45min,采样间隔10 s。在3个点上同时安置3台接收机天线(对中、整平、定向),量取天线高,测量气象数据,开机观察,当各项指标达到要求时,按接收机的提示输入相关数据,则接收机自动记录,观测者填写测量手簿。

4.4 GPS测量的数据处理

GPS网数据处理分为基线解算和网平差两个阶段,采用随机软件完成。经基线解算、质量检核、外业重测和网平差后,得到GPS控制点的三维坐标,其各项精度指标符合技术设计要求。

5 结束语

GPS是以卫星为基础的无线电卫星导航定位系统,它具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术率先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到了应用,并在军事、交通、通信、资源、管理等领域展开了研究并得到广泛应用。

上一篇:探究高速公路桥梁高墩施工技术 下一篇:城市综合体业态组合比例