微体系HRP浓度与其催化化学发光衰减率线性关系研究

时间:2022-05-25 02:48:03

微体系HRP浓度与其催化化学发光衰减率线性关系研究

[摘 要] 目的:了解微体系辣根过氧化物酶(HRP)催化化学发光与其浓度的相关性。方法:将HRP经核酸序列偶联于毛细管微腔内,通入微量反应底物进行化学发光检测;分析HRP催化化学发光反应与其浓度的相关性。结果:毛细管内HRP催化1.5μL底物的化学发光反应可分成急速衰减区(3.5×10-4~1.3×10-4μg/μL)、衰减延缓区(9.7×10-5~3.3×10-5μg/μL)和发光平稳区(1.0×10-5~6.7×10-7μg/μL);浓度为3.5×10-4~6.7×10-6μg/μL的HRP催化化学发光衰减率RLUs/T>0且两者线性相关(R2=0.967)。结论:分析微体系HRP浓度与化学发光衰减率(RLUs/T)的线性相关性,为微体系HRP化学发光定量检测生物分子提供新策略。

[关键词] 微反应体系;辣根过氧化物酶;化学发光衰减;线性相关性

中图分类号:R331 文献标识码:A 文章编号:2055-5200(2014)01-001-05

Doi: 10.11876/mimt201401001

Linear relationship between concentration of HRP and its chemoluminescence decays in the micro-channel system YANG Zi-yan1,LIANG Ping2,WANG Qin2,LEI Xiao-ying2,LU Zi-fan2,GUO Yan-hai2,XIANG An2.(1. The second cadets’ team of Pharmacy School, the Fourth Military Medical University,710032;2. Department of Pharmacogenomics, School of Pharmacy, the Fourth Military Medical University;Institute of Gene diagnosis, PLA 710032)

[Abstract] Objective: Research the relationship between the concentration of horseradish peroxidase(HRP) and its chemiluminescence (CL) decays in micro-channel system. Method: Immobilize the HRP-streptavidin into a hydroxylation capillary, the micro-channel reaction system model in this study, with a single-stranded deoxyribonucleic acid (ssDNA) sequences that modify with biotin and amidogen. The relative luminescence units (RLUs) were being detected by a portable detector after injecting micro liter scale reaction substrates. Then the relationship between concentration of HRP and RLUs was been analysis through linear regression. Result: There were three RLUs characteristic regions, content rapidly decay in 3.5×10-4~1.3×10-4μg/μL, slowly decay in 9.7×10-5~ 3.3×10-5μg/μL and steady region of 1.0×10-5~ 6.7×10-7μg/μL, basic on the rate of decay of RLUs for different HRP concentration. Most important, the rate of decay of RLUs (RLUs/T) was linearly related to the concentration of HRP (3.5×10-4~6.7×10-6μg/μL, R2=0. 967). Conclusion: The research of the linear relationship between concentration of HRP and RLUs/T afforded novel strategy for quantitative determination of biomolecules through chemiluminescent analysis in micro-channel system.

[Key words] micro-channel system; horseradish peroxidase (HRP); chemiluminescence decays; linear relativity

前 言

微/纳米反应体系[1-2]辣根过氧化物酶(HRP)催化化学发光检测所需试剂/样品用量少、反应快且高效灵敏,在核酸[3]、抗原/抗体[4-6]等生物分子检测中应用广泛。由于微体系比表面积大、反应效率高、底物容量有限等因素,即使晖光型底物也会被快速消耗[7]。由此导致的化学发光衰减增加了微体系HRP浓度与化学发光强度的量效关系分析难度。新型反应底物/稳定剂[8]、流动注射进样[9]和快敏检测器[10-13]等研究虽在一定程度上提高了微体系HPR催化化学发光稳定性,但也增加了检测试剂成本和仪器价格。

为研究毛细管微体系内偶联HRP催化化学发光衰减趋势随HPR浓度的变化,首先将不同浓度HRP通过核酸序列偶联于毛细管微体系内;再加入反应底物后进行HRP催化学发光反应,检测其化学发光相对强度值(RLUs);进而分析微体系内不同浓度HRP催化化学发光相对强度,及其衰减率(RLUs/T)与HRP浓度的相关性。最终为微体系化学发光定量检测生物分子提供新的分析策略。

1 材料与方法

1.1 主要实验材料及仪器

链霉亲和素标记辣根过氧化物酶(碧云天生物技术有限公司,上海),化学发光反应底物(赛默飞世尔科技有限公司,美国),玻璃毛细管(华西医科大学(现四川大学医学院)仪器厂,成都),毛细管化学发光检测仪 (天隆科技有限公司/第四军医大学,西安),核苷酸连接臂(NH2-5’-T10-3’-biotin(生工生物工程有限公司,上海),3-氨基丙基三甲氧基硅烷、戊二醛等硅烷化试剂、硝酸溶液、氢氧化钠等化学试剂(SIGMA中国有限公司,北京),超纯水(Milli-Q Century超纯水系统,美国)。

1.2 实验方法和步骤

1.2.1 毛细管微体系内辣根过氧化物酶的固定 玻璃毛细管内壁羟基化、氨基化、醛基化处理后,经核苷酸序列(NH2-5’-T10-3’-biotin)将链霉亲和素-HRP固定于毛细管内壁。详细方法参照[14, 15]。1. 玻璃毛细管(长10.0cm,内径300μm)经HCl、NaOH处理进行羟基化;2. 经10%的3-氨基丙基三甲氧基硅烷(APTES)/甲苯溶液处理进行氨基化;3. 经10%戊二醛的磷酸缓冲液(PBS,pH7.0)进行醛基化处理;4. 检测端吸入20μM的5’氨基/3’生物素修饰寡核苷酸1.5μL(完成毛细管2cm区段标记),室温/避光水平放置24h;5. 以0.1%十二烷基硫酸钠(SDS)溶液和水溶液清洗,毛细管浸入5%脱脂牛奶磷酸缓冲液(PBS, pH7.2)于37℃封闭2h;6. 以1.5μL不同浓度链霉亲和素-HRP磷酸缓冲液(PBS, pH7.2)吸入毛细管标记端,放置30min,PBS清洗,48h内使用。

1.2.2 毛细管微体系内固定HRP催化化学发光 将偶联有不同浓度(3.5×10-4~6.7×10-7μg/μL)HRP的毛细管检测端吸入1.5μL现配化学发光底物A、B液等体积混合物,检测化学发光相对发光强度,并分析一定时期内RULs衰减率[(RLUs1-RLUs2)/(T1-T2),简写为RLUs/T]。

1.2.3 统计学分析 所有数据采用SPSS统计软件、Origin7.0科学绘图软件完成实验中相对发光值(RLUs), RLUs/T分析,数据作图处理。

2 结果与讨论

毛细管微体系内不同浓度(3.5×10-4~6.7×10-7 μg/μL)HRP催化1.5μL底物化学发光相对强度(RLUs)可分成急速衰减区、缓慢衰减区和平稳区,具有不同RLUs衰减特征。

2.1 急速衰减区化学发光分析

2.2 衰减延缓区化学发光分析

毛细管微体系内浓度处于9.7×10-5~3.3×10-5μg/μL的HRP催化化学发光相对强度(RLUs)特征如图2。初始RLUs接近检测上限(9999 RLUs),经6min或更长时间衰减为零。与急速衰减区类似,无法从某时间点RLUs定量HRP浓度(图2a)。HRP浓度与化学发光衰减率(RLUs/T)明显线性相关(R2=0.948),如图2b。随着HRP浓度下降,单位时间消耗底物量开始下降,导致此区化学发光初始RLUs下降,反应期延长。为此出现不同浓度HRP化学发光RLUs变化出现交错。但HRP浓度与发光衰减率(RLUs/T)仍线性相关。

2.3 发光平稳区化学发光分析

毛细管微体系内浓度处于1.0×10-5~6.7×10-7μg/μL的HRP催化化学发光相对强度(RLUs)特征如图3。各浓度HRP初始RLUs和整个反应期的RLUs水平已有明显差异,发光反应6.5min后的RLUs并未如急速衰减区和延缓衰减区衰减为零,各浓度HRP的RLUs也未发生交错(图3a)。各浓度HRP化学发光衰减率(RLUs/T)如图3b, HRP>6.7×10-6μg/μL时,HPR催化化学发光衰减率(RLUs/T)与其浓度仍然具有线性相关性(R2=0.948)。HRP>6.7×10-6μg/μL,即RLUs/T>0,HRP催化化学发光RLUs具有衰减趋势(初始值 RLUsT0>反应期T1时RLUsT1)。RLUs/T≤0,HRP催化化学发光RLUs无变化或是有上升趋势,此时的RLUs/T与HRP浓度间无线性相关性。

2.4 全程化学发光衰减率分析

3 结论

微体系HRP化学发光分析具有试剂/样品用量少,反应迅速,检测灵敏度高等优势。在生物分子检测方面具有广阔应用前景。但受腔道容量限制,所能容纳的底物量十分有限。其化学发光反应衰减迅速,特别是较高浓度HRP情况下很难直接以发光强度值进行HRP定量分析。在前期研究基础上,本研究以毛细管微通道为微反应体系模型,模拟微体系HRP酶促化学发光定量检测偶联核酸序列浓度,通过分析毛微体系内不同浓度HRP催化化学发光衰减特征,发现HRP浓度与化学发光衰减率(RLUs/T)在较宽浓度范围具有线性相关性。 通过化学发光衰减率(RLUs/ T)定量检测HRP浓度,可有效解决直接基于化学发光强度进行微体系HRP定量检测范围窄,检测期短等缺点。其不足在于,如高浓度HRP催化化学发光RLU后期波动较大;化学发光衰减率需基于一定时期的RLUs差值与时间比值,因而增加了检测的复杂度,也降低了检测的时效性。但作为一种新的分析策略,它为微体系HRP化学发光分析在核酸、抗原/抗体等生物大分子定量检测方面提供新思路。

参 考 文 献

[1] LIU Y,LI Y.An antibody-immobilized capillary column as a bioseparator/bioreactor for detection of escherichia colio157:h7 with absorbance measurement[J].Analytical che mistry.,2001,73(21):5180-5183.

[2] 王瑛.核酸的非同位素化学发光分析系统[J].生物工程进展,1995,(3):18-24.

[3] Tracy Jordan,Lee Walus,Alex Velickovic,et al.A competitive chemiluminescent enzyme-linked immunosorbent assay for the determination of rmp-7 in human blood[J].J Pharm Biomed Anal,1996,14(12):1653-1662.

[4] Bert Gold,DANIELA Radu,Alla Balanko,et al.Diagnosis of fragile x syndrome by southern blot hybridization using a chemiluminescent probe: a laboratory protocol[J].Molecular Diagnosis,2000,5(3):169-178.

[5] NAKANO K,NAKAO T,SCHRAM K H,et al.Urinary excretion of modified nucleosides as biological marker of rna turnover in patients with cancer and aids.[J].Clin Chim Acta,1993,218(2):169-83.

[6] DUFFY M J.Can molecular markers now be used for early diagnosis of malignancy?[J].Clin Chem,1995,41(10):1410-3.

[7] Girotti S, Ferri E, Ghini S, et al. Direct quantitative chemiluminescent assays for the detection of viral DNA[J]. Analytica Chimica Acta, 1991, 255(2):387-394.

[8] TSUKAGOSHI K,JINNO N,NAKAJIMA R.Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers[J].Analytical chemist ry.,2005,77(6):1684-1688.

[9] BOWIE R A,ACHTERBERG P E,MANTOURA F C R,et al.Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection[J].Anal Chim Acta,1998,361(3):189-200.

[10] HUANG bo,LI Jianjun,ZHANG le,et al.On-line chemiluminescence detection for capillary ion analysis[J]. Anal Chem,1996,68(14):2366-2369.

[11] Friesel, Milan,Baranowski, Bogdan,Lunden, Arnold. Pressure dependence of the transition to the proton conducting phase of cshso 4 , cshseo 4 and rbhseo 4 studied by differential scanning calorimetry[J].Solid State Ionics,1989,35(1-2):85-89.

[12] 李红梅,陈佳,徐斐,等.ELISA测定中TMB显色体系的优化及其稳定性研究[J].生物技术通报,2010,(2):126-130.

[13] Manfred Renz , Christina Ku.A colorimetric method for dna hybridization[J].Nucleic Acids Res.,1984,8(12):3435-3444.

[14] Thomas P. Whitehead,Gary H. G. Thorpe,Timothy J. N. Carter,et al.Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay[J].Nature,1983,3(05):158-159.

[15] Zhen Guo, Richard A. Guilfoyle, Andrew J. Thiel,et al.Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports[J].Nucleic Acids Res.,1994,24(22):5456-5465.

[16] 杨维平,章竹君. 固体表面发光法测定辣根过氧化物酶的研究[J]. 陕西师大学报:自然科学版,1995,23(2):59-61.

上一篇:我是这样备写教案的 下一篇:创设情境 培养学生创造性