稳压电源范文

时间:2023-03-18 18:45:06

稳压电源

稳压电源范文第1篇

[关键词]稳压 连续可调 电源设计

一、几种设计方案及分析

(1)晶体管串联式直流稳压电路。该类电路中,输出电压UO经取样电路取样后得到取样电压,取样电压与基准电压进行比较得到误差电压,该误差电压对调整管的工作状态进行调整,从而使输出电压发生变化,该变化与由于供电电压UI发生变化引起的输出电压的变化正好相反,从而保证输出电压UO为恒定值(稳压值)。在基准电压处设计辅助电源,用于控制输出电压能够从0 V开始调节。

分析:单纯的串联式直流稳压电源电路很简单,但增加辅助电源后,电路比较复杂,由于都采用分立元件,电路的可靠性难以保证。

(2)采用三端集成稳压器电路。一般采用输出电压可调且内部有过载保护的三端集成稳压器,输出电压调整范围较宽,设计电压补偿电路可实现输出电压从0 V起连续可调,因要求电路具有很强的带负载能力,可用软启动电路以适应所带负载的启动性能。

分析:该电路所用器件较少,成本低且组装方便、可靠性高。在实际中,如果对电路的要求不太高,多采用此设计方案。

(3)用单片机制作的可调直流稳压电源。电路可通过AT89CS51单片机控制继电器改变电阻网络的阻值,从而改变调压元件的参数,使用软启动电路,获得3~26V,驱动能力可达1.5A,同时可以显示电源电压值和输出电流值的大小。

分析:该电源稳定性好、精度高,并且能够输出±26V范围内的可调直流电压,且其性能优于传统的可调直流稳压电源,但是电路比较复杂,成本较高,使用于要求较高的场合。

二、实现方案

1.原理分析

①采样电路:分别由滑动变阻器R5与电阻R4组成电阻分压器,将输出的直流电压的V0一部分取出送到比较放大器,放大后控制调整环节,取样电压VE为:

在正常情况下,取样电压可近似等于基准电压则有:

改变取样电路的分压比,就可以调节V0的大小。即调节滑动变阻器R5的大小,改变输出。

②基准电压:基准电压是一个稳定度较高的直流电压,利用发光二极管(绿色)的正向电压特性,起“稳压”作用。当二极管的正向电流ILED2变化不大时,其正向压降VLED2≈1.9V比较稳定。用以作为调整比较的标准,R3是稳压管的限流电阻。LED2兼做电源指示。

③比较放大电路:比较放大器是一个直流放大器,由VT3构成。将取样电压VE与其准电压VLED2进行比较,二者的差值经T3放大后,控制(VT1、VT2)的调整管,用以稳压输出。

④调整电路:调整电路是稳压电源的核心环节,输出电压的稳定是通过调整管的调节作用来实现的。稳定电路输出的最大电流也主要取决于调整电路。所以调整管使用的参数不应超过器件的极限数据。

由电网电压的波动或负载电流发生变化而使输出电压V0发生变化时,则有T1的自动调节,其稳压过程:

当V0VEVB3IB3IC3VCE3(VBE2)IB1IC1VCE1V0

从而使V0基本不变。

⑤过载保护电路:串联调整型的稳压电源和负载是串联的,当负载电源过大或短路时,大的负载电流和短路电流全部流过调整管,此时负载端的压降小,几乎全部的整流电压Vc加在调整管的c和e的极之间。使调整管的βVce0、ICM、PCM超过正常值。调整管会很快烧坏。R2和LED1组成的过载及短路保护电路,因串联调整型的稳压电源调整管和负载是串联的,当输出过载(输出电流过大),电阻R2上的压降VR2增加到一定值后LED1导通,使调整管VT1、VT2的基极电流不再增大,限制了输出电流的增加,起到限流保护作用。

附加功能:

(1)充电功能

本基础电路的输出端(可看作C3两端)即可实现对电池等的充电功能。通过调节滑动变阻器R5的阻值,可实现对不同型号电池的充电功能。

(2)放大部分

将电压放大,由于放大器最大输出电压的限制,故采用两个放大器,两放大器输出电压大小相等、符号相反。

(3)D/A转换电路(数模转换器)

D/A数模转换电路一般采用DAC0832集成芯片

输入用脉冲触发。具体在本文后面有介绍。

2.电路图(略)

三、电路参数设计

1.主要技术指标。(1)输入电压:AC: 0~220V。(2)输出直流稳压(Io=1.5A):Uo=26V。(3)输出直流电流:额定值150mA,最大值300mA。(4)具有过载,短路保护,故障消除后自动恢复。(5)充电稳定电流:60mA(±10%),充电时间10-12小时。(6)工作温度范围:TA=0~50℃。

2.极限参数。可视具体情况而定。

3.电路参数(略)

四、问题及展望

1.输出电压Vo达不到要求的26V。在电路后增加两个运放组成放大装置来解决问题。同时增加电阻,这样输出电压和输出电流就都达到了实验要求。

2.为使设计更加实用,要使得输出的电压更方便于他人,欲加装DAC芯片使模拟信号转变为数字信号,设计中也有涉及。

3.数码管显示数值停留在0不发生变化,这是因为放大电路中运放等的延迟作用!在延迟作用下,输出电压要经过一定时间的缓慢增加,然而DAC芯片却在刚有电压时触发灯就亮了,即数码显示管数值定在00不再发生变化。将DAC的触发电平换成脉冲触发,就能使数码管“动”起来。

4.但是DAC电路中仍有不足,是显示数码管显示的是十六位进制的数转化为二进制的数,有待进一步的研究和设计。

参考文献:

[1]狄京等.电子工艺实习教程.中国矿业大学出版社.

稳压电源范文第2篇

【关键词】串联型稳压电路 调整管 取样电路

【中图分类号】G 【文献标识码】A

【文章编号】0450-9889(2015)11B-0074-03

一、前言

各种电子电路通常都要用直流电源来供电,而串联型稳压电源在各种电路,特别是在输出功率较低的电路和简单的电路制作中得到了广泛地应用。

二、设计的基本要求

输出电压 UO=8~13 V

输出电流 IO=0~100 mA

交流电压 220V,频率50Hz ,电压允许波动±10

三、串联型稳压电源电路设计、参数计算、元件选择

(一)电路的组成和基本原理

图1-1

图1-1为一串联型稳压电源电路,图中T1、T2为复合调整管,起电压调整作用。电阻R8、R9和Rw组成分压电路,输出电压变化量 V 通过电阻分压加到三极管T3的基极,所以R8、R9、Rw组成的电路叫做分压电路。稳压管DZ1与电阻R3组成稳压电路,用来提供基准电压VZ1,T3起比较与放大信号的作用。T3的集电极接T5,DZ2、R1、R2组成恒流源负载,其中DZ2、R1给恒流源提供稳定的电压。

该电路的稳压过程如下:当Vi增大(或IO减小)而使Vo增大时,通过取样电路加至T3基极的电压VB2则升高。因差分放大器T3和T4对加在两个基极上的差值信号进行放大,而基准稳压管 DZ1使T4的基极电压VB4=VZ1保持恒定,所以T3对其基极电压升高引入的信号进行放大,使得IC5(即IR2)增大,VB2下降,IB2减小,IC2、IB1减小,VCE1增大,使得Vo减小,最终保持输出电压Vo的稳定。

(二)整流滤波电路

该电源用四个二极管接成桥式整流电路,它的作用是利用具有单向导电性能的整流元件将正负交替的正弦交流电压整流成为单方向的脉动电压,这种单向脉动电压往往包含很大的脉动成分,距离理想的直流电压还差得很远。为此,在整流电路后加一个电容滤波器,它的作用是尽可能地将单向脉动电压中的脉动成分滤掉,使输出电压成为比较平滑的直流电压。

下面首先计算整流滤波电路的输出电压Vi和输出电流Ii,再选择整流二极管、滤波电容和电源变压器的变比。

整流滤波电路的输出电压为

Vi=(1+10%)(VOmax+VCE1+VR7)

因复合调整管T1、T2工作在放大区,通常选VCE=3~8V ,如果考虑到当电网下降10%时,Vi仍能维持最大的电压输出,Vi应按上式选值。根据要求

VOmax=13V

VCE1=5V

VR7=(IOmax+IR8)

在设计时取合适的电阻阻值,使得流过IR8的电流为10mA,R7上的压降为0.6V左右,则有

Vi=1.1(13+5+0.6)V≈20.5V

选取 Vi=21V

整流滤波电路的输出电流为 Ii=IOmax+IR1+IR2+IR3+IR6+IR8

根据要求 IOmax=100mA

考虑到电路的稳定性和可行性,选取

IR1=10mA

IR2=5mA

IR3=10mA

IR6=10mA

IR8=10mA

IR10=5mA

所以 Ii=100+10+5+5+10+10+10=150mA

变压器的次级电压,其变比为

n=12

整流二极管的选取要满足以下几个参数

根据以上数据并考虑留有裕量,整流二极管可选用 2CP33。

滤波电容C1可根据下面的式子进行选择

选用电容量为,耐压为25V的电解电容。

(三)带差分比较放大的稳压电路

1.调整管

该电源采用T1和T2组成复合调整管,由图1-1可以知道流过T1发射极的电流IE1为

IE1=IOmax+IR8+IR3+IR6-IR10

=100+10+10+10-5

=125mA

加上并联在输出端的电容G4和一端接到T3的电容G3充放电时流过的电流,流过调整管T1的发射极的最大电流为150mA左右,选用调整管时要使其极限参数满足以下要求

ICM1=150mA

V(BR)CEO1=Vimax-VOmin-VR7

=(1+10%)Vi-VOmin-VR7

=1.1×21-8-0.6

=14.5V

根据以上数据T1选用MJ2955 9330。T2选用低频小功率三极管9015。起分流作用的R10,取R10=500。

2.基准电源VZ1、VZ2的一般要求

对于用作差分放大器的基准电源VZ1来说,一般取值如下:

VZ1=nVO=(0.5~0.8)VO

取 n=0.6

输出电压VO的范围为 VO=8~13 V

则有 VZ1=0.6(8~13)=4.8~7.8V

所以可取 VZ1=6.2V

限流电阻R3的阻值可根据下式选取

对于恒流源的基准电压VZ2,取VZ2=6.2V。对于其负载电阻R2,可通过以下几式来求它的阻值

VZ2=IE2R2+VBE4

一般VBE4的压降为 0.5V,则有

IE4R2=VZ2-VBE4

=6.2-0.5

=5.7V

又因为IE4≈IB2+IC3,结合前面所选取的元件参数IB2和IC3加起来的值大概为3mA。所以R2的阻值为

对于基准电压VZ2的限流电阻R1的阻值为

对于恒流源的三极管T5,应选取放大倍数较高的低频小功率三极管9014。

3.差分比较放大器

差分放大器由T3、T4、Re3(即R4)和恒流源负载组成。根据差分放大器的特点,此处的三极管选用电流放大倍数较高、特性对称的低频小功率三极管,其工作点可取IC2=IC3=2mA,在此T3、T4小功率三极管选用9015。差分放大器的发射极电阻可由下式求得

4.取样电路

为了提高电路的稳定性,首先应选择温度系数相同且比较小的电阻。在取样电路中,当Rw滑到下端时

当Rw滑到上端时有

结合前面已选取的IR8=10mA,则有

解以上三式联立的方程,可求得

R8=260

R9=640

Rw=400

(四)过载保护电路

该电源由T6、R5、R6、R7组成过载保护电路。T6为保护管,R5、R6对输出电压进行分压,通过R6给T6基极提供反向偏压,电阻R7称为检测电阻,其阻值较小,当输出电流流过R7时T6提供正向偏压。在此T6选用小功率三极管9015。

在正常情况下,在R6上的反向偏压超过R7上的正向偏压,所以T6处于截止状态,对稳压工作不起影响。

当输出电流变大,R7上的正向偏压也增大,当增大到一定程度时,T6进入导通状态,于是T6的发射极与集电极间的电压变小,流过T5集电极的电流IC5增大,IE5增大,VRe5增大,也就是VR2增大,使得VB2减小,IB2减小,IC2、IB1变小,使VCE1增大。从而使调整管T1得到保护。另一方面,由于保护管T6导通使得流过R7的电流变小,IC1变小,当流过R7的电流减小到一定的数值时,T6恢复截止,稳压电路自动恢复正常工作。

由图1-1可以知道VR7=VR6+VBE6,取VBE1=0.1V,结合前面所选取的VR7=0.6V,则有

(下转第88页)

(上接第75页)

(五)电容C2、 C3 、C4

1.电容C2

这个电容一般很小,其值在0.01~0.1μF左右,它的作用是防止高频振荡。虽然电子稳压电路是一种负反馈(上接第75页)(下转第88页)调节系统,但由于寄生参数或其它因素影响,在频率较高时可能转为正反馈,引起振荡,这会破坏电路的正常工作。如果在放大管接一小容量电容C2,如图1-1所示,就可以使高频增益下降,因而防止高频振荡。

2.电容C3

一般是几个到几十个微法。它可以改善稳压电路的瞬时特性。比如输出电压出现瞬间跳动,由于C3 上的电压来不及变化,因此VO的瞬间变化量直接通过C3 传递给放大管基极。再经过T3 放大,使调整管及时作出明显的反应以维持输出电压的稳定。另外,C3 对纹波电压的阻抗很低,可以降低输出端纹波电压。在次选用33μF,耐压为16V的电解电容。

3.电容C4

这个电容的容量一般较大,再次选用470μF,耐压16V的电解电容。C4的作用是为了防止脉冲负载电流引起输出电压的波动,同时也减小输出端波纹电压。

四、结论

通过实验测得电压幅值调节范围为8.1~12.5V,输出电流小于100mA,符合设计的基本要求。

【参考文献】

[1]王至正,朱汉荣,肖福坤.电子技术基础[M].北京:高等教育出版社,1988

[2]杨素行.电子技术简明教程(第二版)[M].北京:高等教育出版社,1998

[3]长春邮电学校.电子电路(上)[M].北京:人民邮电出版社,1979

稳压电源范文第3篇

关键词:直流稳压电源;电路设计;工作原理

1 电路设计背景和目的

通过多年的教学经验和对中职院校的学生进行的调研情况来看,中职院校的学生普遍文化基础薄弱,对文化课、理论课不感兴趣,但是大部分中职学生对实训课程感兴趣,喜欢动手操作,能够尝试动手去做一些实验,有的甚至能独立完成一些电子产品的安装与调试。例如,简单的门铃电路,流水灯电路等。因此,针对中职院校学生的实际情况,结合我学院电气工程系的学生学习情况,今年,我系领导决定对学生的课程安排进行了大胆改革,去掉纯粹的理论课,所有专业课程都变为一体化课程,让学生通过动手操作掌握理论知识,真正做到在做中学,在学中做,在这样的背景下,我尝试了将所担任学科《电子技术基础》这门理论课程融入到《电子电路的安装与调试》这门实训课程中去,变理论课实训课程为一体化课程。依托这样的改革前提,我尝试对直流稳压电源的电路进行了以下设计,目的就是为了更好的适应电气工程系的改革实践,同时也能够使学生在实际动手操作过程中深刻理解相应的电子专业理论知识,能够培养学生掌握理论知识的能力,激发学生热爱电子专业的热情,提高了学生学习的积极性,最重要的是让学生学会了技能,一技在手,更好地走上工作岗位,尽快地适应社会。

2 电路设计实验设备及器件

所谓巧妇难为无米之炊,电路设计同样需要必要的实验设施和工具,而实验条件的好坏和选择工具的正确与否是设计的关键和前提。下面我来具体阐释我的设计思路中所需要的实验条件、实验工具和必要的原材料:

2.1 电路所需实验设施和工具

本次设计的完成需要在专业的电子试验台上进行,需要的工具如下:示波器、万用表、变压器(12v)、电烙铁、钳子和镊子等,另外需要必要的焊锡和连接线。

2.2 电路所需元器件清单

元器件清单如下:

1A二极管IN4007,V1、V2、V3、V4,4只;发光二极管V5,1只;熔断丝FU 参数为1A1只;100uF 50 V电容C1,1只;10uF25V电容C2,1只;500uF 16V电容C3,1只;2200uF电容C4,1只;开关SW,1只;2.7KΩ电阻R1,1只;190Ω电阻R2,1只;280Ω电阻R3,1只;1KΩ电位器R4,1只;三端集成稳器CW7812 U(可调范围1.25V~12V),一只;可调电阻RW,1只。

3 电路设计思路

直流稳压电源又称为直流稳压器,其作用就是将交流电转化成相应用电器所需要的稳定电压的直流电。其关键是输出直流电压的稳定性,所以我们设计电路的着眼点就是电路转化的稳定性。

3.1 直流稳压电源的工作原理

直流稳压电源一般由电源变压器、整流电路、滤波电路、稳压电路组成,其组成框图如图1:

直流稳压电源各部分的作用

(1)电源变压器:主要是降压器,用于把220V的交流电转换成整流电路所需要的交流电压Ui。(2)整流电路:利用整流二极管单向导电性,把交流电U2转变为脉动的直流电。(3)滤波电路:利用滤波电容将脉动直流电中的交流电压成分过滤掉,滤波电路主要有桥式整流电容滤波电路和全波整流滤波电感滤波电路。(4)稳压电路:利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的,用于将不稳定的直流电压转换成较稳定的直流电压。

3.2 直流稳压电源的设计方法

直流稳压电源的设计,是根据其输出电压UO、输出电流IO等性能指标的要求,确定出变压器、集成稳压器、整流二极管和滤波电路中所用元器件的相关性能参数,选择出这些元器件。

具体设计方法分为三个步骤:第一步:根据直流稳压电源的输出电压UO、最大输出电流IOMAX,确定出稳压器的型号及电路形式。第二步:根据稳压器的输入电压Ui,确定出电源变压器二次侧电压U2;根据稳压电源的最大输出电流IOMAX,确定出流过电源变压器二次线圈的电流I2和电源变压器二次线圈的功率P2;再根据P2,确定出电源变压器一次线圈的功率P1。然后根据所确定的参数,选择合适的电源变压器,一般为12v。第三步:确定整流二极管的正向平均电流ID、整流二极管的最大反向电压URM和滤波电容的容量值以及耐压值。根据所确定的参数,选择合适的整流二极管和滤波电容。

4 电路设计步骤

电路设计思路想出后,考虑实际电路具体设计步骤,完整的设计步骤是整个电路的核心部分,因此在设计过程中实际设计步骤显得尤为重要,具体步骤为以下几步:

4.1 电路图设计方法

电路图设计使用PCB制图软件制作

4.2 电路原理图的设计

电路原理设计使用Protel2000制图软件设计电路原理图如图2。

4.3 直流稳压电源实物设计

如图3所示安装直流稳压电源电路的前半部分整流滤波电路,然后从稳压器的输入端加入直流电压UI?燮12V,调节RW,如果输出电压也跟着发生变化,说明稳压电路工作正常。用万用表测量整流二极管的正、反向电阻,正确判断出二极管的极性后,先在变压器的二次测线圈接上额定电流为1A的保险丝,然后安装整流滤波电路。安装时要注意,二极管和电解电容的极性不能接反。经检查无误后,才将电源变压器与整流滤波电路连接,通电后,用示波器或万用表检查整流后输出电压UI的极性,若UI的极性为正,则说明整流电路连接正确,然后断开电源,将整流滤波电路与稳压电路连接起来。然后接通电源,调节RW的值,如果输出电压满足设计指标,说明稳压电源中各级电路都能正常工作。

5 电路设计总结

通过论述直流稳压电源电路的设计过程,强化了本人所教学科《电子技术基础》中模拟电路部分知识和《电子电路的安装与调试》实验部分知识。所设计的直流稳压电源电路,广泛运用于生活中,例如手机的充电电源、冰箱的稳压电源等。同时,也通过查阅参考书,网上资料等拓宽了自己专业方面的知识面。论述过程中,通过边教学边调研边实践的方式使本人对直流稳压电源电路设计过程有了一些新的认识,特别是强化了自己的教学能力,增强了所教专业学生掌握理论知识的能力,提高了其动手操作的能力。通过一段时间的教学效果来看,我所教授专业的学生对学院的此种教学改革适应快,容易接受,对教师所设计的教学模块感兴趣,并且激发了继续探究这一教学模块的动力,这也充分证明了学院提出的此种教学改革是可行的。

参考文献

[1]郭S.电子技术基础(第四版)[M].北京:中国劳动社会保障出版社.

[2]王建.维修电工技能训练(第四版)[M].北京:中国劳动社会保障出版社.

[3]王淑娟.模拟电子技术基础[M].北京:高等教育出版社.

稳压电源范文第4篇

【关键词】单片机 稳压电源 连续可调 ADC

经过前期的调查研究统计,发现大多高校的电工实验设备在进行戴维南定理验证实验过程当中当两个电源同时作用时造成低电压电源输出升高的问题,例如我校的电工实验设备在进行该实验的过程中,当电源一(6V)与电源二(15V)两电源同时作用一系统时往往会造成电源一电压升高从而造成实验结果不正确。而且大多高校使用的电工实验设备与我校的电工实验设备原理相同,都存在上述问题。遂开发出基于STC89C51单片机的数字化控制的电工实验用可灌入式稳压电源,使实验过程中电源一输出稳定,从而保证实验结果准确。

该项目最大的特色及创新点是创造性的以单片机为核心,组成数据处理电路,在检测与控制软件支持下,通过对电源电压进行数据采样与设定数据比较,从而调整和控制电工实验设备中电源的输出。

采用模拟电路的可调稳压电路是用一个多档开关来控制输出电压,而所谓的显示系统只是再多档开关的每个档的旁边注明电压值。随着电子行业的发展,他不耐用的弊端已经使它逐渐离开了历史的舞台。

一、系统硬件部分

(一)STC89C51主控部分。

STC89C51主控部分是系统控制核心,主要负责对电工实验设备的输出电压进行采样并与手动设定的参考电压进行对比,而后通过控制数字电位器的阻值来实现对稳压电源的调节,并且对输出的电压值进行实时显示。STC89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用高密度非易失存储器制造技术工艺,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,STC的STC89C51是一种高效微控制器。

(二)采样电路。

图2 采样电路

(三)变压稳压电路。

变压电路将工频220V/50Hz电压经过降压、整流、滤波后输入给稳压芯片。LM317是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。LM317是可调节3端正电压稳压器,在输出电压范围1.2伏到37伏时能够提供超过1.5安的电流,此稳压器非常易于使用,故本设计采用LM317为稳压芯片。

(四)直流稳压输出控制电路。

数字电位器也称数字可编程电阻器,是采用CMOS工艺制成的数字-模拟混合信号处理集成电路,能在数字信号的控制下自动改变滑动端的位置,从而获得所需要的电阻值。数字电位器本身就是一个包含控制接口、存储器和电阻的系统,它是通过软件和控制接口进行编程的,因此,在调节过程中不会产生电噪音。故本项目采用数字电位器控制输出电压。

二、结束语

本系统操作自动化,系统的整个测量过程如数据的采集、传输与处理以及显示等都用微控制器来控制操作,实现测量过程的全部自动化。本设计具有友好的人机对话能力。与此同时,智能直流稳压电源还通过显示屏将仪器的测量数据的处理结果及时告诉操作人员,使系统的操作更加方便直观。

参考文献:

[1]谭浩强,张基温,唐永炎.C语言程序设计教程[M]. 北京:高等教育出版社,1992.

[2]张友德等.单片微型机原理、应用与实验[M]. 上海:复旦大学出版社,2006.

[3]尹建华,张惠群.微型计算机原理与接口技术[M]. 北京:高等教育出版社,2003.

[4]蔡明生. 电子设计[M] . 北京:高等教育教育出版社,2004.

稳压电源范文第5篇

【关键词】单片机;稳压;开关电源;温度传感器

1 引言

直流稳压电源是一种常见的电子仪器,广泛地应用于电子电路、教学实验和科学研究等领域。目前使用的直流稳压电源大部分是线性电源,利用分立器件组成,其体积大,效率低,可靠性性差,操作使用不方便,自我保护功能不够,因而故障率高。随着电子技术的飞速发展,各种电子、电器设备对稳压电源的性能要求日益提高,稳压电源不断朝着小型化,高效率,低成本,高可靠性,低电磁干扰,模块化和智能化方向发展。以单片机系统为核心而设计制造出来的新一代智能稳压电源不但电路简单,结构紧凑,价格低廉,性能卓越,而且由于单片机具有计算和控制能力,利用它对采样数据进行各种计算,从而可排除和减少由于骚扰信号和模拟电路引起的误差,大大提高稳压电源输出电压和控制电流精度,降低了对模拟电路的要求。智能稳压电源可利用单片机设置周密的保护监测系统,确保电源运行可靠。输出电压和限定电流采用数字显示,输入采用键盘方式,电源的外表美观,操作使用方便,具有较高的使用价值。

2 工作原理

本智能稳压电源以开关电源为基础电路,以高性能单片机为控制核心,组成数据处理电路,在检测与控制软件支持下,通过对开关电源输出电流、电压进行数据采样与给定数据比较,从而调整和控制开关电源的工作状态,同时监测开关电路的工作温度和输出电流大小,其工作原理框图如图1所示。是电经整流、滤波变成直流电送入开关调整电路,开关调整电路在单片机的控制下输出稳定的直流电。用户可根据需要通过键盘给定稳压电源输出的电压值及最大输出电流值,单片机系统自动对电源输出电压和电流进行数据采样,并与用户给定数据进行比较,然后根据设置的调整算法控制开关调整电路,使电源输出电压符合给定值,单片机在调整电源输出电压的同时还要检测电路的工作温度和输出电流,倘若超过给定值,就启动保护电路。

图1 智能稳压电源框图

3 硬件设计

3.1 单片机组成系统

智能稳压电源的单片机系统是以8031为CPU,包括8kRAM(芯片6264数据存储器)和16kROM(芯片27128程序存储器),以及1kEEROM。EEROM是用来保存最后一次从键盘输入的电压、电流数据以及温度、脉宽调整数据等,每次开机时单片机从EEROM中读出数据控制电源输出。另外还扩充一片集成电路8155来补充8031的I/O口,其中8155的A口作输出,提供LED显示数据口,B口作键盘输入口,C口作为输出,提供开关调整电路激励脉冲信号。具体框图见图2。

3.2传感器输入通道及A/D转换

电流传感器是由一段康铜片串接在电源输出电路中制成,电压传感器使用电阻分压方式,单片机系统通过电流、电压传感器检测电流和电压,测得两路模拟信号,先通过各自放大器放大成与A/D转换器相匹配的信号,经多路选择开关CD4051送给A/D转换器。由单片机CPU控制选择有关通道进行分时切换,实现二选一,依次将两路模拟信号送至AD1674转换器,进行A/D转换后变成数字信号,再经光电耦合器送入8031单片机。

3.3 开关管控制信号发生电路

为了精确控制开关电路的电压输出,本系统采用脉宽调制的控制方式调节开关管的工作状态。8155把单片机的高频脉冲信号分频后变成适宜的开关脉冲信号,作为8155的计数脉冲和门控信号,单片机把给定值与传感器采集的信号进行比较,产生误差信号,根据电压控制算法设置8155产生不同占空比(0~90%)的方波信号,经过光电耦合器控制开关调整电路输出设定的电压。

3.4 监测和保护系统

为了使智能稳压电源能可靠、安全地工作,本系统设置了多重监测和保护系统,主要包括过热保护、过流保护和短路保护,其中过热保护采用中断方式控制。单片机系统通过温度传感器和电流传感器检测开关电路的工作温度和电源输出电流,倘若温度和电流超过给定值,单片机系统就切断开关电路激励信号并启动声光报警。单片机对短路保护采用电压和电流双重检测,只有当电压很低,电流很大时才启动短路保护。

3.5 键盘及显示电路

智能稳压电源的键盘与显示部分装在仪器操作面板上,由8位LED数码管,3个LED指示灯以及16只键构成,其

中4位数码管显示电源电压,4位数码管显示电流,3个灯作为报警显示。键盘与显示电路通过8155接口电路与8031相接。

4 软件设计

本系统软件是由一个主程序,两个中断服务程序和一个子程序组成,它控制着智能稳压电源有条不紊地工作。

在初始化过程中,先是将8031各个口复位,然后从EEROM中读出上次关机前存入的数据,控制开关电路,并进行显示。初始化完成后,开中断。若有中断请求则响应,否则进行数据采样并读给定值,然后进行数据处理,若有短路或过流情况发生,则调用报警保护子程序,若没有短路或过流情况发生,则接照电压控制算法重新设置脉宽,激励开关电路。两个中断服务程序分别是过热检测保护报警程序和键盘设定程序,子程序是保护报警程序。

5 结语

稳压电源范文第6篇

【关键词】数控;直流稳压电源;测试

1.引言

本文所测量的数控直流稳压电源有一定输出电压范围和功能,可预置输出电压的果,并在数码管上予以同步显示。它与传统的稳压电源相比,具有操作方便、电压稳定度高、干扰小、容易控制、可靠性高体积小的特点,其输出电压大小采用数字显示,用到单片机、数字技术中的可逆计数器、D/A转换器、译码显示等电路。可实现定时开、关机,定时变压,显示输出电压、电流,预置输出电压值等功能。

2.数控直流稳压源的组成及测试

此数控直流稳压电源共有六部分,输出电压的调节是通过“+”,“-”两键操作,步进电压精确到0.1V控制可逆计数器分别作加,减计数,可逆计数器的二进制数字输出分两路运行:一路用于驱动数字显示电路,精确显示当前输出电压值;另一路进入数模转换电路(D/A转换电路),数模转换电路将数字量按比例,转换成模拟电压,然后经过射极跟随器控制,调整输出级,输出稳定直流电压。为了实现上述几部分的正常工作,需要另制±15V,和±5V的直流稳压电源,及一组未经稳压的12V~17V的直流电压。本设计中数控电源主要就是对此组电压进行控制,使输出0~9V的稳定的可调直流电压。

根据组成结构和信号电压特点,主要测试仪器使用到:万用表,示波器,直流稳压电源等。本测试以输入220v,50Hz的市电,输出为稳定的5V的直流电为例进行电路参数设计和测试。

2.1 直流稳压电源的基本组成

直流稳压电源由电源变压器﹑整流器滤波器﹑稳压器等部分组成,其框图如图1所示。

(1)交流电压变换部分

将电网电压变为所需的交流电压,同时还可以起到直流电源与电网的隔离作用。万用表可以测量50Hz220V交流电是否可以通过电源变压器降压为较低电压值的交流电。

(2)整流部分

整流电路的作用,是将变换后的交流电压转换为单方向的脉冲电压。这部分采用示波器来观察整流波形。

(3)滤波部分

对整流部分输出的脉冲直流电进行平滑,使之成为含交变成分很少的直流电压。其实际上是一个性能较好的低通滤波器,且截止频率一定低于整流输出电压的输出频率,因此也使用示波器观察滤波波形。

(4)稳压部分

尽管经过整流滤波后电压接近于直流电压,但是其电压值的稳定性很差,它受温度,负载,电网电压等因素的影响很大,因此,还必须有稳压电路,以维持输出直流电压的基本稳定。这部分可以采用万用表和示波器两种测试方法。

2.2 直流稳压电源各部分测试

(1)电源变压器

电源变压是将电网电压变换成实际电路所需的交流电压。

根据电路图,我们选择在次级线圈测量输出电压。通常使用万用表的交流220V档位进行测量。测量结果U2应当满足N1/N2=U1/U2这样的关系式。

(2)整流电路

整流是稳压电源的一个重要组成部分,主要作用是进行波形变换,即将交流信号变为直流信号。其又可分为半波整流和全波桥式整流。

整流部分的输出可以用示波器来观察输出。我们采用DS1022C数字示波器来测量。数字示波器观察波形迅速,电压频率测量方便迅速。全波整流的波形如图2所示。

(3)滤波电路

本设计采用电容滤波。

电容滤波的过程主要是将全波整流波形中较高的脉动成分滤除掉。因为电容两端的电压不会突变,所以利用这个原理使用电容将高脉动波形转变成低脉动波形。

测量方法同全波整流一样,使用DS10

22C数字示波器可以观察到滤波之后的波形,形状已经接滑,但是仍然有待改进。电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。在测量过程中,我们分别测试了47μF,100μF和1000μF的滤波效果,结论是1000μF的滤波效果最好。

(4)稳压电路

滤波后的输出电压即使纹波很小,也仍然存在稳定性问题,因此需采用稳压电路进行稳压。最基本的稳压方法就是二极管稳压。除此以外,我们采用了三端集成稳压器LM7805和LM7905。

测量时,可以选择DS1022C示波器,使用双踪功能。CH1观察集成稳压器的1管脚,也就是滤波的波形,CH2观察3管脚即稳压后的波形,同时显示在屏幕上,可以观察到稳压之后波形比较平稳。

另外,可以用万用表来测量输入输出的直流电电压值。使用万用表直流电压20V档位来进行测量。但是无法直观的与滤波波形进行比较。以LM7805为例:

输入电压(VO=5~18V):35V

输出电压:5V

2.3 数字显示电路的测试

2.3.1 工作原理

数字显示驱动采用两块74LS248芯片,74LS248为四线七段译码驱动器,内部输出带上拉电阻它把从计数器传送来的二~十进制码,驱动数码管显示数码。

74LS248,七段译码器,输出高电平有效,适合于共阴极接法的七段数码管使用A3,A2,A1,A0,为8421BCD码输入,a,b,c,d,e,f,g为七段数码输出,LT为试灯输入信号,用来检查,数码管的好坏,IBR为灭零输出信号,用来动态灭零,IB/QBR为灭灯输出信号,该端既可以作输入也可以作输出,具体工作如上真值表所示。

测量集成电路我们主要选用万用表直流电压档,通过管脚高低电平,判断工作状态和信号的输出情况。当集成电路工作电压为5V时,高电平电压在5V左右,低电平电压一般在1V左右。

2.3.2 原件选择

与74LS248功能相同的还有,74LS247,7CD4511,74LS245等。

2.4 D/A转换电路(数模转换器)的测试

(1)DAC0832工作原理介绍

数模转换电路,采用DAC0832集成块,它是一个8位数/模转换电路,这里只使用高4位数字量输入端。由于DAC0832不包含运算放大器,所以需要外接一个运算放大器相配,才构成完整的D/A转换器,低位DAC输出模拟量经9:1分流器分流后与高位DAC输出模拟量相加后送入运放,具体实现,由900Ω和100Ω的电阻相并联分流实现,运放将其转换成与数字端输入的数值成正比的模拟输出电压,运放采用具有调零的低噪声高速优质运放NE5534。

d7~d0:8位二进制数据输入端;ILE:输入锁存允许,高电平有效;CS:片选信号,低电平有效;WR1,WR2:写选通信号,低电平有效;XFER:转移控制信号,低电平有效;Rf:内接反馈电阻,Rf=15KΩ;IOUT1,IOUT2:输出端,其中IOUT1和运放反相输入相连,IOUT2和运放同相输入端相连并接地端;Vcc:电源电压,Vcc的范围为+5V~+15V;Vref:参考电压,范围在-10V~+10V;GND:接地端。

当ILE=1,CS=0,WR=0,输入数据d7~d0存入8位输入寄存器中,当WR2=0,XFER=0时,输入寄存器中所存内容进入8位DAC寄存器并进行D/A转换。当DAC0832外接运放A构成D/A转换电路时,电路输出量V0和输入d7~d0的关系式为:

(2)DAC0832芯片的特点

DAC0832最具特色是输入为双缓冲结构,数字信号在进入D/A转换前,需经过两个独立控制的8位锁存器传送。其优点是D/A转换的同时,DAC寄存器中保留现有的数据,而在输入寄存器中可送入新的数据。系统中多个D/A转换器内容可用一公共的选通信号选通输出。由于DAC0832输出级没有加集成运放,所以需外加NE5534相配适用。

IN-为反相输入端,IN+为同相输入端;OUT为输出端;Balance为平衡输入端,主要作用是,使内部电路的差动放大电路处于平衡状态;COMp/Bal的作用为,通过调节外接电阻,以达到改善放大器的性能和输出电压;VCC-和Vcc+为正负电源供电。

对于数字控制电路来说,测量的方法均相同,同上一个数显译码器一样,按照真值表的高低电平对应关系,使用万用表测量管脚输出电压值,与真值表一一对应检查。

3.问题和改进措施

本电源输出电压大小尚受限制,在需要较高输出电压时,在不改变调节精度(即步进电压值)前提下,只要增加计数器的级联数和相应D/A转换器的个数,扩大数显指示范围,配合选用高电压输出运放,就能轻易地满足要求。当需要正负对称输出电压时,只要另增一组电源,对D/A转换器及调整输出电路稍作改动即可达到目的。

数字示波器精度高,速度快,读数误差小,在观察测量电压频率上有很大优势,但是由于精度过高,在观察波形上容易受到谐波的干扰,导致自动选取XY坐标单位有误,过分放大谐波,导致误判失真波形。这方面对测试人员的测试经验要求较高,需要能在数字示波器自动测量的基础上配合手动测量调节,选取合适的XY坐标和单位进行测量,并且能较准确的判断波形的情况。

4.结束语

通过此次对数控直流稳压电源产品的测试,加强了对仪器仪表的使用熟练程度,在测试过程中对各种元器件的特性有了更深刻的把握,为今后测量其他更加复杂电路打下良好基础。

数控电源设备用以实现电能转换和功率传递,对模拟器件和数字器件的测试要求和设备要求都有很大不同。本设计在各个行业中都有广大应用,在发展的同时对数控电源的也提出了更高要求。例如增设过流保护、声光报警等,这些新技术同样可以通过测试来进行调校,对测试的精度和准确性、可靠性的要求也进一步提高。

参考文献

[1]何小艇.电子系统设计[M].浙江:浙江大学出版社,1998:22-29.

[2]刘守义.单片机应用技术[M].西安:西安电子科技大学出版社,2002:83-84.

[3]孙传友等.测控电路及装置[M].北京:北京航空航天大学出版社,2002:17(第3版).

[4]李朝青.单片机原理及接口技术[M].北京:北京航空航天大学出版社,2005:66(第2版).

[5]汤竞南等.51单片机C语言开发与实例[M].北京:人民邮电出版社,2007:117.

稳压电源范文第7篇

【关键词】GPS-3303C;稳压电源;故障维修

1 设备介绍

直流稳压电源型号:固纬电子有限公司GPS-3303C。

主要的技术指标:二路独立输出0~30V连续可调,最大电流为 3A;二路串联输出时,最大电压为60V,最大电流为3A;二路并联输出时,最大电压为30V,最大电流为6A。另一路为固定输出电压5V,最大电流为3A的直流电源。该直流电源主要用于基础实验教学。

2 稳压电源工作原理

GPS-3303C由取样电路,比较放大、控制电路、调整电路、辅助电源电路、基准电压、保护电路和电源整流滤波电路组成。

当输出电路由于电源电压或负载电流变化引起变动时,变动信号将经取样电路与基准电压进行比较,所得信号经比较放大后,由控制电路控制可控硅,使调整电路输出电压为额定值[2]。整流滤波电路采用全波整流电路,产生的直流脉动信号送至可控硅,由辅助电源电路产生的脉冲信号作为可控硅的控制信号,脉冲信号的占空比由比较放大电路产生的误差信号控制。

稳压电源GPS-3303C如图1所示,一路包括整流器、滤波器以及提供参考电压的偏压电源;另一路包含了一个主整流器、一个主滤波器、一个串联调节器、一个电流比较器、一个电压比较器、一个参考电压放大器、一个遥控装置和一个继电器控制的主调节电路。

交流输入变压后,由整流器D1021-D1024进行整流,再经电容 C103,C104滤波,同时提供给调节器U101、U108一个偏压电压,从而使调节器U101、U108为电路提供调节电压。

主整流器是一个全波桥式整流器,整流后信号经电容C1021滤波,再经一串联调节器调整后,送到输出端。U105是一个限流器,当电流超过额定范围,U105会减小电流。U102提供给U103和U105一个参考电压,U103是一个反相放大器,而U104是一个比较放大器,将参考电压和反馈电压作比较后,送到Q103和Q104以校正输出电压。Q113在发生超载现象时控制Q103的电流大小以限制输出电流。继电器控制串联调节电路的功率消耗。

3 电源故障分析及维修

结合理论,以下针对笔者遇到的三例故障加以分析:

3.1 故障一

现象是输入220V交流电,打开仪器电源开关,扭动电压调整旋钮,输出电压显示始终为零。

分析:从现象判断,该电源没有电压输出。该电源具有过流和短路保护,在电源背部有一保险管插口。所以,首先想到检查该电源的保险管。我们取下保险管,用万用表测量其电阻,电阻过大证实保险管被烧坏。

故障处理:找到T4A 250V的保险管换上,通电试机,电源正常,并进行加载实验,电源稳定。

3.2 故障二

现象同故障一。换上T4A 250V保险管后,现象没有变化。

分析:说明该电源不仅烧毁了保险管,还损坏了其他元件。我们主要考虑变压器、整流滤波部分和调整元件是否工作正常,变压器将高压变为稳压电源所要求的低压,容易出现情况为变压器线包短路、断路、铁芯的霉断和击穿;整流滤波部分的主要作用是将低电压的交流经整流变为波动较大的直流,再经电容等滤波电路将波动较大的直流变为较平稳直流。若整流管损坏,滤波电容击穿、短路,一般故障现象为无输出电压;调整元件主要是依据比较放大的反馈信号和保护元件的信号进行自动调节,以保证输出电压的稳定和自身的安全。若调整元件出现故障,输出电压将发生变化,也可能会导致无电压输出。

故障处理:利用排除法对照电路方框图可以确定以上可能性的位置。打开电源机箱,首先测量变压器输出,输出正常;再考虑到滤波电解电容的使用年限一般为三至五年,特别是高频滤波电容,容易产生高频滤波失效,即普通方法测试正常,而实际工作中失效[1],更换高频滤波电容后现象无变化;我们用万用表检测可控硅输入电压为36.2V,输出电压为42.1V,调整管输入电压为12.2V,输出电压为0V。由此判断调整管被烧毁,断路。更换调整管后,通电试机,电源正常,进行加载实验,电源稳定。

3.3 故障三

现象是输入220V交流电,打开电源开关,电压输出显示至过大,过压保护,之后保险管被烧坏,调节电压旋钮,输出显示没有变化。

分析:辅助电源电路提供的基准电压作为比较放大的比较基准,它的精准与否会直接影响反馈信号,进而影响输出电压的大小,故障现象常为输出电压过大或过小;取样电路将输出电压的大小进行取样供比较放大电路使用。取样的大小影响稳压电源电压输出的变化,易出现故障现象为电压偏大或偏小;如果调整元件出现故障,同样输出电压将发生变化,也会出现过大过小。

故障处理:由于电压超过量程范围,我们初步判断是辅助电源出现了问题,利用万用表测得稳压管三端的电压分别为25.6V、28.2V、15.8V,说明辅助电源没有问题。用万用表测量电位器是否开路造成不能调节,经检测没有开路。之后我们从可控硅着手,测得可控硅输入电压为41.4V,输出电压为48V,紧接着检测调整管输入电压为48V,输出电压还是48V。发现调整管的输出电压与输入电压一样,并且都等于可控硅的输出电压。此时我们判断调整管被击穿,形成了通路。更换新的调整管,通电试机,电源稳定。

4 维修中应注意的问题

维修过程中不但元件的好坏和元件的工作情况会决定维修成败,同样维修的环境、方法也是非常重要的。所以我们应注意以下几点:

4.1 仪器的拆装需在防静电的工作环境中进行

4.2 注意利用导电工作区释放静电

4.3 可佩戴导电腕带释放积存的静电

4.4 尽量减少用手直接接触器件

4.5 将用于替换的器件存放在防静电的包装内

4.6 使塑料、泡沫、纸张等易产生静电的物品远离工作区

4.7 需使用防静电吸锡器

5 结束语

从以上案例可以看出直流稳压电源常见故障多为:保险丝熔断、调整管损坏、整流二极管损坏、滤波电容开路或击穿以及电源自保护等原因。平时多注意积累经验,简单电源故障是可以自己检修的。

【参考文献】

[1]张胜九,万兵.医疗设备开关电源的维修[J].医疗设备信息,2007(12):115.

稳压电源范文第8篇

【关键词】DC-DC转换 LM5117芯片 直流开关稳压电源

开关电源是利用电子开关器件通过控制电路,使电子开关器件不停地“接通”和“断开”,让电子开关器件对输入电压进行脉冲调制,从而实现电压变换、输出电压可调和自动稳压。常用开关稳压电源电路结构复杂,且难于实现稳压数字化调节,本文介绍一种以LM5117为核心降压芯片的直流稳压电源,该电源设计简单,可实现输出稳压数字化调节且工作效率较高。

1 电源整体设计

1.1 设计要求

输出电压偏差|UO|≤100mV;

最大输出电流IO≥3A;

输出纹波Uopp≤50mV;

负载调整率Si≤5%;

电压调整率Sv≤0.5%;

效率η≥85%;

重量小于0.2kg;

具备过流保护和负载识别功能。

1.2 设计方案

本开关稳压电源主要由电流检测部分、过流保护部分、降压部分、负载识别部分和输出电压调节部分组成,其工作原理框图如图1所示。直流稳压电源输出固定16V,经过LM5117为核心的Buck电路输出稳定可调电压,在输出电路中串入电流检测模块送入单片机A/D采集并判断电流是否大于动作电流,在Buck电路输出端增加一个负载识别端口,外接电位器按U0=R/1k得到输出电压设定值,由单片机D/A控制输出电压到达设定值,构成闭合控制回路,其电路原理图如图2所示。

2 开关电源的组成部分设计

2.1 降压电路

采用LM5117组成的DC-DC电路,其中LM5117是同步降压控制器,适用于高电压或各种输入电源的降压型稳压器应用;其控制方法是基于仿真电流斜坡的电流模式控制,而电流模式控制具有固定的输入电压前馈、逐周期电流限制和简化环路补偿的功能,输出纹波电压小、效率可高达93%可很好满足要求。

2.2 过流保护电路

LM5117一脚UVLO是欠压锁定编程引脚,我们采用软件调控来实现电流过保护,通过控制芯片一脚的电压来控制芯片的工作状态。利用INA271高端检测,通过接入电阻恒定为50mΩ的康铜丝采样电压从而算出电流。将INA271采样输出电压送入单片机A/D采集,判断计算出的电路电流是否大于动作电流值,过流时通过P3.1输出低电平至Uvlo脚,芯片停止工作实现过流保护。该方案可行性高且可减小整个装置质量,减小系统效率,如图3所示。

2.3 降低纹波

注:Vro为总纹波大小,纹波是叠加在直流电压的交流部分。ESR为 C的的等效串联电阻。

由公式可知三种减小纹波电压的方法:

(1)适当增大开关频率,但此做法回事系统功耗增加,电源效率降低;

(2)减小ESR,可选择若干电解电容,瓷片电容并联ESR的值只有几十毫欧,此方法有效减小纹波的同时可提高电容量,即增加输出滤波电路电感可在一定范围内尽量大;

(3)采用πLC滤波电路也可有效降低输出端纹波大小。

2.4 DC-DC变换

采用非隔离型Buck电路,以LM5117为核心,由开关管CSD18532,电感,电容组成。由两个开关管交替导通将输入直流电压变化成矩形波,空载时满足(W为空占比),当负载接入时,输出电压通过店主分压反馈到芯片Fb脚,保持输出电压为稳定可调电压。

2.5 稳压控制

如图4所示,自LM5117的FB引脚输出的电阻分压信号可设定输出电压电平在一定范围内变化,FB引脚的调节阈值为0.8V。设定R0为1.2k,由电路图可以确定DA输入Ui和输出UO间的关系为:

,通过确定R1,R2的阻值进行优化即可稳定输出连续的电压值,以实现输出电压的数字化控制。

3 电路设计

3.1 A/D采集电路

采用12位串行输入模数转换器TLC2543,此芯片使用开关电容逐次逼近技术完成A/D转换过程,串行输入结构可以节省单片机I/O口资源,分辨率较高,在仪器仪表中有较为广泛的应用。

3.2 D/A输出电路

采用TI公司生a的带有缓冲基准输入的双路12位数模转换器TLV5618,输出电压为基准电压的两倍,且单调变化。REF5040提供精准参考电压4.096V。数字输入端带有斯密特触发器,具有较高的噪声抑制能力。

4 运行结果测试

4.1 器件选择

由各种计算分析选择开关频率Fsw=1000kHz,定时电阻Rt=51K,输出电感 Lo=22μH,电流检测电阻Rs=5mΩ,输出电容采用4个47μF电容并联Cout=235μF,输出分压器Rfb1=1.45K,Rfb2=6.2K,电位调节器处处电压为5V,Fcross=10K,Rcomp=27.4K,Ccomp=15nf。

4.2 方案测试

采用控制单一变量的方法对上述设计进行测试,测试结果该开关稳压电源不仅满足设计要求,而且在此要求的基础上更加优化即输出电压偏差|Uo|≤35mV,最大输出电流Io=3.2A,负载调整率Si=0.002,电压调整率Sv=0.002,系统效率η=92.8%。

5 结论

本开关稳压电源的设计核心是LM5117芯片,通过实际设计表明,以LM5117为核心设计的降压型直流开关稳压电源DC-DC的转换率高达93%,具有广泛的使用价值。

参考文献

[1]P.R.Gray and R.G.Meyer.Analysis and Design of Analag Intergrated Circuits.3rd John Wiley&Sons,New York,1993.

[2]户川活朗著.实用电源电路设计――从整流电路到开关稳压器[M].北京:科学出版社,2011.

[3]康华光主编.电子技术基础[M].北京:高等教育出版社,2005.

[4]吴慎山主编.电子线路设计与实践[M].北京:电子工业出版社,2011.

[5]臧春华主编.电子线路设计与应用[M].北京: 高等教育出版社,2012.

作者单位

稳压电源范文第9篇

关键词:补偿式;无触点;PLC;稳压器

DOI:10.16640/ki.37-1222/t.2017.01.176

1 目前市场同类产品研究及生产状况

稳压器的主要电路结构,从最初的机械碳刷式到无触点补偿式,经历了好几代的发展变化,但目前市场上的很多大功率交流稳压器仍是机械碳刷式结构。机械碳刷式稳压器有着许多缺点和不足,已远不能适应现代科技的需要。

国内关于交流稳压器的研究较为活跃,其研究的主要内容分为两个大的方向:

1.1 无触点补偿式大功率交流稳压器[1]

无触点补偿式大功率交流稳压器[1]提出通过改变变压器的绕组组合来改变输出电压:一种是纯补偿式,它的拓扑结构如图1.1所示。

通过双向可控硅的通断,控制补偿变压器组合的投入、退出或改变极性,从而达到稳定输出电压的目的。可控硅通过桥臂形式,直接接在相线与零线之间(220V),因而工作电压高,换档时产生的浪涌电流大;同时,这种电路在可控硅误导通时,很容易造成相线与零线之间短路,瞬间就会烧毁可控硅,故其可靠性很差。另一种是自耦调压补偿式[2][3],这种结构通过控制双向可控硅的通断,来切换自耦变压器的抽头,从而改变补偿变压器补偿电压的大小和极性,达到稳定输出电压的目的。

1.2 高频开关型交流稳压器

高频开关型交流稳压器把先进的高频开关电源技术引入到交流稳压器中,从而可以取得减小体积和重量,具有效率高、响应速度快的优点[4]。但因其电路复杂,价格很高,难以做到大容量输出。

2 单相交流稳压电源的设计

要保证电源装置能做到精密地控制和可靠地运行,必须采用电力电子技术,在装置中使用电力半导体器件。基于此,设计了一种新型的采用PLC控制的无触点补偿式大功率交流稳压器。

2.1 稳压器电磁原理分析

2.1.1 电压串联补偿原理

电压串联补偿技术原理如图2.1所示。

由图2.1可知:, 为电网侧输入电压,为补偿电压,为稳压器输出电压。当低于时,调压装置使为正补偿;当等于时,调压装置不动作,为0补偿。当高于时,调压装置使为负补偿。稳压器[5]只需补偿电压设定值和实际值的偏差电压,而无需承担负荷的全部电压,采用电压串联补偿技术研制的稳压器即可做到。

2.1.2 主电路拓扑结构

稳压器的主电路拓扑结构如图2.2所示[6]:主电路由带分接头的自耦调压变压器和串联补偿变压器组成。

为通过智能控制系统控制的固态继电器模块。通过改变自耦变压器的变比而控制自耦变压器的二次电压,通过改变补偿变压器的一次绕组的接入点而控制补偿电压的正负。与补偿变压器 T2 一次绕组并联的RC 电路是为了抑制在换挡瞬间因补偿变压器 T2 一次绕组暂时开路而引起的冲击电流。

2.2 控制系统硬件组成

设计采用西门子S-200系列PLC、模拟量输入模块组成控制系统,触摸屏采用台达DOP-B系列触摸屏。控制系统的硬件组成框图如图2.3所示。

交流固态继电器介绍。交流固态继电器SSR[7]是一种无触点通断电子开关(Solid State Relays),由输入电路,隔离(耦合)和输出电路三部分组成。它利用电子元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可达到无触点无火花地接通和断开电路的目的,为四端有源器件,其中两个端子为输入控制端,另外两端为输出控制端。当施加输入信号后,其中主回路呈导通状态,无信号时呈阻断状态。整个器件无可动部件及触点,因此又被称为“无触点开关”。

2.3 PLC系统设计与程序编写

2.3.1 PLC主程序编写

PLC主程序主要是对定时器、初始值、子程序读取、寄存器、计数等相关设置。程序开始运行时,先将档位实际输出初始值进行设置。通过初始化程序,将额定电压设定设为40V,阈值设为2V,并将所有输入输出端口和寄存器初始化。

初始化程序1:由于PLC量程为(-27648~27648),电压变送器的量程0~250V转化为0~10V,对应40V为4424,并将其赋值给VW500作为电压设定值;将1 给VW502默认T3定时器为1*10ms;VW504阈值为0.8V;VW506为档位判断前时间间隔;VW510为总周期。

初始化程序2:VW2为当前偏差;VW4为前挡偏差;VW6为执行档位;VW100为实际档位;VW98为周期次数;将其全部置0初始化。

初始化程序3:初始化输出端0100001,对应点数输出0挡。

电压判断程序流程图如图2.9所示。

通过设定初始值与采集值进行比较,判断偏差与零的大小,根据判断进行档位判断,从而调节比例大小,进而调节输出电压。

利用PLC控制和电力电子技术,实现了智能的单相交流稳压电源的设计,它容量更大,可靠性更强,精度更高。克服了机械触点式稳压器故障率高、噪声大、损耗大的缺点,适用于对环境要求较高、对电压稳定性要求高的用户。

参考文献:

[1]郭萍,李建华.无触点斩波式交流稳压器[J].江苏电器,2008(04):45-48.

[2]冯刚,冯新民,王志勇.补偿式交流稳压器设计[J].江苏电器,2008(10):49-52.

[3]江友华,顾胜坚,方勇.无触点交流稳压器的特性研究及功率流分析[J].电力电子技术,2007,41(08):7-9.

[4]谭必礼.交流调压和稳压电源的发展动向[J].变压器,2004,41(05).

[5]李海林,刘小虎.一种无触点补偿式交流稳压器的设计[J].船电技术,2010(04):34-36.

[6]孙海涛,全永强.自动补偿式交流稳压电源的研制[J].变压器,2005,42(02).

[7]康秀强.大功率智能交流稳压电源的设计[J].机电工程,2010,27(05):60-70.

稳压电源范文第10篇

关键词:变压;整流滤波;稳压;

中图分类号:S611 文献标识码: A

1、引言

直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通直流稳压电源品种很多, 但均存在以下问题: 当输出电压需要精确输出, 或需要在一个小范围内改变时(如1. 05~ 1. 07V ) ,困难就较大。二是稳压方式均是采用串联型稳压电路, 对过载进行限流或截流型保护, 电路构成复杂,稳压精度也不高。

传统的直流稳压电源通常采用电位器和波段开关来实现电压的调节,并由电压表指示电压值的大小. 因此,电压的调整精度不高,读数欠直观,电位器也易磨损.而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。随着科学技术的不断发展,特别是计算机技术的突飞猛进,现代工业应用的工控产品均需要有低纹波、宽调整范围的高压电源,特别是在一些高能物理领域,急需电脑或单片机控制的低纹波、宽调整范围的电源。

从上世纪九十年代末起,随着对系统更高效率和更低功耗的需求,电信与数据通讯设备的技术更新推动电源行业中直流/直流电源转换器向更高灵活性和智能化方向发展。在80年代的第一代分布式供电系统开始转向到20世纪末更为先进的第四代分布式供电结构以及中间母线结构,直流/直流电源行业正面临着新的挑战,即如何在现有系统加入嵌入式电源智能系统和数字控制。

在家用电器和其他各类电子设备中,通常都需要电压稳定的直流电源供电。但在实际生活中,都是由220V 的交流电网供电。这就需要通过变压、整流、滤波、稳压电路将交流电转换成稳定的直流电。滤波器用于滤去整流输出电压中的纹波,一般传统电路由滤波扼流圈和电容器组成,若由晶体管滤波器来替代,则可缩小直流电源的体积,减轻其重量,且晶体管滤波直流电源不需直流稳压器就能用作家用电器的电源,这既降低了家用电器的成本,又缩小了其体积,使家用电器小型化。

2、方案论证与比较:

方案一: 采用单级开关电源,由220V交流整流后,经开关电源稳压输出。但此方案所产生的直流电压纹波大,在其后的几级电路中很难加以抑制,很有可能造成设计的失败与技术参数的超标。

方案二:并联式稳压电源,电路简便易行,所用元器件相对较少,当负载电流恒定时稳定性相对较好,其突出优点就是可承受输出短路。但是效率低于串联式稳压电源,输出电压调节范围较小,尤其是在小电流时调整管需承受很大的电流,损耗过大,因而不能采用。

方案三:串联式稳压电源,利用可调的三端式集成稳压器先提供稳压电压和小电流,再通过三极管扩流的方式使之提供大功率。由于集成稳压器通常内部已有各种保护电路,辅助电路就可以简化。其次想采用经典的分立式元件形式,因为在理论课及实验室中看到的大多是这种电源,并且具体电路形式很丰富,可借鉴的结构也较多。

比较以上几种方案,决定采用方案三,即经典的串联式稳压电源,稳扎稳打,力争做好。

3、硬件电路的组成与设计

直流稳压电源一般由电源变压器、整流滤波电路及稳压电路所组成。

我国电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。

3.1电源变压器

电源变压器的作用是将来自电网的220V交流电压变换为整流电路所需要的交流电压。

本设计方案所需要用到的降压变压器是将电网交流电压220V变换成复合需要的交流电压,此交流电压经过整流后可获得后级电路所需要的直流电压12V。

由于所需的直流电压比起电网的交流电压在数值上相差较大,考虑到稳压部分中的集成稳压器须在输入电压≥10V 时才能使输出电压为0.7V~9V。所以,降压后的电压设为10V~12V,才能达到要求输出的电压为0V~10V,即该部分电路采用变压器把220V交流市电变为约10V 的低压交流电,作为电源的输入电压。变压器原辅线圈的匝数比为:

N1/N2 = U1/U2 = 220V/10V≈22/1

电路中的保险丝可起到保护电源的作用,当电流大于0.5A 时,保险丝熔断,从而防止电源烧坏。电源变压器的效率为:

其中:是变压器副边的功率,是变压器原边的功率。

一般小型变压器的效率如表1所示,因此,当算出了副边功率后,就可以根据下表算出原边功率。

表1小型变压器的效率

3.2整流滤波电路

整流电路将交流电压变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。

如图所示,在本设计中采用四个二极管组成桥式整流电路,利用单相桥式整流电路把方向和大小都大小都变化的50Hz的交流电变换为方向不变但大小仍有脉动的直流电。其优点是电压较高,纹波电压较小,整流二极管所承受的最大反向交流电流流过,变压器的利用率高。滤波电路:利用储能元件-电容C两端的电压不能突变的性质,采用RC滤波电路将整流电路输出的脉动成分大部分滤除,得到比较平滑的直流电。

图2桥式整流桥电路

直流电压与交流电压的有效值间的关系为:

在整流电路中,每只二极管所承受的最大反向电压为:

流过每只二极管的平均电流为:

其中:R为整流滤波电路的负载电阻,它为电容C提供放电通路,放电时间常数RC应满足:

其中:T = ms是50Hz交流电压的周20期。

3.3稳压电源电路

三端稳压器各项性能指标的测试

输入电压u2受负载和温度发生变化到影响而发生波动时,滤波电路输出的直流电压VI会随着变化。因此,为了维持输出电压VI稳定不变,需要对电压进行稳压。稳压电路的作用是当外界因素(电网电压、负载、环境温度)发生变化时,能使输出直流电压不受影响,而维持稳定的电压输出。稳压电路一般采用集成稳压器和一些元件所组成。采用集成稳压器设计的稳压电源具有性能稳定、结构简单等优点。

三端稳压器的引脚及其应用电路见附录图3。

7806为三端式集成稳压器,这种集成稳压器的输出电压是固定的,在使用中不能进行调整。W78系列三端稳压器输出正极性电压,一般有:5V、6V、8V、9V、10V、12V、15V、18V、24V,输出电流最大可达1.5A(加散热片)。若要求输出负电压,可选用W79系列稳压器。图3是7806的外型和三个引出端,其中:

1―输入端(不稳定直流电压输入端);

2―输出端(稳定直流电压输出端);

3―公共端;

图3三端式集成稳压器

它的主要参数有:输出直流电压Uo=6±5%;最大输入电压Uimax=35V; 电压最大调整率Su=50mV;静态工作电流Io=6mA; 最大输出电流Iomax=1.5A;输出电压温漂ST=0.6mV/oC。

3.4稳压系数的测量(调节输出电压为5V时)

按图所示连接电路, 在u1=220V时,测出稳压电源的输出电压Vo,应改变电源电压上升和下降10%,分别测量稳压电源的输出电压VO,RL=100Ω。在实验室调节交流不太方便时,可采用变压器的次级变换的方法,如①②脚电压为18V,测量一次,记下VO1.再更换到③①脚测量一次VO2, 将测量的结果填入表5中。则稳压系数为:

SV=(ΔVO/VO)/(Δu1/u1)

表2

3.5输出内阻的测量(调节输出电压为5V时)

按图4所示连接电路,保持稳压电源的输入电压不变 ,在不接负载RL时测出开路电压Vo1,此时Io1=0,然后接上负载RL,测出输出电压Vo2和输出电流Io2,测量结果填入表3中。则输出电阻为:

RO=-(VO1-VO2)/(IO1-IO2)=(VO1-VO2)/IO2

表3

3.6纹波电压的测量(调节输出电压为6V时)

用示波器观察Vo的纹波峰峰值,(此时Y通道输入信号采用交流耦合AC),测量Vop-p的值(约几mV)。

4、直流电源系统原理图

图4直流电源系统原理图

上一篇:直流稳压电源范文 下一篇:led驱动电源范文