led驱动电源范文

时间:2023-03-10 22:19:23

led驱动电源

led驱动电源范文第1篇

步骤/方法

LED路灯电源的选择要点

第一点.根据负载特性选取适当控制方式的LED路灯电源

现在市场上出售的LED路灯电源种类繁多,功能也日益强大,LED路灯电源的性能也越来越成为调速性能优劣的决定因素,除了LED路灯电源本身制造工艺的“先天”条件外,对LED路灯电源采用什么样的控制方式也是非常重要的。下表综述了近年来各种LED路灯电源控制方式的性能特点。

综上所述,异步电动机变频控制选用不同的控制方法,就可以得到不同性能特点的调速特性。

第二点.根据安装环境选取LED路灯电源的防护结构

LED路灯电源的防护结构要与其安装环境相适应,这就要考虑环境温度、湿度、粉尘、酸碱度、腐蚀性气体等因素,这与LED路灯电源能否长期、安全、可靠运行关系重大。

LED路灯电源原理

LED驱动电源是有电路来控制开关管而进行高速的道通和截止。是将直流电转化成高频交流电来给变换器进行变压,使其产生所需要的一组或多组电压!转化为高频交流电的道理是高频交流在变压器电路中的效率要比市电50Hz或60Hz高。因此开关电源变压器可以做到体积很小,在开关电源工作的时候不会很热,产品价格比工频直流稳压电源低.如果不将50Hz或60Hz变为高频电,那么开关电源就没有任何意义。开关电源大体可以分为隔离和不隔离这两种,是隔离型的一定有开关电源变换器,而不隔离的未必一定有开关电源变换器。开关电源与传统直流电源相比具有体积小、重量轻、和效率高等优点

LED路灯电源的分类

1、按驱动方式可分为两大类

1.1 恒流式

a、 恒流驱动电路输出的电流是恒定的,而输出的直流电压却随着负载阻值的大小不同在一定范围内变化,负载阻值小,输出电压就低,负载阻值越大,输出电压也就越高;

b、 恒流电路不怕负载短路,但严禁负载完全开路。

c、 恒流驱动电路驱动led是较为理想的,但相对而言价格较高。

1.2 稳压式

a、 当稳压电路中的各项参数确定以后,输出的电压是固定的,而输出的电流却随着负载的增减而变化;

b、 稳压电路不怕负载开路,但严禁负载完全短路。

c、 以稳压驱动电路驱动LED,每串需要加上合适的电阻方可使每串LED显示亮度平均;

2、按电路结构方式分类

电阻、电容降压方式

通过电容降压,在闪动使用时,由于充放电的作用,通过LED的瞬间电流极大,容易损坏芯片。易受电网电压波动的影响,电源效率低、可靠性低。

常规变压器降压方式

电源体积小、重量偏重、电源效率也很低、一般只有45%~60%,所以一般很少用,可靠性不高。

电子变压器降压方式

电源效率较低,电压范围也不宽,一般180~240V,波纹干扰大。

PWM控制方式开关电源

led驱动电源范文第2篇

随着市面上超大功率LED路灯、LED隧道灯的出现,LED驱动电源故障频频,加之LED路灯驱动电源多采用内置式设计,往往造成LED灯电源维护困难重重,加之部分厂家缺乏售后维修服务,于是业主的怨声载道,经过媒体的夸大宣传后造成大众对LED灯的误解,影响了LED产业声誉。

LED灯驱动电源的七条经验:

1、智能控制是LED灯具的优势之一,而电源是智能控制的关键。

智能控制在LED路灯和LED隧道灯照明应用上条件最成熟效果最明显,智能控制能在不同时间段、根据道路车流密度来实现灯具功率的无级控制,既满足应用要求,又实现巨大的节能效果,可以为公路主管单位节省大量经费。在隧道照明上的应用不但可以节能,还可以按照隧道外的亮度情况自动调节隧道出入口亮度,给司机提供一个视觉过度阶段,以保证驾驶安全。

2、放弃4路以上输出,发展单路或两路输出,放弃大电流和超大电流,发展小电流。

输出路数越多越复杂,不同出路之间的电流干扰解决起来成本很高,如不解决则故障率较高。另外输出路数越多则总输出电流也就越大,而电流是发热的主要原因,电压本身不直接导致发热,简单来说发热量与电流的平方成正比,也就是说电流增加到原来的2倍的话,发热量将增加到原来的4倍,电流增加到原来3倍,发热量将增加到原来9倍。综上所述,单路或两路输出的LED灯电源故障率会降低很多。

3、散热和防护是电源故障的主要外部因素。

不仅电源本身会发热,灯具也会发热,这两种热源如何合理的散发出去是灯具设计工程师必须考虑的问题,一定要防止热量的过度集中,形成热岛效应,影响电源寿命。采用分离式电源方案是一个好的选择。

4、放弃大功率、超大功率,选择较高稳定性的中小功率电源。

因为功率越大,发热量越大,里面的零部件也越紧凑,不利于散热,而温度正是电源发生故障的罪魁祸首。再者,小功率电源相对来说发展的较为成熟,稳定性和成本方面都有优势。其实很多大功率电源方案都没有经过时间验证及实践证明,都是匆匆上马的项目,都是实验性的产品,因此故障层出不穷。相比之下中小功率电源因发展较早,技术方案要成熟的多。

5、维护的可行性。

电源的故障问题不可能完全避免,只有把电源的更换做的跟常规照明的光源的更换那么简便时,才能是用户用的开心,即便是电源坏了,心情也不会太差,而用户的心情好坏决定着LED灯厂家的命运。

6、防护性能。

防护问题也很重要,水分的渗透可能引起电源的短路,外壳上的沙尘会影响电源的散热,暴晒则容易引起高温和电线及其他元器件的老化,从实际使用中的经验来看,旋转接线插头的故障率较高,多数为漏水造成故障。

7、模块化设计。

模块化设计已经成为当今的潮流,必须在模块电源一体化上想办法,,如果电源能用插拔的方式解决维护问题,一定会受到用户的欢迎,同时还需建立接口标准化,让不同厂家的LED灯电源能够通用。

led驱动电源范文第3篇

关键词:LED DC/DC变换;功率因素;UC3843;恒流

中图分类号:TM46 文献标识码:A

Abstract:According to the design requirements of LED Current drirer, this design plan for a reasonable argument. The first stage power of factor correction adopted boost chopper circuit and its control chip is Fairchild's FAN7527. Isolated singleended flyback circuit buck type DC/DC converter was used as the second stage and its controller chips is TI's UC3843. In addition, to meet the output characteristics of constant current ,AP4310 was designed as constant current controller. Based on the above structure, experimental prototype of LED driver was realized. Through testing and analysis, experimental waveforms were consistent with the theoretical waveform and the proposed LED driver meets the design requirements.

Key words:LED DC / DC conversion;power factor correction;UC3843;constant current

1 引 言

近年来,能源危机使世界各国开始关注绿色节能照明问题,新型光源也应运而生。发光二极管(Lighting Emitting Diode,LED)具有高效、节能、无污染、模拟自然光等优点,在最近几年得到快速发展,逐渐成为照明市场的主流,世界各国政府和公司已投入大量资金用于白光LED的开发和推广。LED主要可应用于信号指示、装饰照明、景观照明,家具照明、路灯等,不同应用场合的照明必须设计对应的驱动电源才能满足需求[1-3]。

由于LED自身的伏安特性及温度特性,对驱动电源的要求非常高,必须研发可靠、稳定的驱动器与之匹配[4-5]。通常,对于LED驱动器的基本要求有:高功率因素(Power Factor Corrector,PFC),高效率,恒流控制等,本文选用最新应用控制芯片,通过合理的电路设计,完成了一款LED驱动电源。

2 方案论证

LED驱动电源设计中,通常采用桥式整流和电解电容滤波电路来实现AC/DC变换,为下级变换器提供直流电。由于整流二极管具有单向导电性,只有在正向偏置时才会导通,也就是交流输入电压的半个周期中,只有交流电压峰值高于电解电容电压整流二极管才会导通。因此,在交流电压的半个周期内,每对二极管的导通角往往只有60o-70o。虽然交流输入电压仍然能保持正弦,但输入电流却出现严重畸变,呈幅度很高的尖峰状脉冲,从而导致系统功率因素很低,一般仅有0.5-0.6,影响电源的利用率,对电能造成巨大浪费。此外,输入端产生的谐波电流也会对电网造成污染,影响电能质量和供电品质,同时也会对系统中其它电子设备产生干扰[6]。

美国能源部于2008年10月的固态照明光源“能源之星”规范要求:任何功率等驱动电源都需要强制进行功率因数校正;住宅应用LED灯具的功率因素>0.7,商业用LED灯具的功率因素>0.9。因此在本设计中首先应考虑功率因素校正环节。典型功率因素校正方式有无源PFC和有源PFC两种类型。无源PFC电路只使用二极管、电阻、电容和电感等无源元件,拓扑简单、成本低,但功率因素校正效果较差。实际LED驱动电源中较多采用有源PFC,有源功率因素校正技术是利用集成电路使电流波形主动跟随电压波形从而达到功率因素校正的目的,按电路拓扑结构可以分成降压式、升/降压式、反激式、升压式四种,本文选用比较成熟的是Boost升压式电路结构。

在直流供电方面,LED驱动电源按照驱动方式主要可以分为四类:电阻限流控制、线性控制、电荷泵变换器以及开关变换器等。开关变换器效率高、控制精准,可以实现宽范围的电压/电流控制,非常适合大功率多串式LED 的控制。其中典型降压型DC/DC变换有:非隔离降压型(Buck)、反激式拓扑、半桥拓扑。非隔离降压型一般应用在1-10W场合;反激式一般用在25W-100W左右场合;100W以上一般选用半桥拓扑,本文根据功率等级选择反激式隔离降压变换器[6]。

此外,为了保证LED光源稳定性及可调性,需要了解其基本电气特性,如图1所示为LED光通量与其正向电流、正向电压的关系曲线[7]。从图中可看到,LED的光通量仅取决于驱动电流的大小,LED 两端的电压近似为恒值。由此可知,LED 需要采用恒流控制,通过调节电流大小来调节 LED 的输出光通量。

3.1 PFC电路设计

PFC电路设计采用了升压型斩波电路,控制环节主要由仙童公司功率因素校正控制芯片FAN7527完成,电路设计如图3所示。输出电压经R4、R5电阻分压进入1号脚,芯片内部调节器输出与3脚输入的半波电压瞬时值相乘,乘法器输出作为电感参考电流指令,与4脚输入电流瞬时值比较,当输入电流值大于乘法器输出时,输出电平翻转,RS触发器置“0”,该电平由7脚输出,关断开关管。因此,乘法器输出电流即为通过开关管的电流的门限值,该门限值随输入电压的变化而近似呈正弦规律变化。当开光管关断后,变压器L2电流慢慢减小,当电流接近零时,又导致引脚5过零比较器的输出翻转,将RS触发器置“1”,开关管导通,电感电流增大。重复上面的过程,电流波形接近正弦波,从而达到功率因素校正的目的。

3.2 DC/DC直流变换电路设计

本级设计选用UC3843作为控制芯片,UC3843是高性能固定频率电流模式控制器,具有可微调的振荡器、精确的占空比控制、高增益误差放大器、大电流图腾式输出等优点,专为反激式DC/DC变换器应用而设置,只需很少外部元件就能获得成本效益高的解决方案,其电路设计如图4所示。变换器开关频率由R9、C12决定。反馈信号通过电阻R10、R11进入2脚,通过芯片内容高增益误差放大器构成控制环节,调节6脚输出占空比大小。开关管电流通过R13进行采样进入引脚3,当流过开关管电流超过给定值时,关断开关管。

3.3 恒流限压控制电路设计

如前所述,LED驱动电源必须采用恒流方式。恒流控制的方式很多,此处主要利用AP4310作为主控芯片,来实现恒流限压输出,AP4310内部结构主要是由2个运放组成,如图5所示。AP4310的3号引脚自带一个2.5V的基准电压(第一个运放的正向输入端),通过R20、R21输出电压采样反向输入端(2号引脚),该运放构成电压控制环,当方向输入电压过2.5V,输出端为低,这样反馈信号从光耦通过二极管D8到运放1的输出端,从而实现限压功能。同理,运放2用于调节电流,其同相端的参考电压值由R22、R23决定,反向输入端为从R16采样电流反馈的电压值,当过流时,其反相端电压超过同相,运放输出低电位,从而使光耦通过二极管D9导通,反馈到开关模块进行调节电流。

4 实验测试

根据以上设计电路,在实验室制作了一款LED驱动电源,实物图片如图6所示。

功率因素校正部分实验结果如图7和图8所示。图7为PFC电路电感电流和PWM驱动波形,图8 PFC电路电感电流和输出交流电压波形,通过图中可看出输入电流呈正弦,与输入电压相位接近,系统功率因素较整流电路有较大提高。

后级反激式DC/DC电路波形如图9和图10所示。图9中频率为71KHZ,占空比为36.49%。图8为样机输出电压和电流波形。

从以上波形可看出,设计的LED 驱动电源能较好的完成功率因素校正和恒流输出驱动LED发光的功能。

5 总 结

本次设计根据LED的驱动电源设计要求和,对从功率因素和电路能量变换角度确定了电路拓扑结构;在此基础上,设计了一款高功率因素的LED恒流驱动电源,通过实验验证了LED驱动电路的有效性。

参考文献

[1] 杨清德,康娅. LED及其工程应用[M].北京:人民邮电出版社,2010.

[2] 毛兴武,毛涵月,王佳宁. LED照明驱动电源与灯具设计[M].北京:人民邮电出版社,2011.

[3] 沈霞、王洪诚、蒋林.基于反激变化器的高功率因素LED驱动电源的设计[J].电力自动化设备,2011,3(1):40-46.

[4] 房滕.90WLED驱动器的设计[D].杭州:杭州电子科技大学,2010.

[5] Beibei Wang, Xinbo Ruan, Kai Yao, and Ming Xu, A Method of Reducing the PeaktoAverage Ratio of LED Current for Electrolytic CapacitorLess ACDC Drivers[J].VOL. 25, NO. 3, MARCH 2010.

[6] 裴云庆,王兆安.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.

led驱动电源范文第4篇

【关键词】LED照明;开关电源;恒流驱动;调光控制

1.引言

随着全球能源紧缺的状况日益加剧,大力发展节能环保产品势在必行。采用发光二极管(LED)作为发光源的半导体照明因具有节能、环保、体积小、长寿命的特点,成为颇具优势的绿色节能照明光源。为加快发展中国的半导体照明产业,科技部于2003年成立了“国家半导体照明工程协调领导小组”协调组织实施国家半导体照明工程。在新颁布的《轻工业“十二五”发展规划》中,照明电器产业被列为八个“重点行业技术改造工程”之一。2011年11月,发改委公布了白炽灯的淘汰路线图,传统高能耗的白炽灯将逐步淡出人们的视野。LED照明产品的驱动电源设计选择既具有电源设计的普遍性又有它的特殊性。

2.LED的特性与驱动原理

2.1 LED的电气特性

从白光LED诞生以来,LED用于常规照明领域成为可能。随着近年来大功率白光LED的出现与发展,它已进入人们的生活照明、道路照明、工业照明等各个领域。

LED作为二极管的种类之一,具有同普通二极管相似的V-I特性,它的开启电压要大于普通二极管。当外部施加电压大于开启电压后,电流将以正向电压的指数倍增加。(如图1)在LED导通后一定电流值范围内,其发光亮度与电流值几乎成线性正比关系。故外部微小的电压变化都会引起发光亮度的显著改变。而过大的正向电流会使LED发热,LED的光效会随着温度的升高而降低。并且持续过热会严重影响LED的寿命甚至造成其损坏。

2.2 LED的驱动方式

传统的白炽灯直接使用交流市电,荧光灯需要高压启辉。而LED的驱动有别于传统光源的驱动方式。为避免LED工作电流超出其最大额定范围而造成损坏,需要用恒流方式加以限制。在照明产品应用中,LED多数是以串并联组合成灯珠阵列的方式作为光源,为保证阵列中各个LED单元亮度的一致性,也决定了应采用恒流的驱动方式。

2.3 恒流电源的工作原理

在应用单颗或单串LED且负载功率较小的时候,通常会用在LED串上串联限流电阻的方式来实现稳流。在LED负载功率稍大时则使用线性恒流稳压器(CCR)来实现。(如图2)这种方法在小功率应用时简便易行。

但由于CCR方式效率较低,热耗散高,在LED负载功率较大时就不适用了。在大功率应用时,通常使用反馈恒流的方式。图3是一个恒流线性电源的基本模型。通过检测LED串联的取样电阻Rs两端的电压,与放大器A1参考电压比较,调整开关管Q1以维持Rs两端电压不变,即实现了负载中电流的恒定。

3.LED驱动电源的设计选择

3.1 LED照明产品分类

各种照明产品又具有各自的应用与外形特点,设计选择驱动电源时又通常使用负载功率等级的划分方法。二者相结合考虑,可按表1划分为四档,便于驱动电源的设计选择。

3.2 LED驱动电源的设计选择要点

从表1中可以看出,功率等级划分主要依据了不同应用环境下的照明需要。各个功率范围灯具所需的电源在设计选择时需要考虑其各自的应用特点。

(1)3W以下功耗的照明产品强调了小体积、可携带性等特点,作为辅助照明使用。光源通常使用单颗大功率LED灯珠,或串并联几颗低功率LED灯珠。使用12V以下的直流或电池供电。驱动电源拓扑通常使用线性电源、buck、boost等DC-DC变换,负载串联限流电阻或CCR的方式实现电流的稳定。对于电池供电的产品需要考虑使用效率较高的拓扑以提高其续航能力。

(2)3~25W等级涵盖了室内照明以及室外辅助照明等主要产品。他们功率低、体积小。受灯具外壳形状的约束,印制板布局空间在一定程度上受到限制。驱动电源拓扑可选择CCR、buck、boost、SEPIC等模型实现。对于日光灯管等建议使用隔离型反激电源拓扑进行设计以满足安全规格与电磁兼容标准的要求

(3)25~75W区间的中等体积灯具,驱动电源放置空间较大,或者采用外置,空间设计难度较小。但由于一些产品的电源会暴露于室外条件,对电源本身的防尘防水特性提出了要求,通常应达到IP65(完全防止粉尘进入,用水冲洗无任何伤害)以上的标准。并且由于负载功率的增大,电源效率需达到80%以上的设计以减小热损耗。并且在ICE61000-3-2和GB17625.1标准别规定了有功输入功率25W以上照明用电设备需要限制谐波电流,减小对电力系统的影响。这类产品可使用无源功率因数校正的方式进行补偿以节约成本。

(4)75W以上的大功率LED照明产品,对驱动电源提出了较高的要求。美国“能源之星”标准要求住宅用灯具功率因数应≥0.75,商用灯具应≥0.9。需要应用APFC(有源功率因数校正)提高功率因数,降低总谐波失真。电路拓扑以反激、正激为主,对于输出功率大于150W时应采用半桥、全桥等谐振与软开关变换拓扑,以提高电源的变换效率,通常应达到90%以上。

3.3 LED照明产品的调光方式

LED照明产品在有些应用中需要根据不同的环境调整的亮度。如公共场所照明,晚间需要维持一定的照明强度,而白天有日光的时候就可以降低以节约电能。这就需要LED驱动电源具备输出电流可控的功能来改变灯具亮度。

目前常见的调光方式有模拟调光和脉宽调光两种。传统的TRIAC(双向晶闸管)调光因为会导致电源功率因数与效率的大幅降低将逐渐退出实际应用。

(1)模拟调光

模拟调光又称A-Dimming调光。以一定范围内(通常是0~10V)的直流电压触发驱动电源控制器。因输入电压连续,可以对负载实现线性调光。但因调光电压范围较小,当电压值较低时易被外界干扰,使得输出电流不稳定,造成亮度闪烁。通常的解决方法是使电源输出电流在调光电压为0的时候依然有一定的输出,来屏蔽掉会发生闪烁的区间。这就使得应用模拟调光的时候亮度不能做到全暗到全亮的区间变化。

(2)脉宽调光

脉宽调光即PWM调光。如图4所示,以一定占空比的方波信号输入驱动电源的控制器,通过控制与负载LED串联FET的占空比来改变周期内负载LED的导通时间,使其呈快速闪烁状态,这样改变了LED中电流的有效值。由于人眼的视觉暂留现象,从而看到“连续”的光。占空比的范围可以从0%~100%,负载LED的电流有效值可从0调节至最大。为避免人眼看到灯具的闪烁,脉宽控制信号的频率通常使用200Hz,兼顾调光FET的开关损耗和减轻电源的电磁辐射。

对于一些手电筒以及室内照明产品等来说,使用者和灯具的距离较近,而200Hz的调光频率是在人耳的听频范围之内的,所以在这些应用场合,则需要提高脉宽调光频率到20kHz以上,避免给使用者带来不适感。

3.4 LED照明产品电源的保护特性

与普通开关电源一样,LED照明产品的电源同样需要具备各种保护功能以保证使用的安全,最基本需要包括以下三种:

①过压/开路保护:负载断路时电源为维持恒流特性会提升输出电压,当达到电压限值一定时间则切断输出,直至重新手动开启电源。

②过流/短路保护:当负载发生短路时触发,电源将限制输出电流值并间歇性自动重启,直至故障解除。

③过温保护:当电源工作温度超过一定限值时触发并停止工作,直至温度恢复正常值并手动重新开启。

在设计选择时,必须选取具备这些保护功能的控制芯片和产品使用,防止安全隐患。

4.小结

随着LED照明产品应用的推广,它将逐步进入人们生活的各个领域。根据LED本身特性的要求,设计与选择性能更加适合的驱动电源,可以提高灯具的整体寿命,充分发挥其节能环保的优势。

参考文献

[1]王志强,肖文勋,虞龙,等译.开关电源设计(第三版)[M].北京:电子工业出版社,2010.

[2]赵同贺.开关电源与LED照明的优化设计应用[M].北京:机械工业出版社,2012.

[3]张占松,汪仁煌,谢丽萍,等,译.开关电源手册(第二版)[M].北京:人民邮电出版社,2006.

作者简介:

张家琳(1983—),男,天津人,大学本科,助理工程师,现供职于天津光电通信技术有限公司,研究方向:LED照明,开关电源。

led驱动电源范文第5篇

关键词:LED驱动电源;CE认证;检测

中图分类号:TM910.2文献标识码:A文章编号:1007-9599 (2012) 01-0000-02

LED Driver Power Supply Test and Had CE Certification Resolution

Kang Yan

(Fujian Metrology Institute,Fuzhou350003,China)

Abstract:The analysis of the LED driver power supply should have several features,as well as CE certification

Keywords:LED driver power supply;CE certification;Detection

CE标志是一种安全认证标志,被视为制造商打开并进入欧洲市场的护照。

CE是法文“Conformite Europeene”的缩写,意为“符合欧洲(标准)”。“CE Marking”,即CE标志,于1993年签署的欧盟产品指令98/68/EEC中被正式提出,CE标志成为欧盟国家统一的强制性产品认证标志。换言之,没有CE标志,就不能进入欧盟市场。产品上施加CE标志,意味着其制造商宣告:该产品符合欧洲的健康、安全、环保和消费者保护等相关法律所规定的基本要求。

CE标志的意义在于:用CE缩略词为符号表示加贴CE标志的产品符合有关欧洲指令规定的主要要求(Essential Requirements),并用以证实该产品已通过相应的合格评定程序或制造商对产品符合相关欧洲指令的自我声明。对于那些高危险性的设备或那些没有欧洲标准的产品,必须要有公告机构(Notify Body)的评估意见来作为制造商进行自我符合性声明和标贴CE标志的基础。

近几年LED作为新型节能光源在全球和中国都赢得得了很高的投资热情和极大关注,并由户外向室内照明应用市场渗透,中国也涌现出大大小小上万家LED照明企业。让LED照明大放异彩的最主要原因正是其宣扬的具有节能、环保、长寿命、易控制、免维护等特点。

然而颇具讽刺意味的是,我们常常听闻由于LED驱动电源本身的寿命直接拖累LED照明灯具变得并不“长寿”,极大地增加了维护使用成本;或者驱动电源的效率不高导致LED照明灯具的能效转换比并不是想象中那么高,或者由于输出电流纹波没有得到很好的控制影响了发光品质,使得LED照明的绿色节能优势大打折扣,甚至影响了市场普及。因此,LED产业链的完善和成熟,驱动电源也是其中重要的一环。但现状是LED驱动电源的设计和品质局限却日益成为LED产业发展的“后腿”,因此电源模块厂商、灯具制造商都越来越重视采用先进的测试测量技术和方案。

LED驱动电源的可靠性和能效是测试关键。那么,真正高品质的LED驱动电源应该具备什么样的特点或者说应该满足那些要求才能通过CE认证要求呢?本文总结出以下主要的几个方面:

1.高可靠性和寿命:驱动电源的寿命要与LED的寿命相适配,特别对像LED路灯的驱动电源,因为装在高空,维修不方便,维修的花费也大;

2.高效率:对于电源安装在LED灯具内的结构,这一点尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升,对延缓LED的光衰有利。

3.高功率因数:随着社会对供电质量的要求不断提高,人们越来越关注用电设备带来的电能质量和谐波问题。如欧盟已经标准,规定功率大于25W的电源设备必须具备功率因数校正电路。而其他很多国家对于30~40W的LED驱动电源,据说不久也将可能会对功率因数方面有一定的指标要求。

4.恒流驱动:现在通行的有两种:一种是一个恒压源供多个恒流源,每个恒流源单独给每路LED供电。这种方式组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障不影响其他LED运行的问题。

5.PWM分析和输出纹波测量助力进军高端市场。真正节能的家用LED照明产品最终是要具有调光功能的,目前也是欧美等高端市场的需求,今后在其他国家和市场也会逐步普及。LED调光的最新技术是PWM,通过产生不同脉宽的PWM信号,控制功率器件的开启和关断的比例,从而达到调节输出光通量的目的。相比于其他调光方式,PWM调光不改变LED流过的电流大小,灯具不会出现偏色,也避免了电阻调光带来的能量损失,保持了LED照明的高效率。

适当的输出纹波:纹波是加在直流输出电压上的交流电压,也是LED电源测试中的一个重要测量参数。纹波电流越大,电源成本就越低,但光输出会因此受到影响,而且会提高LED结温进而影响LED性能,甚至严重降低LED的使用寿命(经验显示,结温每升高10℃使用寿命就缩短一半)。因此准确地测量纹波就显得十分重要。输出纹波会影响LED的光输出效果。但减小纹波需要使用更高品质和容量的电容。为提高电源整体的使用寿命,设计师往往倾向于采用无电容方案。工程师必须在输出纹波指标上确定折中方案。

6.浪涌保护:LED抗浪涌的能力是比较差的,特别是抗反向电压能力。有些LED灯装在户外,由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能力。LED灯的驱动电源受安装环境条件的影响,很容易受到电磁干扰,特别是雷击干扰。为此,驱动电源在设计一阶段就要考虑这个问题,并且要达到一定的标准。例如,防雷要求要达到D级,线线之间电压承受±6kV,线地之间±6kV,在产品试验过程中,直流输出范围与正常服务条件一致:DC输出电压的波动应在±10%以内;在试验过程中或试验结束后,驱动电源运行时一不应有报警、错误报警等等。

7.保护功能:电源除了常规的保护功能外,最好在恒流输出中增加LED温度负反馈,防止LED温度过高,要符合安规和电磁兼容的要求。将固定电阻换成随温度变化的电路,即可实现对LED电流的温度管理。在感测温度,元件电阻可达4.7KΩ,且容许误差值为±5℃(标准系列)或±3℃(容许误差值精确系列)。像所有半导体一样,LED的最高容许结点温度不能超过,以免导致过早老化或者完全失效。如果结点温度要保持在临界值以下,那么外界温度升高时,最高容许正向电流则必须下降。不过,如果运用散热器,在特定的外界温度时正向电流可以增加。

8.防护方面:对灯具外安装型结构,电源结构要防水、防潮,外壳要耐晒。散热是确保电子屏长期稳定工作的重要设计项目。散热,即把屏内因工作产生的热量及时带走,以保持屏内空气温度与器件工作温度处于正常的要求范围。同时它能有效地解决屏内防尘、防湿与防腐等问题。

综观LED数码管的防护措施,基本上都是在两端堵头上进行外部防护,从数码管的工作环境上分析,根据使用区域的不同,数码管要能承受高温、严寒、日晒、雨淋、干燥等各种恶劣环境因素的考验,管内线路板的防护才是解决问题之根本,常规的只是对外部进水进行防护的措施根本无法达到数码管的真正防护目的,无法遏制数码管居高不下的年损坏率。

要使LED数码管的年损坏率下降,仅仅外壳防护是不够的,必须要对管内线路板进行有效防护,确立的“双重防护”方案,经大量户外苛刻的试验,测试结果表明:进行线路板“特殊防护”和外壳“硅胶防护”的“双重防护”下,护栏管无论在何种恶劣气候环境下,其损坏率仅是电子元件的早期失效率,在原材料进行有效控制的情况下,护栏管的年损坏率完全可以控制在1%以内,从而,大大节约了高损坏率带来的巨大浪费。

9.出口欧盟国家需要通过包括安全认证测试(LVD)和电磁兼容性认证测试(EMC)。在欧盟CE认证指令89/336/EEC中,规定了家电的电磁兼容性(EMC:Electromagnetic Compatibility Directive)要求:设备或系统在其电磁环境中能正常工作且不对该环境的任何事物构成影响或不能承受的电磁干扰的能力。电磁兼容性要求包含两个方面:一是,电磁干扰(EMI:Electromagnetic Interference),对于电器设备运作时所产生的干扰,影响临近电子产品之正常功能。要求所产生的骚扰不妨碍其它电气装置、设备或系统的正常工作;二是,电磁耐受能力(EMS:Electromagnetic Susceptibility),电器设备运作时对外界环境所产生之干扰的忍受程度或抵抗能力,换言之是要求家电产品具有一定抗电磁干扰的能力,其性能不因外部电磁干扰而降低。

总的来说,要达到高品质的驱动电源设计标准,就需要进行全面的测试测量分析。真正高品质的LED驱动电源应该具备以上几个特点或者应该满足上述要求才能通过CE认证,只有达到这些项目的要求,才能让你的产品顺利的进军到欧美各个国家的高端市场。

因此,贴有“CE”标志的产品CE认证对企业来说有着重要的意义――是企业对消费者的一种承诺,能增加消费者对产品的信任程度,是进入欧盟市场的必备条件之一;增加客户的购买力,也是国外客户下定单的最基要求服从权力,为产品“买安全保险”的行为,确保产品安全性;提高产品的品质和提升企业的制造水平面,CE认证是很多欧洲客户的基本要求。

参考文献:

[1]方佩敏.LED的发展概况[J].今日电子,2006,8

led驱动电源范文第6篇

关键词:驱动电源 全桥整流 谐波干扰 功率因数校正

0 引言

在世界范围能源危机的背景下,而LED照明无疑成为了这场变革中的重要力量,得到广泛应用。驱动电源作为系统的核心,被称之为“心脏”,其性能优劣直接影响到系统的应用。在电源诸多组成单元中,功率因数校正电路(简称PFC)对于电源性能影响巨大。

众所周知,采用全桥整流和电解电容滤波的电路中实现AC/DC的变换,为后级级联的变换器供电[1]。由于整流二极管导通角很小,使AC输入的电流呈尖峰状脉冲,波形严重畸变。电流波形的基波分量很小,谐波分量却很高,这将对电网造成严重的污染,也会对其他电路和设备产生干扰。另外,由于电流波形存在严重失真,系统功率因数较低,使得电源利用率降低,造成能源浪费。因此,必须采取措施,对功率因数进行有效的校正。就本质而言,是输入AC电流的畸变进行校正或对波形进行整形,使其尽可能保持正弦波,使输入电流尽量与输入电压保持同相位。

1 PFC电路的基本原理

1.1 概述 如图1所示,LED路灯驱动电源基本组成包括:EMI滤波器、全桥整流电路、功率因数校正(PFC)变换器、DC-DC功率变换单元、负载等。

PFC电路可分为无源PFC电路(PPFC)和有源PFC电路(APFC) [2]。无源PFC电路一般使用二极管、阻容和电感等无源元件,其优点是拓扑结构简单和成本低,但效果较差,较典型的结构是填谷式无源PFC。而有源PFC电路采用有源器件,常用的是集成IC。可分为单级PFC和两级PFC电路,单级PFC是兼有校正和反激式变换器拓扑双重功能,单级单开关拓扑结构电路简单、成本低,效率较高。但对于100W以上的LED路灯等照明应用,单级PFC电路难以同时兼顾PFC控制和反激式变换器输出恒流控制。因此,需要两级电路拓扑来完成。含有源PFC电路的两级LED照明电路,前级工作在连续电流模式(CCM)的有源PFC升压变换器,后级通常为PWM驱动的反激式变换器,使用两个独立的控制器和两个开关管。含有两级拓扑的有源PFC电路的电源能输出功率可达几百瓦,功率因数在0.980~0.995范围。AC输入电流THD

在150W以上的LED照明应用中,常采用有源PFC电路+半桥LLC谐振变换器的拓扑结构[3]。输出功率比反激式变化器大、效率高,是电源设计常采用的结构。

1.2 PFC电路基本原理 如图2所示,主电路由全桥整流器和DC-DC Boost变换器组成[4],下框内为控制电路,包括:电压误差放大器VA及基准电压Ur,电流误差放大器CA,乘法器M,脉宽调制器和驱动器,负载。

原理如下:主电路的输出电压U0和基准电压Ur在电压误差放大器VA比较,输出电压信号和检测到的整流电压Udc值共同送入乘法器M,其输出则作为电流反馈控制的基准信号,与开关电流is检测值送入电流误差放大器CA进行比较,输出误差信号送到PWM及驱动器,来控制开关管Qr的通断,从而使输入电流iL(即电感电流)的波形与整流电压Udc的波形基本一致,减少电流谐波成分,提高了功率因数。

2 主要参数设计

3 结语

本设计将FAN6961功率因数校正控制器应用于LED路灯驱动电源设计中,配合后级的LLC变换器,有效改善了电路的功率因数,提高了系统的效率。该芯片电路较少,工作可靠,极大地减少了设计周期,为中功率及以上开关电源的快速、可靠设计提供可能。

参考文献:

[1]毛兴武,毛涵月,王佳宁,祝大卫编著.LED照明驱动电源与灯具设计[M].北京:人民邮电出版社,2011.

[2]张占松,蔡宣三编著.开关电源的原理与设计[M].北京:电子工业出版社,2005.

[3]周太明等.高效照明系统设计指南[M].上海:复旦大学出版社,2004.

[4]毛鸿,吴兆麟.有源功率因数校正器的控制策略综述[J].电力电子技术,2002(2):58-61.

[5]朱方明,余建刚.有源功率因数校正技术原理及应用[J].现代电子技术,2000(7):40-42.

[6]Ron Lenk著,王正仕,张军明译.实用开关电源设计[M].北京:人民邮电出版社,2006.

作者简介:

led驱动电源范文第7篇

关键词:小功率LED;驱动电源;电路;变压器

1 引言

在全球“节能减排”大背景下,LED作为一种节能型新光源在城市景观、交通指示和公众广告等行业都有着相当广泛地应用。LED具有高效、长寿命、低功耗和安全等优点。LED光源与其他光源主要区别在于LED光源需要一个恒流源驱动电源。

2 方案比较选择

升压式有源功率因数校正方案具有输出电流纹波小、效率高、磁性元器件设计简单等优点。但电路结构复杂、成本较高不适于大批量生产。

反激式有源功率因数校正方案只需要一级就可以实现功率因数校正和输出恒压/恒流的要求。具有电路结构形式简单、成本低等优点。

临界模式在照明和其他低功率应用中很常见,成本低廉,设计简单,适合大批量生产。综合成本、生产性等因素,选用临界反激模式有源功率因素校正方案。

3 电路设计

该电源设计重点为变压器设计,驱动芯片为L6561。本文侧重介绍变压器理论推导和主要参数设计。主要参数包括:输入电压 =176VAC~264VAC,输出功率Po(max)=17W,输出电流Io=0.34A~0.36A,输出电压 =25VDC~50VDC,效率 ≥85%,功率因素PF≥0.95。

变压器设计需进行理论分析,理论分析中所涉及参数及其意义分别如下所示: 、 、 分别为初级、次级与辅助绕组匝数, 为匝比, 为输入功率, 为磁芯电感系数, 为输入电压有效值, 为初级电感量, 为初级电流有效值, 为初级电流峰峰值, 分别为开关管周期、导通时间和关断时间

……输出电压; ……驱动电源效率。

由功率与电压电流关系推导初级峰值电流:

4 变压器主要参数设计

(1)初级电感量设计

L6561芯片最小驱动频率 ,考虑到EMI设计要求,选取 ,综合考虑次级反射电压、初次级电流峰峰值等要求,取 =4, =170V, =51V。根据3.1推论的结论可知:

5实验结果

根据以上设计,制作了原理样机。常温时测试驱动电源参数,当=220VAC,Io=0.355A, =47.8V时,主要测试参数如下:PF≥0.967, ≥86.7%。

6 结论

本文从方案选取着手,比较不同电路拓扑形式,选用以L6561为控制芯片的临界反激模式有源功率因素校正的方案,设计低成本、高功率因素的LED驱动电源。重点介绍了变压器理论分析与参数设计以及测试结果。

led驱动电源范文第8篇

【关键词】LED照明;驱动电源技术;可调光强度;节能

1 引言

LED照明以其发光效率高,使用寿命长,亮度控制简单和环保的优势,迅速受到广大用户的欢迎。作为新型的节能光源,LED灯具会逐步地取代传统的白炽灯泡。LED照明的不断普及对调光和控制技术提出了越来越高的要求。当前用户主要关心的是,LED灯具必须要使用安全、重量轻、寿命长、不影响用户健康,并可适用于现有的调光设备以及可以承受的价格。并且LED照明灯具调节亮度功能的调光器目前在LED照明上显得十分的重要,也是目前LED灯具和显示屏等必须注重的环节。如今LED照明灯具已经成为21世纪新型的主流技术,标志之一就是大量LED照明灯具标准和规范的陆续出台。目前照明既要用针对白炽灯的调光器来实现调光控制功能,又要实现高功率因数性能,因此对目前的LED驱动电源设计提出了更高的要求,是否兼容白炽灯的调光系统,是否满足新的数字化调光系统的需求等,这些都是以后我们在LED驱动电源设计是必须解决的问题。

2 LED调光技术分析

随着照明灯具的飞速发展,用户对照明灯具智能化程度的要求越来越高,希望通过智能化调光能进一步实现节能减排,而LED的可控性特点非常好的顺应了市场的需求,可以做多种调光方式满足不同用户的各种需求,以下我们简单分析目前大量应用的几种LED调光技术。

2.1 (TRIAC)可控硅调光技术

普通的白炽灯和卤素灯通常采用可控硅来调光。因为白炽灯和卤素灯是一个纯阻器件,它不要求输入电压一定是正弦波,因为它的电流波形永远和电压波形一样,所以不管电压波形如何偏离正弦波,只要改变输入电压的有效值,就可以调光。采用可控硅就是对交流电的正弦波加以切割而达到改变其有效值的目的。负载是和可控硅开关串联的。可控硅调光电路的原理图和波形图如图1所示:

改变可变电阻的分压比就可以改变其导通角,从而实现改变其有效值的目的。通常这个电位器带一个开关,接在n的输入端,用于开关灯。

LED灯要想实现可调光,其电源必须能够分析可控硅控制器的可变相位角输出,以便对流向LED的恒流进行单向调整。在维持调光器正常工作的同时做到这一点非常困难,往往会导致性能不佳。问题可以表现为启动速度慢,闪烁、光照不均匀,或在调整光亮度时出现闪烁。此外,还存在元件间不一致以及LED灯发出不需要的音频噪声等问题。这些负面情况通常是由误触发或过早关断可控硅以及LED电流控制不当等因素共同造成的。误触发的根本原因是在可控硅导通时出现了电流振荡。可控硅导通时,AC市电电压几乎同时施加到LED灯电源的LC输入滤波器,施加到电感的电压阶跃会导致振荡。如果调光器电流在振荡期间低于可控硅电流,可控硅将停止导电。可控硅触发电路充电,然后重新导通调光器。这种不规则的多次可控硅重启动,可使LED灯产生不需要的音频噪声和闪烁。设计更为简单的 EMI滤波器有助于降低此类不必要的振荡。要想实现成功调光,输入EMI滤波器电感和电容还必须尽可能地小。

2.2 脉冲宽度调制(PWM)调光技术

脉冲宽度调制(PWM)调光是经过调节使驱动电流呈方波状,其脉冲宽度可变,经过对脉冲宽度的调制转变为调制LED灯连续点亮的时间,也同时转变了输入功率,从而到达节能、调光的目标。频率跟平常一样大概在200Hz~10KHz;因为人的眼睛视觉的滞后性,不会感觉得到光源在调光过程中产生的闪耀现象

脉冲宽度调制(PWM)调光的优点:

led驱动电源范文第9篇

白炽灯虽能发出连续光谱,却常用于交通号志等只需绿光、红光和黄光的场合。这类应用须在白炽灯外加装一个特定颜色的滤片,但它会造成六成的光能浪费。LED则能产生特定颜色的光,而且只要接通电源即可立即发亮,不像白炽灯需要200ms的反应时间,因此汽车产业早就将LED用于车灯。另外,DLP视讯应用也以LED作为光源,利用高速开关的LED取代原有机械组件。

LED的I-V特性

图1是典型InGaA1P LED的正向电压特性。LED电路模型可表示为一个电压源串联一个电阻,这个简单模型与实际测量结果很吻合。电压源为负温度系数,因此正向电压会随着接面温度升高而下降。InGaA1P LED(黄色与琥珀红)的温度系数在-3.0~-5.2mV/K之间,InGaN LED(蓝、绿和白色)则介于-3.6~-5.2mV/K之间。负温度系数是造成LED很难并联的原因之一,因为越热的组件会汲取越多的电流,越多的电流又会让它的温度进一步升高,最后就变成热失控。

图2是输出光强度(光通量)与操作电流的关系,可以看出输出光强度与二极管电流的关系很密切,只要改变正向电流就能调整LED的亮度。另外,这条曲线在电流较小时很像是一条直线,但其斜率在电流升高时会变得较小。这表示当电流较小时,只要二极管电流加倍就会让输出光强度加倍。电流较大时则非如此,此时电流加倍只会让输出光强度提高八成。这项特性对LED很重要,因为它是由交换式电源所驱动,所以可能会遇到很大的纹波电流。其实电源供应的成本在某种程度上就是由所允许的电流决定:纹波电流越大,电源供应的成本就越低,只不过LED的输出光强度也会受到影响。

图3是把三角纹波电流加到直流输出电流后,输出光强度减少的情形。由于纹波电流的频率在多数情形下都远超过人限所能分辨的80Hz,再加上人眼对光强度的反应又呈现指数关系,只要光强度减少不超过20%就不会被发现,因此就算LED电流的纹波很大,光强度也不会明显减弱。

纹波电流还会增加LED耗电量,造成接面温度上升,并对LED的使用寿命产生很大影响。图4显示LED输出光强度与时间及接面温度的关系。我们设定80%的输出光强度为LED的使用寿命,则从图4中可看出,当温度从74℃降至63℃时,LED使用寿命会从10000小时增加为25000小时。

图5是纹波电流造成LED功耗增加的情形。由于纹波频率比LED的热时间常数高,因此就算纹波电流很大(以及峰值功耗很大)也不会影响峰值接面温度――这个温度主要是由平均功耗决定。LED的大部份电压降就像是一个电压源,所以电流波形不会对功耗造成影响。然而电压降中仍会有某些电阻分量,这部份的功耗等于电阻值乘以均方根电流的平方。

从图5还能发现就算纹波电流很高,也不会对LED功耗造成太大影响。举例来说,当纹波电流达到输出电流的一半时,耗电量只会增加不到5%。但若纹波电流远远超出这个水平,设计人员就必须减少电源提供的直流电流,避免接面温度升高而影响组件寿命。一个简单的经验法则是:接面温度每降低10℃,半导体组件寿命就会延长一倍。另外,多数设计由于受到电感的限制,都会尽量降低纹波电流,因为大部分电感只能应付20%以下的Ipk/Iout纹波电流比。

典型应用

LED电流常由安定电阻或线性稳压器控制,但本文主要讨论交换式稳压器。LED驱动架构基本上可分为降压、升压和升降压等三种类型,实际架构则应由输入电压与输出电压的关系决定。

如果输出电压永远低干输入电压,则可采用图6所示的降压稳压器。在此电路里,输出滤波电感L1的平均电压是由功率开关的负载周期所控制。TPS5430内含的FET开关导通时会将输入电压连接到电感L1并产生电流,逆向电压保护二极管D2则会在开关截止时提供另一条电流路径。L1电感可以稳定LED电流,因为电路会透过电阻监控LED电流,然后比较电阻电压与控制组件内部的参考电压以判断电流大小:如果电流太小,就增加功率开关的负载周期来提高L1电感的平均电压,以便让LED电流升高。这个电路的工作效率很高,因为功率开关、逆向电压保护二极管和电流感测电阻的电压降都很小。

如果输出电压永远大于输入电压,图7所示的升压转换架构就是最佳选择。这个设计除了控制电路外,同样会使用内含功率开关的组件U1。功率开关导通时,电流会通过电感到地。开关截止时,U1接脚1的电压会上升直到DI导通,电感也会经由输出电容C3和多个串联的LED开始放电。多数应用会利用C3稳定LED电流,若没有该电容,LED电流会变成在零与电感电流之间交替切换的不连续电流,不仅会降低LED的亮度,还会产生更多热量而缩短LED寿命。此电路也和前面一样利用电阻感测LED电流,再根据结果调整负载周期。注意,此架构很大的缺点是没有提供短路保护,输出端短路会造成庞大电流通过电感与二极管,将导致电路故障或输入电压大幅下降。

如果输入电压的变动范围很大,有时高于输出电压,有时又低于输出电压,那么单纯的降压或升压架构就不适用。除此之外,升压应用还可能需要短路保护功能。在此状况下,设计人员应采用图8所示的升降压架构。这个电路与升压转换架构很类似,会在功率开关导通时建立电感电流,等到功率开关停止导通,电感电流就会通过输出电容和LED。这种设计与升压转换架构的区别在于输出电压不是正值,而是负电压。此架构还能在输出短路时将开关QI切断,所以可以避免升压架构发生的短路问题。此电路的另一特点是尽管输出为负电压,感测电路却不需执行电压位准转换――因为控制组件的地线连接到负输出端,并直接测量感测电阻R100两端的电压。图8中虽然只有1个LED,实际应用却可串联多颗。另外要注意的是,输入电压与输出电压的总和不能超过控制组件的最大电压额定值。

控制回路设计

LED电源供应的电流回路设计要比传统电源供应的电压回路简单。电流回路的复杂性是由输出滤波架构决定的。图9就是三种常见架构,分别是单纯的电感滤波器(A)、典型的电源供应滤波 器(B)和改良型滤波器设计(C)。

为每个功率级电路建立简单的P-Spice模型,以说明其控制特性的个别差异。其中降压转换功率FET与二极管的开关动作由一个10倍增益的压控电压源代表,LED由一个3Ω电阻串联6V电压源代表,LED与接地之间还有一个1Ω的电流感测电阻。模拟结果如图10所示。

电路A是相当稳定的一阶系统响应,其中,直流增益是由压控电压源、LED阻抗所构成的分压器以及电流感测电阻所决定,系统极点则由输出电感与电路阻抗决定。补偿电路设计也很简单,只要使用乙类放大器即可。

电路B由于包含输出电容,所以会有二阶响应。增加输出电容是因为某些应用在电磁干扰或散热因素的考虑下,不能容忍LED出现太大的纹波电流,因此需要输出电容来消除纹波电流。这个电路的直流增益与前面的电路相同,但它会在输出电感和电容所决定的频率点上产生一对复数极点。由于滤波电路的总相位移为180°,因此补偿电路设计必须谨慎以免系统不稳定。补偿电路设计与采用丙类放大器的传统电压模式电源供应很类似,但比电路A多出两颗零件和输出电容。

电路C则会重新安排输出电容的位置,使电路补偿更容易。LED两端的纹波电压与电路B很类似,只不过电感纹波电流会通过电流感测电阻R105,这在计算功耗时必须考虑。此电路的补偿设计几乎和电路A同样简单,直流增益也与前面两种电路相同。电路共有1个零点和2个极点,零点由电容和LED串联电阻产生。第一个极点由输出电容和电流感测电阻决定,第二个极点由电流感测电阻和输出电感决定。当频率很高时,此电路的响应与电路A相同。

调光

许多应用都需要LED调光功能,像是显示器亮度控制和建筑照明调整。LED调光方式有两种,一种是减少LED电流,另一种是让LED快速导通和截止。由于输出光强度不全与电流成正比,LED光谱在电流低于额定值时还常会移动,所以减少LED电流不是很有效率的做法。另外,人类的亮度感受还与光强度成指数关系,需大幅改变电流才能达到调光效果,这对电路设计造成很大影响,例如,电路容差(circuittolerante)就能让3%的满负载电流误差在10%负载时增为30%以上。

电流波形脉冲宽度调变(PWM)虽图11利用Q1对LED电流进行脉冲宽度调变然提供更精确的亮度调整,但响应速度要特别注意,如照明和显示器应用就必须让PWM速度超过100Hz,否则看起来会有闪烁的感觉。假设PWM频率为100Hz,那么10%的脉冲宽度就已进入毫秒范围,是故电源供应必须提供10kHz以上的带宽。图9中的A和C简单回路都能轻易达到此要求。图11是包含PWM调光功能的降压转换功率级电路,会不停接通和切断LED与电路的联机。这种架构让控制回路永远处于工作状态,故能提供非常快速的瞬时响应(见图12)。

结语

led驱动电源范文第10篇

关键词:LED;XL6006 ;555定时器;PWM

目前,太阳能路灯应用日趋广泛,太阳能路灯采用蓄电池供电,供电电压一般在12.6V左右,采用大功率LED光源取代了传统的无极灯和钠灯,LED照明光源功率一般在10W到60W之间,需要的驱动电压与LED灯珠串联数相关,电压一般均在15V以上,需要的驱动电流与LED并联数相关,一款好的驱动电源能够有效的提高蓄电池的使用寿命,减小大功率LED光源的光衰,因此,设计一款蓄电池供电功率可调的LED驱动电源,具有很好的应用价值。

一.功率照明LED的特性

大功率照明LED利用PN结发光的原理,PN结加反向电压,少数载流子难以注入,故不发光。当PN结处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关[1]。目前,路灯LED灯具均采用1W功率LED芯片,采用多串多并的方式构成不同功率的光源。1WLED光源的正向工作电压一般情况下为3.2V,正向工作电流IF一般为350mA。功率LED芯片是低电压、大电流驱动的器件,其发光强度由流过LED的电流大小决定。电流过大会引起LED光衰减,电流过小会影响LED的发光强度。因此,LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。在LED照明领域,为体现出LED灯节能和长寿命的特点,正确选择LED驱动IC至关重要。没有好的驱动IC的匹配,LED照明的优势无法体现出来。

二.功率LED驱动电源的设计

(一)XL6006简介

XL6006是芯龙公司设计的一颗突破传统电路拓扑结构,结合HVBCD工艺,大电流,高压DC/DC升压恒流LED驱动IC,有如下特点:1.具有较宽的直流3.6V到32V输入电压范围(低压可以兼顾锂电供电)2. 最高升压可到60V,可驱动串联16颗1W LED;3. 最大开关电流5A,可驱动0~50W功率的LED;4. EN脚可实现PWM调光,且自带软启动功能;5.低至0.2V参考电压,可以有效提高系统效率 6.输出60V过压保护功能; 7.内置过热保护功能。其优势为:宽电压输入,大电流输出,电路简单。 XL6006应用简单,其普通DC/DC升压拓扑结构,效率高达95%,适用于基于LED的汽车、路灯、太阳能灯及LED背光驱动的应用。

(二)XL6006电路设计

XL6006是一个180KHz的固定频率PWM降压DC-DC转换器,5A开关电流能力,该电路应用简单,外部元器件比较少。鉴于LED领域的系统需求,内部除了常规的限流电路,过温度保护,开路保护外,还内置了专用LED的CC。CC是通过电阻RCS测量LED电流并实现电流模式控制,在正常工作情况,LED电流由0.22V的PWM控制器内部参考电压除以RCS电阻值所决定。即I=0.22V/RCS,因为RCS两端的电压降在正常工作条件下将一直保持在0.22V,OVP是芯片内部有开路保护,保护电压52V左右,芯片外部通过电阻R1和R2测量输出电压并实现电压模式控制,实现二次开路保护,一般OVP设置为比正常输出电压高20%。在芯片正常工作的时候,CC起作用;当CC这一路出现问题,OVP钳位输出电压,使LED不会承受较大功率而烧毁。PWM调光这一块也可以调节1脚EN来实现,EN的逻辑关系是一旦这一点电位高于1.4V,芯片输出正常。低于0.8V芯片不工作。由于芯片本身的频率只有180K,内置软启动电路电路,所以在一定占空比的条件下,PWM 调光的速率不应该太快,建议在100KHZ-300KHZ;也可以通过FB来实现对芯片的PWM调光控制,高电平高于1V,芯片关断,低于0.3V,芯片开启[2]。XL6006电路如图1所示。

XL6006电路采用了4位拨码开关,分别连接了4个高精度低阻值电阻,4个电阻的阻值分别为0.15欧、0.18欧、0.24欧、0.36欧;根据官方公司提供的公式I=0.22V/RCS可知,4路的电流分别为1466mA﹑1222mA、917mA、611mA, 可以分别支持5并﹑4并、3并、2并LED光源。L1为大电流磁环电感,用于升压;SS36为4A肖基特二极管,D10为56V稳压管,R19电阻用于空载时对XL6006芯片进行保护;BV+ BV-为蓄电池接入正负极,LV+ LV-为LED光源的正负极。D11是PWM信号的接入单向二极管,防止信号反串。

(三)功率调节电路设计

PWM是脉宽调制的缩写,实际上是脉冲波形,其最重要的一个技术指标是占空比。占空比是指脉冲波形中,高电平时间在周期里所占的比例。如果用PWM波作为驱动信号,可以控制送到负载上的“等效电流”值,通过调节PWM波的占空比,调节负载上的等效电流,又因为LED光源的光的强度与通过的电流有关,所以调节调节PWM波的占空比,即可调光。

因此调光电路的设计就是要设计产生占空比可调的PWM信号的电路,利用555定时器可以容易的产生PWM信号。占空比可调PWM信号发生器电路如图2所示。

如图2所示,555定时器与R1、R2、W1、D1、D2和C1组成了无稳态多谐振荡器,D1和D2分别为充电放电的导引管[3]。

以上公式不管W1如何调节,脉冲周期是不变的,占空比是变化的。

三.结束语

本设计的太阳能路灯LED驱动电源性能稳定,可支持多并多串LED光源,LED光源功率范围在6W-48W之间;并采用555定时器产生PWM信号实现了功率可调,经测试系统转换效率高达90%以上,具有功耗低、性能稳定等特点。目前已经进入大批量生产,并取得了较好的使用效果。此解决方案对从事太阳能相关产品的研发具有一定的参考价值。

参考文献:

[1]周志敏.周纪海.纪爱华 LED驱动电路设计与应用[M].人民邮电出版社. 2008.1

[2]陈永甫. 555集成电路应用800例[M].电子工业出版社. 1992.2

上一篇:稳压电源范文 下一篇:应急电源范文