人工神经网络范文

时间:2023-03-05 15:02:31

人工神经网络

人工神经网络范文第1篇

人工神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。本文剖析了人工神经网络的特征、模型结构以及未来的发展趋势。

【关键词】人工神经网络 神经元 矩阵

1 人工神经网络概述

人工神经网络(ANN)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。

人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:

1.1 并行分布性

因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。

1.2 可学习性和自适应性

一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的存储。

(3)鲁棒性和容错性

由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。

1.3 泛化能力

人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。

1.4 信息综合能力

任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。

2 人工神经网络模型

神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。

在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、BP网络、自组织网络、径向基函数网络、反馈神经网络等等。

3 神经元矩阵

神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。

神经元矩阵采用矩阵形式,它可为n维向量组成。引入向量触头和信使粒的概念,向量触头可生长,即长度可变,方向可变,信使粒可“游荡”在矩阵中,建立各种联系。如图1即是神经元矩阵模型

(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。

(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。

(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。

神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。

4 人工神经网络的发展趋势

人工神经网络是边缘叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。

4.1 增强对智能和机器关系问题的认识

人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。

4.2 发展神经计算和进化计算的理论及应用

利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。

4.3 扩大神经元芯片和神经网络结构的作用

神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。

4.4 促进信息科学和生命科学的相互融合

信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。

参考文献

[1]钟珞.饶文碧.邹承明著.人工神经网络及其融合应用技术.科学出版社.

作者单位

人工神经网络范文第2篇

关键词 人工;神经网络;机器学习方法

中图分类号Q1 文献标识码A 文章编号 1674-6708(2011)40-0111-02

0 引言

机器学习方法经常被应用到解决医学和生物信息学的问题。在这个报告中我列举了一些把机器学习方法应用到生物信息学领域的实例。比如:组建多重神经网络,运用该神经网络对4种不同形势的肿瘤患者进行分类。

1 介绍

人工神经网络属于机器学习领域。关于人工神经网络的概念最早提出于1940年代。后来在1980年代后被推广应用,尤其是在医学领域。

其中一个非常有用的用途是对疾病进行分类,达到诊断的目的,或者对基因表达进行分类。在这类神经网络里面,k点最近邻居算法是最常被采用的算法。

人工神经网络的优点是:不需要人们蛆关注神经网络里面的细节信息;人工神经网络可以很容易地被重新训练来应对不同地分类数据。人工神经网络可以用来解决有监督学习和无监督学习,比如:自组织特征映射(self-organized feature map)就可以用来解决无监督学习的问题。

它的不足之处在于:人工神经网络往往需要大量的训练数据,而这些训练数据往往不是很容易获得。人工神经网络可以被看作是一个黑盒,它的细节隐藏在点点之间的权值里面。这些权值的意义是人类无法理解的。同时,人工神经网络需要被仔细的训练以避免过拟合的情况出现。我们常常需也要降低高维数据的维度。下面,我将分析介绍人工神经网络的具体应用。

人工神经网络的结构如图1所示:

X1 ,X2 ,X3是该神经网络的输入值,w0 ,w1 ,w2 ,w3 是该神经网络的输入结点到内部节点的路径权值,每个神经元的激活函数是如上图右侧所示的函数图像。

这个函数被称作为sigmoid函数,表达式如下:

多重神经网络通常有3层,事实上,3层神经网络以能进行很好的分类效果。这三个层包括输入层,隐藏层,输出层。在每个神经元内部我们可以选择sigmoid激活函数或其他种类的激活函数。

如图2所示:

单个神经元仅能提供线性的分割面,所以多层神经网络可以提供非线性的分类函数(即:若干个线性分割面的复杂组合)。这并不意味着4层神经网络就一定比3层神经网络能一共更好的分类效果,因为层数越多,需要的训练集就越庞大,得到的效果也不会提高。

既然有训练问题,就会涉及到训练算法。较为早的和著名的训练算法是delta 规则。它于20世纪60年代被提出。它的原理是计算理论输出值和世纪输出值的均方差。tp 为理论输出值,yp为实际输出值,表示为:

训练的开始阶段,我们通常设定一个随机选取值,令该值等于:

该公式里,α是学习速率,学习速率越大,学习的过程就越快,完成学习的时间短。但如果学习的速率过大,可能导致网络的理想权值在合理结果的附近游摆而永远无法获得理想的权值。

神经网络被训练好了以后,它就被用到解决目标问题。原始的数据集可以被分为两部分:一部分用来训练,一部分用来测试。

有时候神经网络会把训练数据集里面的噪音点的特征纳入自己的权值表达里,从而该神经网络无法真正体现该点集的真实特征。我们把这种情况叫做过拟合。过拟合是由于网络比待估函数复杂造成的。比如一个可以同3层网络解决的问题,我们用4层网络或者由更多神经元的三层网络去解决该问题,就容易造成过拟合。为了更好的明确训练时所采用的神经网络的隐藏层的层数,Livingstone 和 Manalack 提出了如下计算公式:

D = m*o/w

该公式里m是训练样本的数目,o是该网络的输出值,w是网络权值的数目,D就是隐藏层的数目。

得到了隐藏层的数目之后,我们可以以这个数目创建神经网络,边训练边削减,直到我们获得一个一半化的网络。对于没有隐藏网络层或只有一个隐藏网络层的神经网络,我们需要先确定它要解决的问题是否是线性的。

适当的训练方案是能也可以使网络的复杂性和数据的复杂性得到合适的匹配。一个合适的训练方案应该是如下步骤:首先选择一个很大的网络并且把它的每个权值都设到一个很小的值上。通过训练,这些权值可以逐渐游摆到一个合理的值。

由于初始数据集通常要被分为训练集和测试集。在医学领域,我们能获得的数据集往往很小,比如某种病的病人数目不会很大。所以我门需要采用交叉验证的技巧来是较小的数据集在被分为训练集和测试集之后能较好的训练神经网络。

参考文献

人工神经网络范文第3篇

原理与方法

神经网络是一个具有高度非线性的超大规模连续时间动力系统。是由大量的处理单元(神经元)广泛互连而形成的网络。它是在现代神经科学研究成果的基础上提出的,反映了脑功能的基本特征。但它并不是人脑的真实描写,而只是它的某种抽象、简化与模拟。网络的信息处理由神经元之间的相互作用来实现;知识与信息的存储表现为网络元件互连间分布式的物理联系;网络的学习和计算决定于各神经元连接权系的动态演化过程。因此神经元构成了网络的基本运算单元。每个神经元具有自己的阈值。每个神经元的输入信号是所有与其相连的神经元的输出信号和加权后的和。而输出信号是其净输入信号的非线性函数。如果输入信号的加权集合高于其阈值,该神经元便被激活而输出相应的值。在人工神经网络中所存储的是单元之间连接的加权值阵列。

神经网络的工作过程主要由两个阶段组成,一个阶段是工作期,此时各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一阶段是学习期(自适应期,或设计期),此时各计算单元状态不变,各连接权值可修改(通过学习样本或其他方法),前一阶段较快,各单元的状态亦称短期记忆(STM),后一阶段慢的多,权及连接方式亦称长期记忆(LTM)〔1〕。

根据网络的拓扑结构和学习规则可将人工神经网络分为多种类型,如不含反馈的前向神经网络、层内有相互结合的前向网络、反馈网络、相互结合型网络等〔2〕。本文的人工神经网络模型是采用BP算法的多层前馈网络。

该模型的特点是信号由输入层单向传递到输出层,同一层神经元之间互不传递信息,每个神经元与邻近层所有神经元相连,连接权用Wij表示。各神经元的作用函数为Sigmoid函数,设神经网络输入层的p个节点,输出层有q个节点,k-1层的任意节点用l表示,k层的任意节点用j表示,k+1层的任意节点用l表示。Wij为k-1层的第i个神经元与k层的第j个神经元相连接的权值。k-1层的节点i输出为O(k-1)i,k层节点j的输出为:

k层节点j的输出为:

Okj=f(netkj)

设训练样本为(X,Ye),X为p维向量,加到输入层;Ye为q维向量,对应于期望输出;网络的实际输出Y也是q维向量。网络在接受样本对的训练过程中,采用BP算法,其权值调整量为:

ΔWij=-ηδkjO(k-1)i

其中,对于输出层为:

δkj=yj(1-yj)(yej-yj)

对于非输出层为:

η为训练步长,取0<η<1。

用样本集合反复训练网络,并不断修改权值,直到使实际输出向量达到要求,训练过程结束〔3〕。

上述人工神经网络可以完成多种信息处理任务,如从二进制数据中提取相关知识,完成最近邻模式分类,实现数据聚集等。而本文要用的是其极强的数学逼近映射能力,即开发合适的函数f:ARnBRn,以自组织的方式响应以下的样本集合:(x1,y1),(x2,y2)…,(xm,ym),其中yi=f(xi)。这里描述的是一般的数学抽象,像识别与分类这些计算都可以抽象为这样的一种近似数学映射。

所谓诊断,实质上是一个分类问题。即根据候诊者的症状,医学检查结果(如体温、心跳等)等一些情况,它们可以用一向量(e1,e2,…,em)来表示,将其归类为病人或非病人。这也可以转化为寻找一差别函数f使得:

(1)f(e1,e2,…,em)>ε,(e1,e2,…,em)∈T

(2)f(e1,e2,…,em)>ε,(e1,e2,…,em)T

其中集合T表示患病。

因此,病情诊断最终也可作为一类函数的逼近问题。

而许多研究已表明,前向神经网络可作为非线性逼近的标准型。对于实数空间的任一函数,只要它满足一定的条件,一定存在唯一的具有单一隐层的前向网络作为它的最优最佳逼近。而含有两个隐含层的前向网络可在任意的平方误差内逼近某一实函数〔3〕。

诊断步骤

肺癌病例数据选自1981~1994年在某医院住院的病人,共计551例。其中486例(88%)经病理学、细胞学诊断证实为肺癌。每一病例都包括多项数据,其中用于诊断的数据项有:病人的一般情况(如年龄、性别等),家族史、既往史、吸烟史、术后病理、X射线检查、CT检查、纤维支气管镜检查、PAT痰检等多达58项。因此,原则上58项数据应作为神经网络的输入项,而神经网络的输出值就是病人是否患肺癌的结果。

1.网络训练集的确定:在最原始的551例病人数据中存在着各种各样的差别,如性别差异(419例男性,132例女性),诊断结果的差异(486例经证实为肺癌),所患肺癌种类的差异(鳞癌、小细胞癌、大细胞癌等),患病程度上的差异(早、中晚期的不同)等等。显然,训练数据集应最大限度地保证兼顾各种病例情况。经过仔细筛选,选择了含有460个病例的集合作为肺癌诊断用的网络的训练集。

2.神经网络输入和输出数据的预处理

按照人工神经网络的理论,神经网络的输入输出数据都应该属于(0,1)区间的实数,为此我们需对原始数据进行如下的规一化处理:

其中xi为原始数据项,而Max=max{xi∶xi∈X},Min=min{xi∶xi∈X}。这里X为原始数据集。经过(7)式变换后,yi将在(0,1)区间。因此,可作为神经网络的输入输出。

3.应用神经网络进行肺癌诊断

将描述病人各种情况的数据作为前向网络的输入数据加到其输入端,并按(1)~(6)式计算各神经元的输入和输出,同时调整神经元之间的连接权值以使网络的输出和实际的病例情况相符。即当病人确实患肺癌时网络的输出结果也恰好指示为肺癌,反之亦然。如果对所有的训练样本集网络的输出基本上(95%或更高)能保证与实际结果一致,则训练过程结束。我们认为神经网络已建立起病人的各种因素与他是否是肺癌患者之间的函数映射关系。对于一个新的候诊病人来说,只要将他的情况输入到训练好的神经网络中去,根据网络的输出结果就可以知道他是否已患肺癌。

表1基于不同发病因素的诊断网络模型

类型训练集精度测试集精度

基于遗传因素的诊断网53.8%46.3%

基于个人生活习惯的诊断网57.1%44.9%

基于病症的诊断网89.4%83.3%

基于医学检查结果的诊断网98.5%92.6%

上述结果表明不同类型的因素应分开来考虑。于是我们将58项输入数据分成四类,这四类有各自的BP诊断网,依次称为诊断一、诊断二、诊断三、诊断四。它们先单独测定,然后再将它们各自的结果综合起来得出最后的判断。

上述四种诊断网络所得结果的可靠性各不相同。其中,根据医学检查结果所作的诊断准确性最高,因此在最后的综合分析中要重点考虑它的诊断结果,我们给它设一个相对最高的权值。其次,根据病人的症状所作的诊断往往也具有较高的准确性,因此给它的权值也较高,但比医学检查结果的稍低。其他两类因素在有关肺癌的诊断中仅具参考作用,因而所设的权值相对较小。转

最后的结果O为:

O=a1.O1+a2.O2+a3.O3+a4.O4

a1+a2+a3+a4=1

其中Oi,ai,i=1,2,3,4分别为各诊断网的输出及其对应的权值。

当O>0.5时最后的诊断结果为患肺癌,反之则正常。对所有的病例数据经上述方法的诊断结果见表2。

表2神经网络对肺癌诊断结果分析

神经网络

诊断结果训练数据测试数据

肺癌患者非肺癌患者肺癌患者非肺癌患者

+4602253

-038122

其中对于训练集,肺癌病人的正确检出率为100%,非肺癌病人误诊率为5%。对于测试集,肺癌病人的正确检出率为96.2%;非肺癌患者正确检出率为88%,误诊率为12%。

讨论

1.本研究所采用的人工神经网络的肺癌诊断方法的结果较好地符合了已知数据,具有较高的准确性,特别是对于肺癌患者一般都能准确地做出诊断,有利于肺癌的早期发现和治疗。

2.要想进一步提高该方法的准确性,应该注意收集更多更全面的病例数据。人工神经网络主要是利用它能自动从数据集中抽取函数的关系的功能。如果我们所使用的数据越多越全面,则其中所蕴含的事物本身的规律性就越强,利用人工神经网络从中所抽取的函数关系就越具有普遍性,因而就更准确。

3.实现对肺癌的诊断的关键在于准确找到罹患肺癌的判定函数,可利用前向网络的函数逼近功能来实现。但是这里涉及到两个问题。首先,由于差别函数和预测率函数都是利用人工神经网络从已知的病例数据集中抽取出来的,它实际反映的是这些数据集中输入输出对的映射关系。因此要想保证诊断具有较高的准确性,就应该使用来建立函数关系的这些数据集(称训练集)具有充分的代表性,即这些数据应基本蕴含肺癌诊断的医学原理。这就涉及到如何选择网络合理的训练集及关键的输入项。另一个问题涉及到神经网络本身的要求,即网络的输入输出数据值都应在区间(0,1)中。这可以通过数据的编码和归一化来实现。

4.由于某些原因有些病人的病例数据不完整,约占总病例数据的10%左右。显然,如果按照传统的方法来建立肺癌病人的诊断模型〔4〕,这些有缺项的数据是不太好处理的,但是由于人工神经网络有较强的容错性,输入数据在某些项上的错误对网络最终结果的正确性影响不大。

参考文献

1.焦李成.神经网络系统理论.第1版.西安:西安电子科技大学出版社,1995,3

2.WangZhenni,ThamMingT,MorrisA.MultilayerFeedforwardNeuralNetworks:ACanonicalformApproximationofNonlinearity,IntJ.Control,1992,56(3):655~672.

3.庄镇泉,等.神经网络与神经计算机.北京:科学出版社,1992.

人工神经网络范文第4篇

1.1GPS台站数据GPS时间序列由中国地壳运动观测网络提供[10],这些GPS站在解算过程中扣除了固体潮、海潮、极潮的影响.本文选取的是华北平原区域内BJFS、BJSH、JIXN、TAIN、ZHNZ台站的数据,为了得到更理想的GPS时间序列数据,本文对这72个月的GPS数据进行预处理工作,包括:线性拟合去除趋势项、剔除噪声数据以及小波分解保留长周期信号[11].

1.2GRACE数据本文采用的GRACE重力卫星数据是由美国德克萨斯大学空间研究中心提供的高精度Level-2RL05版本的GRACE重力场前60阶球谐系数(2005年1月~2010年12月)[12].在此基础上,根据Blewitt[13,14]、Wahr[15]的结果推导由GRACE时变重力资料解算的陆地水储量,如公式(1)所示。

1.3CPC水文模型数据研究表明,地表水储量可以忽略[7],所以研究区陆地水储量变化可以用式(2)表示。示土壤水分引起的陆地水储量变化,来自CPC水文模型.通过式(2)可获得地下水储量的变化值.以BJFS台站为例,如图1所示,绿色线表示GRACE解算的陆地水储量,红色线表示CPC水文模型解算的土壤水储量,蓝色线为地下水储量.由于GRACE解算的陆地水储量在解算过程中扣除了背景场的影响,因此本文对72个月的降水量、地下水埋深以及GPS测站的地表形变数据做同样的处理.

2研究方法

2.1人工神经网络算法原理BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传递.在前向传递过程中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神经元状态只影响到下一层神经元状态.若输出层不能满足期望的输出要求,则转入反向传播,根据预测误差调整网络权值和阈值,从而使得BP神经网络预测输出不断逼近期望输出[16].其拓扑结构如图2所示.X1,X2,…,Xn是BP神经网络的输入值,Y1,Y2,…,Ym是BP神经网络的预测值,ωij和ωjk为BP神经网络权值.

2.2基于BP神经网络的地表垂直负荷形变量模拟

2.2.1指标选取地表负荷形变是由地表流体质量(包括大气、陆地水等)重新分布引起的不同尺度变化.因此将GRACE解算的水储量作为一个输入因子.此外,分析华北平原地表负荷形变的成因,认为地下水超采对该区的地表负荷形变有一定影响.为此将地下水埋深作为BP神经网络模型的一个输入因子.降水量与地表负荷形变量间存在一定关系,一方面降水的增多会相对减少对地下水的开采,另一方面在降水过程中浅层黏性土吸水后表现出一定的膨胀性,因此将历年的降水量也作为一个输入因素[17].为了探求不同水储量作为输入因子时模型的模拟精度,本文结合来自CPC水文模型的土壤水储量,将解算出的地下水储量作为另一个输入因子.

2.2.2样本训练与网络设置为消除网络输入、输出变量的量级、量纲不同对网络识别精度的影响,对各个变量进行归一化处理。上式中:P为原始输入数据,Pmin,Pmax分别为原始数据的最小值和最大值,Pn为归一化后的数据.隐含层采用正切Sigmoid函数,输出层采用Purelin函数,训练函数采用贝叶斯正则化算法.网络的主要参数训练目标goal=0.001,学习率为0.05,性能函数采用msg均方误差函数.

3结果与讨论

3.1模型精度验证

3.1.1样本训练精度运行建立的人工神经网络模型,训练21次达到训练目标.R2平均值为0.892,说明模型训练精度较高.如图3所示为将陆地水储量作为输入因子训练网络后的5个台站模拟结果.图中蓝色线为GPS台站的实际观测形变量,红色虚线为用人工神经网络模拟出来的型变量.

3.1.2模型模拟精度由于地表垂直负荷形变实际观测结果与拟合结果均为等间隔的月尺度数据且没有明显规律,因此采取后验差检验法对模型进行精度分析。采用后验差检验法对结果进行精度分析,检验结果如表2所示,5个台站后验差比值C<0.5,小误差概率P>0.80,R2平均值为0.806,依据预测等级表,网络模型精度较高.

3.2不同水储量输入对精度的影响将不同水储量输出的15组模拟结果进行后验差检验,结果如表3、图4(以BJSH为例)所示,当以陆地水储量(TWS)作为输入时,5个台站的后验差比值C<0.5,小误差概率P>0.80,R2为0.901,相关性较好,模型模拟精度较高.当以地下水储量(GWS)和土壤水储量(SWS)作为输入时,均方差C>0.65,小误差概率减小,R2为0.555和0.290,模拟精度属于勉强.说明在利用人工神经网络模拟地表负荷形变量时,陆地水储量作为模型输入因子时模型模拟效果最好,地下水储量对地表负荷形变的影响比土壤水储量大.

4结论

(1)本文将GRACE重力卫星解算的陆地水储量作为模型的输入因子,精度验证表明,5个台站C<0.5,P>0.80,R2平均值为0.806,网络模型精度较高,说明利用GRACE水储量作为ANN输入模拟地表形变量是可行的.(2)不同水储量模拟结果精度验证表明,在华北平原,地下水储量变化对地表负荷形变的影响比土壤水储量大.

人工神经网络范文第5篇

能否结合分析和归纳的优点设计出一种新的算法,使用近似的先验知识结合可用数据来形成一般假设。这有别于使用纯粹的归纳学习算法时,基于特定学习任务的先验知识来选择设计方案。

例如:在利用神经网络解决问题时,设计者必须选择输入和输出数据的编码方式、在梯度下降中被最小化的误差函数、隐藏单元的数量、网络的拓扑结构、学习速率和冲量等。在选择这些参量时,也可将领域特定的知识嵌入到学习算法中。

但结果仍然是归纳算法反向传播的一个实现。新的系统能将先验知识作为显式的输入给学习器,训练数据也同样作为显式输入。这样可以形成通用算法,但利用了领域的特定知识。即:最终构造的是领域无关算法,这种算法使用显式输入的领域相关的知识。

KBANN学习方法

将领域理论和训练数据结合起来进行搜索的做法可以将其看作是一种搜索多个可选假设空间的任务。为了将大多数学习任务刻画为搜索算法,需要定义待搜索的假设空间H,搜索的开始点为初始假设ho以及指定搜索目标的判据G。

用这种方法,领域理论B被用于建立一个与B一致的初始假设hO。然后以这个初始假设ho为起点应用标准归纳方法。在设计神经网络网络时可以利用先验知识确定初始网络的互联结构和权值,此初始设计的网络假设利用反向传播算法和训练数据被归纳精华。

从一个与领域理论一致的假设开始搜索,使得最终输出假设更有可能拟合此理论。这种方法被用于KBANN(Knowledge―Based Artificial NeuralNetwork,基于知识的人工神经网络)算法中。

利用人工神经网络自动构建应用系统的性能分析模型。以往为应用程序建模主要采用统计分析的方法。但随着应用程序可调参数空间的增大,如果仍使用传统的统计方法建立性能分析模型,必然会对输入参数做简化假设。

这种建模方法只能预测一些粗略的趋势预测,不能顾及每个输入参数对性能的影响,尤其是不能预测在参数空间内各种组合对性能的影响。基于这种现状考虑使用人工神经网络进行性能分析建模。KBANN算法使用先验知识的方法是将假设初始化为完美拟合领域理论,然后按照需要归纳地精华此初始假设以拟合训练数据。

KBANN与纯归纳的反向传播算法比较

理论比较:两者的关键区别在于执行权值调节所基于的初始假设。在有多个假设能拟合数据的情况下,KBANN更有可能收敛到这样的假设,他从训练数据中泛化与领域理论的预测更相似。

另一方面,反向传播收敛到的特定假设可能是小权值的假设,它大致对应在训练样例间平滑插值的泛化偏置。KBANN使用一个领域特定的理论来偏置泛化,反向传播算法使用―个与领域无关的语法偏置。从图例中可以看出KBANN算法效果好于传统的纯归纳反向传播算法。

KBANN是结合分析的归纳学习的初始化假设途径中的一种。这种途径由一个完美的拟合领域理论的假设开始梯度下降搜索,然后在需要时改变此假设以最大程度拟合训练数据。该算法也有一定的局限性,如:只能使用命题领域理论。如果领域理论不是很精确,KBANN可能被误导,从而其泛化精度变得低于反向传播。但总体上该算法在解决实际问题中能获得较好效果。

人工神经网络范文第6篇

关键词:神经网络 化工 应用

一、前言

人工神经网络是一个多科学、综合性的研究领域,它是根据仿生学模拟人体大脑结构和运行机制构造的非线性动力学系统[1]。神经网络可以看作是一种具有自组织、自学习能力的智能机器,它能模仿人的学习过程,通过给网络各种范例,把网络的实际输出与希望输出比较,根据偏差修改节点间的连接权,直到获得满意的输出。现已广泛应用于经济学、军事学、材料学、医学、生物学等领域。

化工过程一般比较复杂, 对象特性多变、间歇或半连续生产过程多,具有严重非线性特性。因此,其模型化问题一直是研究的热点。化工生产过程的数据或实验室实验数据的拟台、分析,是优化过程或优化反应条件的基础一般被处理的数据可以分为二类:静态数据(static data)和动态数据(Dynamic data),对于静态数据的关联,神经网络是一种很有希望的“经验模型”拟合工具。动态过程数据具有系统随时间而变化的特征,操作参数和产物的产量和质量之间的关系更为复杂。处理和分析动态过程数据的方法除了常用的在物料衡算、能量衡算、反应动力学方程、相平衡等基础上建立数学模型(Mathematical Models)、数理统计(Statistical Analysis)等方法外,用神经网络拟合动态过程数据, 建立动态过程模型, 往往能从动态数据提供的模式中提取较为有用的信息,对过程进行预测、故障诊断,从而使过程得到优化。因此,神经网络以其强大的函数映射能力, 已经广泛用于化工过程非线性系统建模领域。 它能够通过输入输出数据对过程进行有效地学习,为化工过程的综合发展提供了一种先进的技术手段。

二、人工神经网络简介

人工神经网络(英文缩写为ANN)简称神经网络,是在生物学和现代神经科学研究的基础上,对人类大脑的结构和功能进行简化模仿而形成的新型信息处理系统[2,3]。由“神经元”(neurons)或节点组成。至少含有输入层、一个隐含层以及一个输出层。输入层—从外部接受信息并将此信息传入人工神经网络,以便进行处理;隐含层—接收输入层的信息,对所有信息进行处理;输出层—接收人工神经网络处理后的信息,将结果送到外部接受器。当输入层从外部收到信息时,它将被激活,并将信号传递到它的近邻这些近邻从输入层接收到激活信号后,依次将其输出到它们的近邻,所得到的结果在输出层以激活模式表现。

神经网络可以看作是一种具有自组织、自学习能力的智能机器,它能模仿人的学习过程。比如,一个复杂化工装置的操作工人,开始学习操作时,由于没有经验,难以保证控制质量。但经过一段时间学习后,他就能逐步提高技能。神经网络正是模拟人类学习过程,通过给网络各种范例,把网络的实际输出与希望输出比较,根据偏差修改节点间的连接权,直到获得满意的输出。人工神经网络研究工作可分成 3个大方向:(1)探求人脑神经网络的生物结构和机制,这实际上是研究神经网络理论的初衷;(2)用微电子或光学器件形成有一定功能的网络,这主要是新一代计算机制造领域所关注的问题;(3)将人工神经网络作为一种解决问题的手段和方法,而这类问题用传统方法无法解决或在具体处理技术上尚存在困难。

三、神经网络在化工中的应用

1.故障诊断

当系统的某个环节发生故障时,若不及时处理,就可能引起故障扩大并导致重大事故的发生。因此建立高效的、准确的实时故障检测和诊断系统,消除故障隐患,及时排除故障,确保安全、平稳、优质的生产,已成为整个生产过程的关键所在。神经网络是模仿和延伸人脑智能、思维、意识等功能的非显形自适应动力学系统,其所具有的学习算法能使其对事物和环境具有很强的自学习、自适应和自组织能力。神经网络用于故障诊断和校正不必建立严格的系统公式或其它数学模型,经数据样本训练后可准确、有效地侦破和识别过失误差,同时校正测量数据中的随机误差。与直接应用非线性规划的校正方法相比,神经网络的计算速度快,在化工过程的实时数据校正方面具有明显的优势。目前应用于故障诊断的网络类型主要有:BP网络、RBF网络、自适应网络等。

Rengaswamy[4]等人把神经网络用在化工过程的初始故障预测和诊断( FDD)中,提出一种神经网络构架,利用速度训练在分类设计中明确引入时间和过程模型映像的在线更新三个要素,来解决化工过程中的初始故障诊断问题。国内也有关于神经网络用于故障诊断的报道,黄道[5]等人以TE (Tenneaaee Eastman,Eastman化学公司开发的过程模拟器,提供了一个实际工业过程的仿真平台,是一种国际上通用的标准仿真模型)模型为背景,根据模型的特点进行了故障诊断。当输入变量接近训练过的样本时,诊断的成功率可达100%。另外,模糊神经元网络作为一种更接近人脑思维的网格,也是解决此类问题的一个发展方向。李宏光[6]等人就针对化工非线性过程建模问题, 提出了由函数逼近和规则推理网络构成的模糊神经网络,其规则网络基于过程先验知识用于对操作区间的划分,而函数网络采用改进型模糊神经网络结构完成非线性函数逼近,并将该技术应用于工业尿素 CO2汽提塔液位建模。

2.化工过程控制

随着神经网络研究的不断深入,其越来越多地应用于控制领域的各个方面,从过程控制、机器人控制、生产制造、模式识别直到决策支持神经网络都有应用。神经网络可以成功地建立流程和控制参数问的非线性关系及构造相关的数学模型,并可跟踪瞬息过程及具有稳健功能等,因此可有效地用于化工过程最优化和控制。

1986年,Rumelhart第一次将ANN用于控制界。神经元网络用于控制有两种方法,一种用来构造模型,主要利用对象的先验信息,经过误差校正反馈,修正网络权值,最终得到具有因果关系的函数,实现状态估计,进而推断控制;另一种直接充当控制器,就像PID控制器那样进行实时控制。神经元网络用于控制,不仅能处理精确知识,也能处理模糊信息。Tsen[7]等利用混合神经网络实现对乙酸乙烯酯(VA)的乳液聚合过程的预测控制。原有的该间歇过程的复杂的机理模型可对单体转化率做出较准确的预测,然而对产品性质(如数均相对分子质量及其分布)的预测不太可靠。所建的混合型神经网络模型用于实现过程的反馈预测控制。国内对神经网络的实质性研究相对较晚,谭民[8]在1990年提出了一种基于神经网络双向联想机制的控制系统故障诊断方法,并且作了仿真验证。清华大学自动化系则开发了一种基于时序神经网络的故障预报方法,利用工艺现场数据对大型氯碱厂的氯气中含氢气的问题进行了模拟预报实验。

3.药物释放预测

建立精确的缓释微胶囊模型是找出最优的工艺条件及掌握芯材释放规律的重要一步。缓释微胶囊的性能与影响因素之间足一种多输入、多输出、复杂的非线性关系。机理分析法和传统的系统辨识法对输入、多输出问题适应性差,过分依赖研究领域的知识与经验,难以得到实用的缓释微胶囊模型。人工神经网络能够很好地解决传统方法不能解决的具有高度非线性、耦合性、多变量性系统的建模问题并具有独特的优势。

赵武奇[9]等人建立了红景天苷缓释微囊的人工神经网络模型及其遗传算法优化技术,用神经网络模型描述了微囊制作参数与性能之间的关系,并用遗传算法优化微囊制作工艺参数,设计出性能最佳的微囊制作工艺参数。范彩霞[10]等人以难溶性药物氟比洛芬为模型药物,制备了17个处方并进行释放度检查。氟比洛芬和转速作为自变量,取其中l4个处方为训练处方,其余3个处方为验证处方,将自变量作为人工神经网络的输入,药物在各个取样时间点的释放为输出,采用剔除一点交叉验证法建立了人工神经网络模型。并通过线性回归和相似因子法比较人工神经网络和基于二元二项式的响应面法的预测能力,显示了人工神经网络的预测值与实测值的接近程度。

4.物性估算

用神经网络来解决估算物质的性质必须解决三个基本问题,第一个是对物质的表征问题;第二个是采用何种神经网络及其算法问题;第三个是神经网络输入与输出数据的归一化问题。无论采用哪种方法对数据进行处理,当用经过训练的神经网络进行物性估计时,不能将网络直接的输出值作为物性预估值,而是要将输出值再乘上一个系数,这个系数就是前面进行归一化处理时对数据的除数,相乘后得到的值作为物性估算值。神经网络用于物性估算,目前采用的就是BP网络或在此基础上的各种改进形式。常压沸点进行估算和研究。Prasad[11]等人利用神经网络对有机化合物的物理性质进行了预测,并与传统的基团贡献法比较,可以得到更为准确的物性参数。而后,董新法、方利国[12]等人将神经网络在物性估算中的应用作了一个全面而又简要的讲解,并提出神经网络在物性估算中潜在的应用前景,为其发展及其以后的应用研究提供了很好的工作平台。

目前,人工神经网络在各个领域中的应用都在向人工智能方向发展。不断丰富基础理论和开展应用研究、完善其技术的可靠性、开发智能性化工优化专家系统软件,对于我国的化工发展具有重要意义。此外,模糊理论、小波变换、统计学方法和分形技术等信息处理方法和理论与神经网络的结合解决化工类问题,被认为是一种发展趋势。

参考文献

[1]高大文,王鹏,蔡臻超.人工神经网络中隐含层节点与训练次数的优化[J].哈尔滨工业大学学报, 2003, 35(2): 207-209.

[2]苏碧瑶.人工神经网络的优化方法[J]. 科技资讯, 2011(30): 239-240.

[3]黄忠明, 吴志红, 刘全喜. 几种用于非线性函数逼近的神经网络方法研究[J]. 兵工自动化,2009, 28(10): 88-92.

[4]Rengaswamy R, Venkatasubramanian V. A fast training neural network and its updation for incipient fault detection and diagnosis[J].Computers and Chemical Engineering, 2000,(24): 431-437.

[5]黄道, 宋欣.神经网络在化工过程故障诊断中的应用[J].控制工程,2006,(13): 6-9.

[6]李宏光,何谦.化工过程建模中的一类复合型模糊神经网络[J]. 计算机与应用化学,2000,17(5): 399-402.

[7]Tsen A D, Shi S J, Wong D SH, etal. Predictive Control of Quality in Batch Polymerization Using a Hybrid Artificial Neural Network Model[J]. AIChE Journal,1996, 42(2): 455-465.

[8]谭民, 疏松桂. 基于神经元网络的控制系统故障诊断[J]. 控制与决策, 1990(1): 60-62.

[9]赵武奇, 殷涌光, 仇农学. 基于神经网络和遗传算法的红景天苷缓释微囊制备过程建模与优化[J]. 西北农林科技大学学报(自然科学版), 2006,34(11): 106-110.

[10] 范彩霞, 梁文权, 陈志喜. 人工神经网络预测氟比洛芬HPMC缓释片的药物释放[J]. 中国医药工业杂志, 2006, 37(10): 685-688.

[11]Prasad Y, Bhagwat S S. Simple Neural Network Models for Prediction of Physical Properties of Organic Compounds[J].Chemical Engineering & Technology, 2002, 25(11): 1041-1046.

[12]董新法,方利国,陈砺. 物性估算原理及计算机计算[M].北京: 化学工业出版社, 2006.

人工神经网络范文第7篇

【关键词】人工神经网络 信息技术 发展趋势

人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。

1人工神经网络技术

人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。

2人工神经网络技术应用分析

随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。

2.1生物信号的检测分析

目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。

2.2医学专家系统

传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。

2.3市场价格预测

在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。

2.险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。

3人工神经网络技术未来发展

人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。

4结语

通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、通用模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。

参考文献

[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.

[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.

[3]张广军.人工神经网络技术在光电检测中的应用[J].北京航空航天大学学报,2001,27(05):564-568.

人工神经网络范文第8篇

随着我国经济的快速发展,大量的工程建设也相继展开,同时在工程建设中也出现了边坡稳定性的问题,而这些边坡是影响工程建设质量的重要因素。边坡的稳定性是工程建设研究的重要方向,在建筑工程、道路工程等很多工程中都与边坡的稳定性有关。边坡工程是一个不断变化的动态过程,其变形破坏机理非常复杂。边坡稳定的因素有很多,如地质因素、工程因素等,还有其本身的不确定性。边坡的稳定性对工程建设具有重大的影响,因此,如何科学合理的设计边坡工程对工程建设的顺利进行具有非常重要的意义。目前,边坡稳定性的评价方法有很多,但是这些方法由于受到人为因素的影响,且应用起来有不确定性,并没有得到广泛的应用。本文利用人工神经网络的知识来评价边坡的稳定性,通过人工神经网络结构上的特点探索影响边坡稳定性的因素,从而保证边坡工程的稳定性,促进工程建设的快速发展。

关键词:人工神经网络;边坡工程;稳定性;贡献

Abstract:With the rapid development of our country's economy, a lot of engineering construction, one after another in the engineering construction at the same time also appeared a slope stability problem, and the slope are important factors affecting the quality of project construction. Slope stability is one of the important direction, construction research in construction engineering, road engineering, etc. Many projects are related to the stability of the slope. Slope engineering is a constantly changing dynamic process, the deformation failure mechanism is very complicated. Slope stability factors are many, such as geological factors, engineering factors and so on, and its uncertainty. Slope stability has a significant influence on engineering construction, therefore, how to scientific and reasonable design of slope engineering smooth going on of the project construction has very important significance. At present, the slope stability evaluation method are many, but these methods under the influence of artificial factors, and the application to have uncertainty, has not been widely used. In this paper, using the knowledge of the artificial neural network to evaluate the slope stability, by artificial neural network structural characteristics to explore the influencing factors of slope stability, thus ensuring the stability of the slope engineering, to promote the rapid development of engineering construction.

Keywords: artificial neural network; Slope engineering; Stability; Contribution to the

中图分类号: TP183文献标识码:A

1 边坡稳定性的研究现状

边坡的变形和破坏会对工程建设造成重大的影响,边坡的稳定性受到很多因素的影响,从范围上来说,主要包括自然因素和人为活动因素。水文、地质、人为工程活动都可能造成边坡稳定性的破坏,其中边坡应力的变化和发展是造成边坡稳定性破坏的根本原因。具有代表性的造成边坡失稳的因素如下:地下工程开挖后,由于地下土层应力的突然释放对边坡原有应力状态的影响;边坡上堆积物的载重传播到边坡上的影响;边坡土层暴露在自然环境中遭受外部环境风化的影响;地下水的流动对边坡土层强度的影响。

工程地质是边坡稳定性问题需要考虑的重要因素,它主要有以下两个主要任务:第一是要准确的评价和预测与人为工程活动关系密切的天然边坡和人工边坡的稳定性、变化规律和发生破坏的几率;第二是为科学合理的设计边坡、保证边坡的稳定性、采取有力的边坡防治措施提供准确可靠的依据。而边坡问题的出现总是和边坡的变形和破坏有关,为了准确的评价和预测边坡工程的稳定性,首先要确定边坡是否可能发生变形与破坏以及变形和破坏的方式和规模。因此边坡稳定性的工程地质要分析和研究边坡变形和破坏的规律。边坡变形和破坏表明了边坡土层在不同的条件下变化的过程,同时为边坡变形破坏力学模型的建立提供了重要依据。

边坡工程稳定性的研究边坡工程的重要组成部分,越来越多的专家和研究人员加入到边坡稳定性研究的队伍中,它会随着边坡工程的建设一直发展下去。

2 人工神经网络概述

2.1 人工神经网络的概念

人工神经网络是人工智能科学的一个重要分支,在21世纪得到了快速发展,通过人工神经元之间的连接来处理网络信息,来实现类似人的活动和行为,以网络元件建立知识与信息的关系,而构成的一种信息处理体系。神经元之间的变化过程决定了网络的学习。神经网络在学习、信息处理、网络模式识别等方面起着重要的作用,因此,它能将所有的控制因素考虑进去。

2.2 评价信息表达

由于边坡稳定性的影响因素很多,定性的数据和资料错综复杂,因此,要把这些定性的数据进行量化,然后再输入神经网络。边坡结构的高度、坡角等数据可直接进行实际测定;岩体结构类型和质量类别等无法直接测定的数据要通过等级数字代码来确定;岩体的岩性、破坏类型等定性数据则通过数字代码来确定。将这些定性的数据进行量化处理后,所有的信息数据就可以通过神经网络来处理,同时还能影响边坡稳定性因素的影响程度。显而易见,当我们获得更多的原始信息,就能更加准确的确定边坡的特征,同时表达边坡稳定性因素的关系也更加复杂,通过神经网络的计算,就能确定边坡稳定性的评价信息,也就是边坡的稳定状态。

2.3 人工神经网络的算法

人工神经网络是通过对人类大脑的结构和运行模式进行研究而模拟其结构和行为的工程系统。从20世纪40年代开始,人工神经网络的数学模型被第一次提出,从此人工神经网络的研究得到了快速发展,随后很多专家和研究人员提出了其他的模型,极大地丰富了人工神经网络的研究内容。

近年来,前馈神经网络模型BP是在工程建设中应用最为广泛的模型,其结构由输入层、隐含层和输出层三部分组成,其中输入层由N个神经元组成,隐含层由P个神经元组成,输出层由q个神经元组成。假设有i个学习样本,F为输出层神经元的平方误差,就构成了BP网络结构。在学习的过程中,神经元连接出现的错误为网络输出的误差,输入层接收输出层的神经元的误差后,分配给每一个神经单元,最终确定各层神经元的参考误差。

前向计算过程和误差接收过程共同组成了BP网络学习过程,其分为以下三步进行:

(1)网络初始化:输入学习率a和b,确定学习误差e,确定权重矩阵U、V的初始值;

(2)确定学习样本的输入值和期望输出值,计算网络节点的具体数值,计算输出层和隐含层的误差,最后对各边权值进行调整;

(3)通过改变学习效率a和b,使BP算法更加合理,重复进行计算一直到代价函数F小于学习误差e,整个学习过程就结束了。

3 人工神经网络在边坡稳定性中的应用

由于影响边坡稳定的因素的多样性和不确定性,这些影响因素和边坡稳定性之间的关系非常复杂,所以边坡工程是一个极其复杂的非线性系统。而人工神经网络通过人工神经元之间的连接来获取网络信息,它能解决复杂的非线性问题,所以人工神经网络在边坡工程稳定性中的应用是非常必要的。通过对现实中的边坡工程进行学习,人工神经网络把学习得到的结果储存起来,并作为网络的权值。输入影响边坡工程稳定性的各种因素,包括定性和定量因素,通过人工神经网络系统的计算和处理,就会输出边坡稳定性的实际情况,人工神经网络就会建立影响边坡稳定性的因素和边坡稳定性现实情况的非线性关系。人工神经网络通过建立的这种非线性关系就能够对新的边坡稳定性做出详细准确的评价。大量的应用实例表明,通过人工神经网络对边坡工程的稳定性进行评价是一种切实可行且科学合理的方法。

4 结语

通过人工神经网络在边坡稳定性中的应用实例可以看出,人工神经网络对边坡稳定性的应用具有较好的适应性,并且可以准确地分析和评价边坡工程的稳定性。影响边坡稳定性的定性和定量因素会被纳入到人工神经网络系统中,因为人工神经网络是以边坡工程变形和破坏的实例作为主要内容,所以学习样本的准确性和内容的完备性决定了边坡工程稳定性的评价是否准确,如果信息准确完备,就能达到预期的效果。人工神经网络在边坡稳定性评价中具有很好的实用性,相信在以后的边坡工程建设中会得到广泛的应用。

参考文献

[1] 童树奇.人工神经网络在边坡工程中的应用研究[J]. 广东土木与建筑. 2006(09).

[2] 陈华明.基于神经网络技术的边坡稳定性研究[J]. 科技创新导报. 2007(35).

[3] 熊锐,彭辉,刘德富.人工神经网络在边坡工程中的应用[J]. 三峡大学学报. 2005(06).

人工神经网络范文第9篇

关键词:人工神经网络;信息处理;风险评估

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)06-1285-02

Research on the Application of Artificial Neural Network

LI Hong-chao

(China University of Petroleum (East China), Qingdao 266580,China)

Abstract: Artificial neural networks are part of an integrated artificial intelligence, it is proposed is based on research of modern neuroscience. With the continuous development of artificial neural networks, and their use more widely. This article first analyzes the basic concepts and features of artificial neural networks, from six aspects of information, medicine, psychology and other details of the application of artificial neural networks.

Key words: artificial neural network; information processing; risk assessment

1 人工神经网络

人工神经网络,英文名为“Artificial Neural Network”,简称ANN,它充分分析大脑神经突触联接的结构特点,对其进行模拟,然后进行信息处理。简单来说,人工神经网络就是对人脑结构、人脑功能的模仿。它的特点有很多,比如非线性、非局限性、非常定性、非凸性等。这些特点铸就了人工神经网络的各种功能,促进了它的应用。

2 人工神经网络的应用

随着人们对人工神经网络的不断研究,人工神经网络的作用越来越大,给人们提供了更好的服务,下面就以人工神经网络在信息领域、医学、经济领域、控制领域、交通运输、心理学六个方面分别介绍其应用。

2.1 信息领域

人工神经网络在信息领域的应用分为两个方面,一个是信息处理,一个是信息识别。

1)信息处理

由于现代信息的多样化和多变性的特点,信息处理就变得复杂起来,人工神经网络可以对人的一部分思维能力进行模仿甚至代替,解决传统信息处理的困难。在通常情况下,人工神经网络可以自动诊断问题,开启问题求解模式。另外,人工神经网络系统的容错性能高,当其连接线遭到破坏,自身的组织功能还是可以保持它的优化工作状态。因此,军事系统充分利用这一优势,在其电子设备广泛应用人工网络信息系统。

2)模式识别

这项功能的理论基础有两个,一个是贝叶斯的概率论,另一个是申农提出的信息论。模式识别主要是分析和处理存在于目标体上的各种形式的信息,然后在处理和分析的基础上对目标体进行描述、辨认等过程。随着人工神经网络在模式识别中的应用,传统的模式识别逐渐被取代。随着模式识别的发展,已经逐渐应用到语音识别、人脸识别、文字识别等各个方面。

2.2 医学领域

人体是非常复杂的,在医学中,想要弄清楚疾病的类型、疾病的严重情况等,仅仅依靠传统的望闻问切诊断方法是远远不够的,医学的发展需要运用新技术。人工神经网络应用于医学中,可以分析生物信号,观察信息的表现形式以及研究信息的变化规律,将这三者的结果进行分析和比较,从而掌握病人的病情。

1)生物信号的检测与分析

在医学诊断中,医生基本上都是通过对医学设备中呈现出来的连续波形进行分析。人工神经网络中有一套自适应的动力学系统,该系统由一些数量庞大的简单处理单元互相连接。因此,它具有多种功能,比如Massively Parallelism,即所谓的巨量并行,分布式存贮功能以及强大的自组织自学习功能等。用常规处理法处理生物医学信号分析非常困难,而人工神经网络的功能可以有效解决难题,其在生物医学人脑检测与处理中的应用非常广泛,比如分析电脑信号,对心电信号进行压缩处理,医学图像的识别等,在很大程度上促进了医学的发展。

2)医学专家系统

对于传统的专家系统而言,其工作原理基本上就是先由专家根据自己多年的医学经历,总结自己的经验和所掌握的知识,以某种规则的形式将这些经验和知识存储在电脑中,建立一个专家的知识库,然后借助逻辑推理等方式开展医疗诊断工作。但是,随着专家知识的不断增长和经验的日益丰富化,数据库的规模会越来越大,极有可能产生知识“爆炸”的现象。同时,专家在获取知识的过程中也会遇到困难,导致工作效率低下。人工神经网络中的非线性并行处理方式解决了传统专家系统中的困难,在知识推理、自组织等方面都有了很大的提高,医学专家系统也开始逐渐采用人工神经网络系统。

在医学领域中,麻醉和危重医学的研究过程中,存在很多的生理方面的分析与检测工作,人工神经网络系统有良好的信号处理能力,排除干扰信号,准确检测临床状况的相关情况,有力促进了医学的发展。

2.3 经济领域

经济的快速有效增长是基于人们对市场规律良好的掌握和运用以及对经济活动中的风险评估,及时应对和解决,这样才能保障经济活动的快速发展。人工神经网络应用于经济领域,主要有预测市场价格和评估经济风险两个方面。

1)预测市场价格的波动情况

商品的价格主要是由市场的供求关系和国家宏观调控来变化的。国家的宏观调控是客观存在的,我们可以在遵循国家宏观调控的前提之下分析市场的供求关系,从而预测商品的市场价格。在传统的统计学方法中,在预测价格波动时因其自身的局限性,难以做出科学的判断。人工神经网络可以有效处理不完整数据和规律性不强的数据,它是传统统计方法所不能达到的。人工神经网络系统基于市场价格的确定机制,综合分析影响商品价格的因素,比如城市化水平、人均工资水平、贷款情况等,将这些复杂的因素综合起来,建立一个模型,通过模型中的数据显示,科学预测商品的市场价格波动情况,有效利用商品的价格优势。

2)评估经济风险

经济风险,即Economic Exposure,它指的是由于经济前景的一些不确定因素,导致经济实体出现重大的经济损失。在处理经济风险的时候,做好的措施就是防患于未然,做好评估和预测,将经济风险扼杀在萌芽时期。人为的主观判断经济风险具有一定的可靠性,但是也存在很多的不足。将人工神经网络系统应用于评估经济风险,可以有效弥补人为判断风险的不足。人工神经网络先提取具体风险来源,然后在此基础上构建出一个模型,这个模型一般要符合实际情况,通过对模型的研究,得出风险评价系数,最终确定有效的解决方案。

2.4 控制领域

随着人工神经网络的不断发展,人们开始研究其在控制领域的应用。比如现在的机器人的摄像机控制、飞机控制等。它主要是通过控制图像传感器,再结合图像表面的非线性关系,进行计算和分析,另外,它还可以将图像传感器瞄准到处于运动状态中的目标物上。

2.5 交通运输

交通问题具有高度的非线性特点,它的数据处理是非常庞大和复杂的,这与人工神经网络有很大的吻合性。就目前来讲,人工神经网络应用到交通领域有模拟驾驶员的行为、分析交通的模式等等。

2.6 心理学

人工神经网络是对人脑神经元的信息处理能力的模拟,本身就带有一定的抽象性,它可以训练很多的认知过程,比如感觉、记忆、情绪等。人们通过对人工神经系统的不断研究,多个角度分析了其认知功能。就目前来看,人工神经网络可以分析人的认知,同时对认知方面有缺陷的病人进行模拟,取得了很大的进步。当然,人工神经网络应用于心理学领域也存在很多的问题,比如结果精确度不高、模拟算法的速度不够等,这些都需要人们持之以恒的研究。突破这些难题,促使人工神经网络有效应用于心理学领域。

3 结束语

综上所述,随着人工神经网络的不断发展,它特有的非线性适应能力和自身的模拟结构都有效推动了其应用范围。我们应该不断运用新技术,不断完善人工神经网络的功能,拓宽其应用范围,促进其智能化、功能化方向发展。

参考文献:

[1] 毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2011(12).

[2] 林和平,张秉正,乔幸娟.回归分析人工神经网络[J].吉林大学学报:信息科学版,2010(3).

[3] 李雷雷.人工神经网络在建筑工程估算中的应用研究[D].华北电力大学,2012.

[4] 隋英,付春菊,高兴燕.人工神经网络研究的发展与应用[J].大众科技,2010(5).

人工神经网络范文第10篇

关键词:人工神经网络;自动化;采煤技术;综放工作面

随着我国国民经济总量的增大,煤炭能源的消耗也是越来与而大,同时也对煤矿的开采提出了更高的要求。近年来,国家对煤矿安全越来越重视,管理也更加严格,很多不合安全规范的小型煤矿被关停。想在现有环境下提高采煤量,就必须加大科技方面的投入,采用最先进的自动化设备技术,宗放自动化采煤是当前世界上最为先进的采煤技术,是提高采煤生产效率的关键技术之一。人工神经系统可以较好的辅助综放工作面的工作,可对综放工作面进行控制生产,对提高采煤效率有着极为重要的意义。

一、人工神经网络的简单介绍

人工神经网络是一种非线性、交叉的科学,它通过计算机系统对生物神经信息进行模拟来解决实际工作中的问题,属于非线性、交叉的科学。经过近些年的发展,人工神经网落技术在自然科学、社会科学等各个领域的应用已经得到广泛应用。人工神经网络的广泛应用自然也推动了人工神经网路的研究,现在出现的具有不同功能作用的网络结构和算法系统,就是近年来研究的成果,人工神经网络的理论系统也日趋成熟,适用范围也越来越广。

通过模拟人体神经系统信号传输原理,人工神经网络的各个节点也与人体内的神经元相似,能够通过连接权值进行非常紧密的联系。在实际应用中,如果神经元的输出大大超过了网络内部神经元阀值的时候,这个人工神经网络就会输出信号,这个信号也就是成为了下个神经元输入的信号。人工神经网络是模拟人的神经系统创建的,自然与人的神经系统很相似,要通过不断的应用、训练才可以保持较为良好的状态,在实际操作中,人工神经网络的性能是由各个节点的激活函数、网络的拓扑结构以及网络的训练方法决定的。较为常用的BP算法就是通过对网络连接权值的不断调整来达到训练人工神经网络的目的。

二、人工神经网络的相关建模方法

就现有研究来看,人工神经网络的建模方法主要包括模糊建模和混合建模,这些具体而有效的建模方法给采煤综放工作面生产过程自动化提供了较为科学的理论指导,是提高采煤效率和降低采煤工人劳动强度的有效举措之一,以下是对人工神经网络建模的具体介绍。

(一)人工神经网络的模糊建模方法

在煤矿的实际工作中,传统的数学建模方法有其局限性,不能适应较为复杂的问题,严重影响了煤矿的生产效率。模糊理论正是在这种大背景下出现的,它通过有效的实验方法,将实验数据总结汇总,将实验汇总的数据作为模糊规则,然后依据相关模糊理论进行实际的人工神经网络建模。这种建模方法的优势是能够较为快速的预测出新输入数据接下来会输出的结果。煤矿在应用模糊建模方法后,对于生产过程的预算也就更为准确,便于企业做出相关决策。整个模糊建模方法主要由三个部分组成,既模糊化、推理机制、解模糊,这是模糊建模的一个有机整体,是这种建模方式的核心价值所在。

(二)人工神经网络的混合建模方法

除了模糊建模方法之外,人工神经网络还有一种混合建模方法,这种建模方法是依托智能算法的进步而出现的,现已广泛应用于煤矿生产。近年来,为了适应人工神经网络的发展,包括粒子群算法和遗传算法在内的智能算法取得了较大的发展,这种建模方可以对实际工作中比较复杂的参数进行优化处理,进而提高生产效率。

1.粒子群算法建模

粒子群建模简单来说就是利用较为成熟的计算机语言的算法对相关生物的群体行为进行模仿,然后进行建模,在具体操作中,粒子群算法建模要避免碰撞而飞离最近的个体、飞向目标、飞向群体中心,这也被称为粒子群建模方法的三大原则。

2.遗传算法

遗传算法就是将计算机技术和进化论联合运用于人工神经网络建模。在实际工作中,遗传算法应用了当前最为先进的编码技术和遗传操来做铺垫。在Holland体系中,GA就是一种较为简单的遗传算法,各种不同形式的二进制串就是其具体的操作对象。但在煤矿工作中,如果是要通过参数来进行问题分析,遗传算法的研究对象就可以是一个参数组,在这个参数组中,遗传算法具体是通过这个参数组的适应度来表现其好坏情况。通常情况下,遗传算法在具体操作中就是通过对基础的参数群进行有效分析,其选择个体是依据这个个体的适应值比例,然后通过交叉和变异进的方法诞生下一个组种群,这个过程可以持续下去,直到满足生产需求的参数值出现为止。遗传算法也是一种优选的方法,它将遗传算法的优点和人工神经网络的特点进行了有机结合,通过遗传算法可以进行前期模块的优选,建立一个合乎现实情况的非线性模型,然后进行与模糊建模方法相类似的实验数据收集,分析最为有效的网络结构,在满足预测的情况下实现了参数的优选。

三、人工神经网络应用在采煤技术上效果

通过上文介绍,在采煤中利用人工神经网络是为综放工作面生产过程实现自动化提供相对应的理论依据,减轻采煤的劳动强度并提高采煤效率是其目的所在;人工神经网落还能够对采煤工作中的相关生产设备的性能做有效的检查,能够在最快的时间内发现机械故障,及时的排除机械故障,极大的降低了煤矿安全事故的发生率;人工神经网络还能够将采煤生产设备工作面的具体信息,快速的反馈到地面,然后通过先进的计算机技术对数据进行相关处理,实现信息资源共享,采煤过程中对人工的依赖也会降低,为日后的无人操作打下了坚实的基础。

将现代化的人工神经网络应用于采煤,可以实现对综放工作面自动化的有效控制,它将整个采煤的综放工作面看做是个有机的整体,在条件允许的情况下进行仿真模拟,通常情况下都是应用MATLAB软件来及进行仿真模拟,可以系统化的管理整个采煤过程,排除采煤过程中的相关机械故障,在提高采煤效率的同时实现了安全生产,人工神经网络值得在采煤技术中大力推广、应用。

四、结束语

可以将综放工作面看做是整个采煤系统实现自动化,这也是日后采煤自动化发展的一个重要方向,这种思维模式有效避免了在没有考虑综放工作面控制功能而进行自动化的情况。多年的实践表明,神经网络技术应用于煤矿开采中可以有效分析、诊断采煤工作中的一些问题,为日后采煤规划提供了强而有力的依据,其在采煤领域的应用空间还非常宽阔,值得进一步研究、拓展。

参考文献:

[1]郑胜友.人工神经网络在采煤技术上的应用[J].科技风,2012(10).

[2]董丽丽,乔育锋,郭晓山.遗传算法和人工神经网络在煤矿突水预测中的应用研究[A]. 智能信息技术应用学会.Proceedings of 2010 International Conference on Management Science and Engineering (MSE 2010) (Volume 3)[C].智能信息技术应用学会:,2010(5).

[3]彭学前.采煤机故障诊断与故障预测研究[D].南京理工大学,2013.

[4]李家.人工神经网络在露天矿爆破参数优化中的应用研究[D].内蒙古科技大学,2013.

上一篇:神经网络算法范文 下一篇:神经科学范文

友情链接