人工神经网络范文

时间:2023-03-05 15:02:31

人工神经网络

人工神经网络范文第1篇

人工神经网络是近年来迅猛发展的前沿课题,它对突破现有科学技术的瓶颈起到重大的作用。本文剖析了人工神经网络的特征、模型结构以及未来的发展趋势。

【关键词】人工神经网络 神经元 矩阵

1 人工神经网络概述

人工神经网络(ANN)是一种用计算机网络系统模拟生物神经网络的智能神经系统,它是在现代神经生物学研究成果的基础上发展起来的,模拟人脑信息处理机制的一种网络系统,它不但具有处理数值数据的计算能力,而且还具有处理知识的学习、联想和记忆能力。

人工神经网络模拟了大脑神经元的组织方式,反映了人脑的一些基本功能,为研究人工智能开辟了新的途径。它具有以下基本特征:

1.1 并行分布性

因为人工神经网络中的神经元排列并不是杂乱无章的,往往是以一种有规律的序列排列,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个基本的处理单元,则整个系统可以是一个分布式处理系统,使得计算快速。

1.2 可学习性和自适应性

一个相对很小的人工神经网络可存储大量的专家知识,并能根据学习算法,或利用指导系统模拟现实环境(称为有教师学习),或对输入进行自适应学习(称为无教师学习),可以处理不确定或不知道的事情,不断主动学习,不断完善知识的存储。

(3)鲁棒性和容错性

由于采用大量的神经元及其相互连接,具有联想映射与联想记忆能力,容错性保证网络将不完整的、畸变的输入样本恢复成完整的原型,鲁棒性使得网络中的神经元或突触遭到破坏时网络仍然具有学习和记忆能力,不会对整体系统带来严重的影响。

1.3 泛化能力

人工神经网络是大规模的非线性系统,提供了系统协同和自组织的潜力,它能充分逼近任意复杂的非线性关系。如果输入发生较小变化,则输出能够保持相当小的差距。

1.4 信息综合能力

任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,能同时处理定量和定性的信息,适用于处理复杂非线性和不确定对象。

2 人工神经网络模型

神经网络是在对人脑思维方式研究的基础上,将其抽象模拟反映人脑基本功能的一种并行处理连接网络。神经元是神经网络的基本处理单元。

在神经网络的发展过程中,从不同角度对神经网络进行了不同层次的描述和模拟,提出了各种各样的神经网络模型,其中最具有代表性的神经网络模型有:感知器、线性神经网络、BP网络、自组织网络、径向基函数网络、反馈神经网络等等。

3 神经元矩阵

神经元矩阵是神经网络模型的一种新构想,是专门为神经网络打造的一个矩阵,它符合神经元的一切特征。

神经元矩阵采用矩阵形式,它可为n维向量组成。引入向量触头和信使粒的概念,向量触头可生长,即长度可变,方向可变,信使粒可“游荡”在矩阵中,建立各种联系。如图1即是神经元矩阵模型

(1)容器可产生一种无形的约束力,使系统得以形成,容器不是全封闭的,从而保证系统与外界的沟通和交互;各向量间可用相互作用的力来联系,而各个信使粒则受控于容器、中空向量以及其它的信使粒。各神经元之间自主交互,神经元矩阵是一种多层次的管理,即一层管理一层。系统具有明显的层级制和分块制,每层每块均独立且协同工作,即每层每块均含组织和自组织因素。

(2)向量触头是中空的,信使粒可以通过向量或存储于向量中,所以又称为中空向量。向量存储了信使粒后,可以吸引更多的信使粒在附近,或使邻近向量转向、伸长,进而形成相对稳定的信息通路。

(3)当两条或更多的信息通路汇集时,可能伴随着通路的增强、合并,以及信使粒的聚集、交换,这是神经元矩阵运算的一种主要形式。通路的形成过程,也就是是神经元矩阵分块、分层、形成联接的过程,也为矩阵系统宏观管理、层级控制的实现奠定了基础。

神经元矩阵亦是一种具有生物网络特征的数学模型,综合了数学上矩阵和向量等重要概念,是一种立体的矩阵结构。尤其是将矩阵的分块特性和向量的指向特征结合起来,更好的体现了神经网络的整体性和单元独立性,系统的组织和自组织特征也更为凸显。信使粒以“点”的数学概念,增强了系统的信息特征,尤其是增强了矩阵的存储和运算功能。

4 人工神经网络的发展趋势

人工神经网络是边缘叉科学,它涉及计算机、人工智能、自动化、生理学等多个学科领域,研究它的发展具有非常重要意义。针对神经网络的社会需求以及存在的问题,今后神经网络的研究趋势主要侧重以下几个方面。

4.1 增强对智能和机器关系问题的认识

人脑是一个结构异常复杂的信息系统,我们所知道的唯一智能系统,随着信息论、控制论、计算机科学、生命科学的发展,人们越来越惊异于大脑的奇妙。对人脑智能化实现的研究,是神经网络研究今后的需要增强的地发展方向。

4.2 发展神经计算和进化计算的理论及应用

利用神经科学理论的研究成果,用数理方法探索智能水平更高的人工神经网络模型,深入研究网络的算法和性能,使离散符号计算、神经计算和进化计算相互促进,开发新的网络数理理论。

4.3 扩大神经元芯片和神经网络结构的作用

神经网络结构体现了结构和算法的统一,是硬件和软件的混合体,神经元矩阵即是如此。人工神经网络既可以用传统计算机来模拟,也可以用集成电路芯片组成神经计算机,甚至还可以生物芯片方式实现,因此研制电子神经网络计算机潜力巨大。如何让传统的计算机、人工智能技术和神经网络计算机相融合也是前沿课题,具有十分诱人的前景。

4.4 促进信息科学和生命科学的相互融合

信息科学与生命科学的相互交叉、相互促进、相互渗透是现代科学的一个显著特点。神经网络与各种智能处理方法有机结合具有很大的发展前景,如与专家系统、模糊逻辑、遗传算法、小波分析等相结合,取长补短,可以获得更好的应用效果。

参考文献

[1]钟珞.饶文碧.邹承明著.人工神经网络及其融合应用技术.科学出版社.

作者单位

人工神经网络范文第2篇

原理与方法

神经网络是一个具有高度非线性的超大规模连续时间动力系统。是由大量的处理单元(神经元)广泛互连而形成的网络。它是在现代神经科学研究成果的基础上提出的,反映了脑功能的基本特征。但它并不是人脑的真实描写,而只是它的某种抽象、简化与模拟。网络的信息处理由神经元之间的相互作用来实现;知识与信息的存储表现为网络元件互连间分布式的物理联系;网络的学习和计算决定于各神经元连接权系的动态演化过程。因此神经元构成了网络的基本运算单元。每个神经元具有自己的阈值。每个神经元的输入信号是所有与其相连的神经元的输出信号和加权后的和。而输出信号是其净输入信号的非线性函数。如果输入信号的加权集合高于其阈值,该神经元便被激活而输出相应的值。在人工神经网络中所存储的是单元之间连接的加权值阵列。

神经网络的工作过程主要由两个阶段组成,一个阶段是工作期,此时各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一阶段是学习期(自适应期,或设计期),此时各计算单元状态不变,各连接权值可修改(通过学习样本或其他方法),前一阶段较快,各单元的状态亦称短期记忆(STM),后一阶段慢的多,权及连接方式亦称长期记忆(LTM)〔1〕。

根据网络的拓扑结构和学习规则可将人工神经网络分为多种类型,如不含反馈的前向神经网络、层内有相互结合的前向网络、反馈网络、相互结合型网络等〔2〕。本文的人工神经网络模型是采用BP算法的多层前馈网络。

该模型的特点是信号由输入层单向传递到输出层,同一层神经元之间互不传递信息,每个神经元与邻近层所有神经元相连,连接权用Wij表示。各神经元的作用函数为Sigmoid函数,设神经网络输入层的p个节点,输出层有q个节点,k-1层的任意节点用l表示,k层的任意节点用j表示,k+1层的任意节点用l表示。Wij为k-1层的第i个神经元与k层的第j个神经元相连接的权值。k-1层的节点i输出为O(k-1)i,k层节点j的输出为:

k层节点j的输出为:

Okj=f(netkj)

设训练样本为(X,Ye),X为p维向量,加到输入层;Ye为q维向量,对应于期望输出;网络的实际输出Y也是q维向量。网络在接受样本对的训练过程中,采用BP算法,其权值调整量为:

ΔWij=-ηδkjO(k-1)i

其中,对于输出层为:

δkj=yj(1-yj)(yej-yj)

对于非输出层为:

η为训练步长,取0<η<1。

用样本集合反复训练网络,并不断修改权值,直到使实际输出向量达到要求,训练过程结束〔3〕。

上述人工神经网络可以完成多种信息处理任务,如从二进制数据中提取相关知识,完成最近邻模式分类,实现数据聚集等。而本文要用的是其极强的数学逼近映射能力,即开发合适的函数f:ARnBRn,以自组织的方式响应以下的样本集合:(x1,y1),(x2,y2)…,(xm,ym),其中yi=f(xi)。这里描述的是一般的数学抽象,像识别与分类这些计算都可以抽象为这样的一种近似数学映射。

所谓诊断,实质上是一个分类问题。即根据候诊者的症状,医学检查结果(如体温、心跳等)等一些情况,它们可以用一向量(e1,e2,…,em)来表示,将其归类为病人或非病人。这也可以转化为寻找一差别函数f使得:

(1)f(e1,e2,…,em)>ε,(e1,e2,…,em)∈T

(2)f(e1,e2,…,em)>ε,(e1,e2,…,em)T

其中集合T表示患病。

因此,病情诊断最终也可作为一类函数的逼近问题。

而许多研究已表明,前向神经网络可作为非线性逼近的标准型。对于实数空间的任一函数,只要它满足一定的条件,一定存在唯一的具有单一隐层的前向网络作为它的最优最佳逼近。而含有两个隐含层的前向网络可在任意的平方误差内逼近某一实函数〔3〕。

诊断步骤

肺癌病例数据选自1981~1994年在某医院住院的病人,共计551例。其中486例(88%)经病理学、细胞学诊断证实为肺癌。每一病例都包括多项数据,其中用于诊断的数据项有:病人的一般情况(如年龄、性别等),家族史、既往史、吸烟史、术后病理、X射线检查、CT检查、纤维支气管镜检查、PAT痰检等多达58项。因此,原则上58项数据应作为神经网络的输入项,而神经网络的输出值就是病人是否患肺癌的结果。

1.网络训练集的确定:在最原始的551例病人数据中存在着各种各样的差别,如性别差异(419例男性,132例女性),诊断结果的差异(486例经证实为肺癌),所患肺癌种类的差异(鳞癌、小细胞癌、大细胞癌等),患病程度上的差异(早、中晚期的不同)等等。显然,训练数据集应最大限度地保证兼顾各种病例情况。经过仔细筛选,选择了含有460个病例的集合作为肺癌诊断用的网络的训练集。

2.神经网络输入和输出数据的预处理

按照人工神经网络的理论,神经网络的输入输出数据都应该属于(0,1)区间的实数,为此我们需对原始数据进行如下的规一化处理:

其中xi为原始数据项,而Max=max{xi∶xi∈X},Min=min{xi∶xi∈X}。这里X为原始数据集。经过(7)式变换后,yi将在(0,1)区间。因此,可作为神经网络的输入输出。

3.应用神经网络进行肺癌诊断

将描述病人各种情况的数据作为前向网络的输入数据加到其输入端,并按(1)~(6)式计算各神经元的输入和输出,同时调整神经元之间的连接权值以使网络的输出和实际的病例情况相符。即当病人确实患肺癌时网络的输出结果也恰好指示为肺癌,反之亦然。如果对所有的训练样本集网络的输出基本上(95%或更高)能保证与实际结果一致,则训练过程结束。我们认为神经网络已建立起病人的各种因素与他是否是肺癌患者之间的函数映射关系。对于一个新的候诊病人来说,只要将他的情况输入到训练好的神经网络中去,根据网络的输出结果就可以知道他是否已患肺癌。

表1基于不同发病因素的诊断网络模型

类型训练集精度测试集精度

基于遗传因素的诊断网53.8%46.3%

基于个人生活习惯的诊断网57.1%44.9%

基于病症的诊断网89.4%83.3%

基于医学检查结果的诊断网98.5%92.6%

上述结果表明不同类型的因素应分开来考虑。于是我们将58项输入数据分成四类,这四类有各自的BP诊断网,依次称为诊断一、诊断二、诊断三、诊断四。它们先单独测定,然后再将它们各自的结果综合起来得出最后的判断。

上述四种诊断网络所得结果的可靠性各不相同。其中,根据医学检查结果所作的诊断准确性最高,因此在最后的综合分析中要重点考虑它的诊断结果,我们给它设一个相对最高的权值。其次,根据病人的症状所作的诊断往往也具有较高的准确性,因此给它的权值也较高,但比医学检查结果的稍低。其他两类因素在有关肺癌的诊断中仅具参考作用,因而所设的权值相对较小。转

最后的结果O为:

O=a1.O1+a2.O2+a3.O3+a4.O4

a1+a2+a3+a4=1

其中Oi,ai,i=1,2,3,4分别为各诊断网的输出及其对应的权值。

当O>0.5时最后的诊断结果为患肺癌,反之则正常。对所有的病例数据经上述方法的诊断结果见表2。

表2神经网络对肺癌诊断结果分析

神经网络

诊断结果训练数据测试数据

肺癌患者非肺癌患者肺癌患者非肺癌患者

+4602253

-038122

其中对于训练集,肺癌病人的正确检出率为100%,非肺癌病人误诊率为5%。对于测试集,肺癌病人的正确检出率为96.2%;非肺癌患者正确检出率为88%,误诊率为12%。

讨论

1.本研究所采用的人工神经网络的肺癌诊断方法的结果较好地符合了已知数据,具有较高的准确性,特别是对于肺癌患者一般都能准确地做出诊断,有利于肺癌的早期发现和治疗。

2.要想进一步提高该方法的准确性,应该注意收集更多更全面的病例数据。人工神经网络主要是利用它能自动从数据集中抽取函数的关系的功能。如果我们所使用的数据越多越全面,则其中所蕴含的事物本身的规律性就越强,利用人工神经网络从中所抽取的函数关系就越具有普遍性,因而就更准确。

3.实现对肺癌的诊断的关键在于准确找到罹患肺癌的判定函数,可利用前向网络的函数逼近功能来实现。但是这里涉及到两个问题。首先,由于差别函数和预测率函数都是利用人工神经网络从已知的病例数据集中抽取出来的,它实际反映的是这些数据集中输入输出对的映射关系。因此要想保证诊断具有较高的准确性,就应该使用来建立函数关系的这些数据集(称训练集)具有充分的代表性,即这些数据应基本蕴含肺癌诊断的医学原理。这就涉及到如何选择网络合理的训练集及关键的输入项。另一个问题涉及到神经网络本身的要求,即网络的输入输出数据值都应在区间(0,1)中。这可以通过数据的编码和归一化来实现。

4.由于某些原因有些病人的病例数据不完整,约占总病例数据的10%左右。显然,如果按照传统的方法来建立肺癌病人的诊断模型〔4〕,这些有缺项的数据是不太好处理的,但是由于人工神经网络有较强的容错性,输入数据在某些项上的错误对网络最终结果的正确性影响不大。

参考文献

1.焦李成.神经网络系统理论.第1版.西安:西安电子科技大学出版社,1995,3

2.WangZhenni,ThamMingT,MorrisA.MultilayerFeedforwardNeuralNetworks:ACanonicalformApproximationofNonlinearity,IntJ.Control,1992,56(3):655~672.

3.庄镇泉,等.神经网络与神经计算机.北京:科学出版社,1992.

人工神经网络范文第3篇

能否结合分析和归纳的优点设计出一种新的算法,使用近似的先验知识结合可用数据来形成一般假设。这有别于使用纯粹的归纳学习算法时,基于特定学习任务的先验知识来选择设计方案。

例如:在利用神经网络解决问题时,设计者必须选择输入和输出数据的编码方式、在梯度下降中被最小化的误差函数、隐藏单元的数量、网络的拓扑结构、学习速率和冲量等。在选择这些参量时,也可将领域特定的知识嵌入到学习算法中。

但结果仍然是归纳算法反向传播的一个实现。新的系统能将先验知识作为显式的输入给学习器,训练数据也同样作为显式输入。这样可以形成通用算法,但利用了领域的特定知识。即:最终构造的是领域无关算法,这种算法使用显式输入的领域相关的知识。

KBANN学习方法

将领域理论和训练数据结合起来进行搜索的做法可以将其看作是一种搜索多个可选假设空间的任务。为了将大多数学习任务刻画为搜索算法,需要定义待搜索的假设空间H,搜索的开始点为初始假设ho以及指定搜索目标的判据G。

用这种方法,领域理论B被用于建立一个与B一致的初始假设hO。然后以这个初始假设ho为起点应用标准归纳方法。在设计神经网络网络时可以利用先验知识确定初始网络的互联结构和权值,此初始设计的网络假设利用反向传播算法和训练数据被归纳精华。

从一个与领域理论一致的假设开始搜索,使得最终输出假设更有可能拟合此理论。这种方法被用于KBANN(Knowledge―Based Artificial NeuralNetwork,基于知识的人工神经网络)算法中。

利用人工神经网络自动构建应用系统的性能分析模型。以往为应用程序建模主要采用统计分析的方法。但随着应用程序可调参数空间的增大,如果仍使用传统的统计方法建立性能分析模型,必然会对输入参数做简化假设。

这种建模方法只能预测一些粗略的趋势预测,不能顾及每个输入参数对性能的影响,尤其是不能预测在参数空间内各种组合对性能的影响。基于这种现状考虑使用人工神经网络进行性能分析建模。KBANN算法使用先验知识的方法是将假设初始化为完美拟合领域理论,然后按照需要归纳地精华此初始假设以拟合训练数据。

KBANN与纯归纳的反向传播算法比较

理论比较:两者的关键区别在于执行权值调节所基于的初始假设。在有多个假设能拟合数据的情况下,KBANN更有可能收敛到这样的假设,他从训练数据中泛化与领域理论的预测更相似。

另一方面,反向传播收敛到的特定假设可能是小权值的假设,它大致对应在训练样例间平滑插值的泛化偏置。KBANN使用一个领域特定的理论来偏置泛化,反向传播算法使用―个与领域无关的语法偏置。从图例中可以看出KBANN算法效果好于传统的纯归纳反向传播算法。

KBANN是结合分析的归纳学习的初始化假设途径中的一种。这种途径由一个完美的拟合领域理论的假设开始梯度下降搜索,然后在需要时改变此假设以最大程度拟合训练数据。该算法也有一定的局限性,如:只能使用命题领域理论。如果领域理论不是很精确,KBANN可能被误导,从而其泛化精度变得低于反向传播。但总体上该算法在解决实际问题中能获得较好效果。

人工神经网络范文第4篇

随着我国经济的快速发展,大量的工程建设也相继展开,同时在工程建设中也出现了边坡稳定性的问题,而这些边坡是影响工程建设质量的重要因素。边坡的稳定性是工程建设研究的重要方向,在建筑工程、道路工程等很多工程中都与边坡的稳定性有关。边坡工程是一个不断变化的动态过程,其变形破坏机理非常复杂。边坡稳定的因素有很多,如地质因素、工程因素等,还有其本身的不确定性。边坡的稳定性对工程建设具有重大的影响,因此,如何科学合理的设计边坡工程对工程建设的顺利进行具有非常重要的意义。目前,边坡稳定性的评价方法有很多,但是这些方法由于受到人为因素的影响,且应用起来有不确定性,并没有得到广泛的应用。本文利用人工神经网络的知识来评价边坡的稳定性,通过人工神经网络结构上的特点探索影响边坡稳定性的因素,从而保证边坡工程的稳定性,促进工程建设的快速发展。

关键词:人工神经网络;边坡工程;稳定性;贡献

Abstract:With the rapid development of our country's economy, a lot of engineering construction, one after another in the engineering construction at the same time also appeared a slope stability problem, and the slope are important factors affecting the quality of project construction. Slope stability is one of the important direction, construction research in construction engineering, road engineering, etc. Many projects are related to the stability of the slope. Slope engineering is a constantly changing dynamic process, the deformation failure mechanism is very complicated. Slope stability factors are many, such as geological factors, engineering factors and so on, and its uncertainty. Slope stability has a significant influence on engineering construction, therefore, how to scientific and reasonable design of slope engineering smooth going on of the project construction has very important significance. At present, the slope stability evaluation method are many, but these methods under the influence of artificial factors, and the application to have uncertainty, has not been widely used. In this paper, using the knowledge of the artificial neural network to evaluate the slope stability, by artificial neural network structural characteristics to explore the influencing factors of slope stability, thus ensuring the stability of the slope engineering, to promote the rapid development of engineering construction.

Keywords: artificial neural network; Slope engineering; Stability; Contribution to the

中图分类号: TP183文献标识码:A

1 边坡稳定性的研究现状

边坡的变形和破坏会对工程建设造成重大的影响,边坡的稳定性受到很多因素的影响,从范围上来说,主要包括自然因素和人为活动因素。水文、地质、人为工程活动都可能造成边坡稳定性的破坏,其中边坡应力的变化和发展是造成边坡稳定性破坏的根本原因。具有代表性的造成边坡失稳的因素如下:地下工程开挖后,由于地下土层应力的突然释放对边坡原有应力状态的影响;边坡上堆积物的载重传播到边坡上的影响;边坡土层暴露在自然环境中遭受外部环境风化的影响;地下水的流动对边坡土层强度的影响。

工程地质是边坡稳定性问题需要考虑的重要因素,它主要有以下两个主要任务:第一是要准确的评价和预测与人为工程活动关系密切的天然边坡和人工边坡的稳定性、变化规律和发生破坏的几率;第二是为科学合理的设计边坡、保证边坡的稳定性、采取有力的边坡防治措施提供准确可靠的依据。而边坡问题的出现总是和边坡的变形和破坏有关,为了准确的评价和预测边坡工程的稳定性,首先要确定边坡是否可能发生变形与破坏以及变形和破坏的方式和规模。因此边坡稳定性的工程地质要分析和研究边坡变形和破坏的规律。边坡变形和破坏表明了边坡土层在不同的条件下变化的过程,同时为边坡变形破坏力学模型的建立提供了重要依据。

边坡工程稳定性的研究边坡工程的重要组成部分,越来越多的专家和研究人员加入到边坡稳定性研究的队伍中,它会随着边坡工程的建设一直发展下去。

2 人工神经网络概述

2.1 人工神经网络的概念

人工神经网络是人工智能科学的一个重要分支,在21世纪得到了快速发展,通过人工神经元之间的连接来处理网络信息,来实现类似人的活动和行为,以网络元件建立知识与信息的关系,而构成的一种信息处理体系。神经元之间的变化过程决定了网络的学习。神经网络在学习、信息处理、网络模式识别等方面起着重要的作用,因此,它能将所有的控制因素考虑进去。

2.2 评价信息表达

由于边坡稳定性的影响因素很多,定性的数据和资料错综复杂,因此,要把这些定性的数据进行量化,然后再输入神经网络。边坡结构的高度、坡角等数据可直接进行实际测定;岩体结构类型和质量类别等无法直接测定的数据要通过等级数字代码来确定;岩体的岩性、破坏类型等定性数据则通过数字代码来确定。将这些定性的数据进行量化处理后,所有的信息数据就可以通过神经网络来处理,同时还能影响边坡稳定性因素的影响程度。显而易见,当我们获得更多的原始信息,就能更加准确的确定边坡的特征,同时表达边坡稳定性因素的关系也更加复杂,通过神经网络的计算,就能确定边坡稳定性的评价信息,也就是边坡的稳定状态。

2.3 人工神经网络的算法

人工神经网络是通过对人类大脑的结构和运行模式进行研究而模拟其结构和行为的工程系统。从20世纪40年代开始,人工神经网络的数学模型被第一次提出,从此人工神经网络的研究得到了快速发展,随后很多专家和研究人员提出了其他的模型,极大地丰富了人工神经网络的研究内容。

近年来,前馈神经网络模型BP是在工程建设中应用最为广泛的模型,其结构由输入层、隐含层和输出层三部分组成,其中输入层由N个神经元组成,隐含层由P个神经元组成,输出层由q个神经元组成。假设有i个学习样本,F为输出层神经元的平方误差,就构成了BP网络结构。在学习的过程中,神经元连接出现的错误为网络输出的误差,输入层接收输出层的神经元的误差后,分配给每一个神经单元,最终确定各层神经元的参考误差。

前向计算过程和误差接收过程共同组成了BP网络学习过程,其分为以下三步进行:

(1)网络初始化:输入学习率a和b,确定学习误差e,确定权重矩阵U、V的初始值;

(2)确定学习样本的输入值和期望输出值,计算网络节点的具体数值,计算输出层和隐含层的误差,最后对各边权值进行调整;

(3)通过改变学习效率a和b,使BP算法更加合理,重复进行计算一直到代价函数F小于学习误差e,整个学习过程就结束了。

3 人工神经网络在边坡稳定性中的应用

由于影响边坡稳定的因素的多样性和不确定性,这些影响因素和边坡稳定性之间的关系非常复杂,所以边坡工程是一个极其复杂的非线性系统。而人工神经网络通过人工神经元之间的连接来获取网络信息,它能解决复杂的非线性问题,所以人工神经网络在边坡工程稳定性中的应用是非常必要的。通过对现实中的边坡工程进行学习,人工神经网络把学习得到的结果储存起来,并作为网络的权值。输入影响边坡工程稳定性的各种因素,包括定性和定量因素,通过人工神经网络系统的计算和处理,就会输出边坡稳定性的实际情况,人工神经网络就会建立影响边坡稳定性的因素和边坡稳定性现实情况的非线性关系。人工神经网络通过建立的这种非线性关系就能够对新的边坡稳定性做出详细准确的评价。大量的应用实例表明,通过人工神经网络对边坡工程的稳定性进行评价是一种切实可行且科学合理的方法。

4 结语

通过人工神经网络在边坡稳定性中的应用实例可以看出,人工神经网络对边坡稳定性的应用具有较好的适应性,并且可以准确地分析和评价边坡工程的稳定性。影响边坡稳定性的定性和定量因素会被纳入到人工神经网络系统中,因为人工神经网络是以边坡工程变形和破坏的实例作为主要内容,所以学习样本的准确性和内容的完备性决定了边坡工程稳定性的评价是否准确,如果信息准确完备,就能达到预期的效果。人工神经网络在边坡稳定性评价中具有很好的实用性,相信在以后的边坡工程建设中会得到广泛的应用。

参考文献

[1] 童树奇.人工神经网络在边坡工程中的应用研究[J]. 广东土木与建筑. 2006(09).

[2] 陈华明.基于神经网络技术的边坡稳定性研究[J]. 科技创新导报. 2007(35).

[3] 熊锐,彭辉,刘德富.人工神经网络在边坡工程中的应用[J]. 三峡大学学报. 2005(06).

人工神经网络范文第5篇

关键词:人工神经网络;信息处理;风险评估

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)06-1285-02

Research on the Application of Artificial Neural Network

LI Hong-chao

(China University of Petroleum (East China), Qingdao 266580,China)

Abstract: Artificial neural networks are part of an integrated artificial intelligence, it is proposed is based on research of modern neuroscience. With the continuous development of artificial neural networks, and their use more widely. This article first analyzes the basic concepts and features of artificial neural networks, from six aspects of information, medicine, psychology and other details of the application of artificial neural networks.

Key words: artificial neural network; information processing; risk assessment

1 人工神经网络

人工神经网络,英文名为“Artificial Neural Network”,简称ANN,它充分分析大脑神经突触联接的结构特点,对其进行模拟,然后进行信息处理。简单来说,人工神经网络就是对人脑结构、人脑功能的模仿。它的特点有很多,比如非线性、非局限性、非常定性、非凸性等。这些特点铸就了人工神经网络的各种功能,促进了它的应用。

2 人工神经网络的应用

随着人们对人工神经网络的不断研究,人工神经网络的作用越来越大,给人们提供了更好的服务,下面就以人工神经网络在信息领域、医学、经济领域、控制领域、交通运输、心理学六个方面分别介绍其应用。

2.1 信息领域

人工神经网络在信息领域的应用分为两个方面,一个是信息处理,一个是信息识别。

1)信息处理

由于现代信息的多样化和多变性的特点,信息处理就变得复杂起来,人工神经网络可以对人的一部分思维能力进行模仿甚至代替,解决传统信息处理的困难。在通常情况下,人工神经网络可以自动诊断问题,开启问题求解模式。另外,人工神经网络系统的容错性能高,当其连接线遭到破坏,自身的组织功能还是可以保持它的优化工作状态。因此,军事系统充分利用这一优势,在其电子设备广泛应用人工网络信息系统。

2)模式识别

这项功能的理论基础有两个,一个是贝叶斯的概率论,另一个是申农提出的信息论。模式识别主要是分析和处理存在于目标体上的各种形式的信息,然后在处理和分析的基础上对目标体进行描述、辨认等过程。随着人工神经网络在模式识别中的应用,传统的模式识别逐渐被取代。随着模式识别的发展,已经逐渐应用到语音识别、人脸识别、文字识别等各个方面。

2.2 医学领域

人体是非常复杂的,在医学中,想要弄清楚疾病的类型、疾病的严重情况等,仅仅依靠传统的望闻问切诊断方法是远远不够的,医学的发展需要运用新技术。人工神经网络应用于医学中,可以分析生物信号,观察信息的表现形式以及研究信息的变化规律,将这三者的结果进行分析和比较,从而掌握病人的病情。

1)生物信号的检测与分析

在医学诊断中,医生基本上都是通过对医学设备中呈现出来的连续波形进行分析。人工神经网络中有一套自适应的动力学系统,该系统由一些数量庞大的简单处理单元互相连接。因此,它具有多种功能,比如Massively Parallelism,即所谓的巨量并行,分布式存贮功能以及强大的自组织自学习功能等。用常规处理法处理生物医学信号分析非常困难,而人工神经网络的功能可以有效解决难题,其在生物医学人脑检测与处理中的应用非常广泛,比如分析电脑信号,对心电信号进行压缩处理,医学图像的识别等,在很大程度上促进了医学的发展。

2)医学专家系统

对于传统的专家系统而言,其工作原理基本上就是先由专家根据自己多年的医学经历,总结自己的经验和所掌握的知识,以某种规则的形式将这些经验和知识存储在电脑中,建立一个专家的知识库,然后借助逻辑推理等方式开展医疗诊断工作。但是,随着专家知识的不断增长和经验的日益丰富化,数据库的规模会越来越大,极有可能产生知识“爆炸”的现象。同时,专家在获取知识的过程中也会遇到困难,导致工作效率低下。人工神经网络中的非线性并行处理方式解决了传统专家系统中的困难,在知识推理、自组织等方面都有了很大的提高,医学专家系统也开始逐渐采用人工神经网络系统。

在医学领域中,麻醉和危重医学的研究过程中,存在很多的生理方面的分析与检测工作,人工神经网络系统有良好的信号处理能力,排除干扰信号,准确检测临床状况的相关情况,有力促进了医学的发展。

2.3 经济领域

经济的快速有效增长是基于人们对市场规律良好的掌握和运用以及对经济活动中的风险评估,及时应对和解决,这样才能保障经济活动的快速发展。人工神经网络应用于经济领域,主要有预测市场价格和评估经济风险两个方面。

1)预测市场价格的波动情况

商品的价格主要是由市场的供求关系和国家宏观调控来变化的。国家的宏观调控是客观存在的,我们可以在遵循国家宏观调控的前提之下分析市场的供求关系,从而预测商品的市场价格。在传统的统计学方法中,在预测价格波动时因其自身的局限性,难以做出科学的判断。人工神经网络可以有效处理不完整数据和规律性不强的数据,它是传统统计方法所不能达到的。人工神经网络系统基于市场价格的确定机制,综合分析影响商品价格的因素,比如城市化水平、人均工资水平、贷款情况等,将这些复杂的因素综合起来,建立一个模型,通过模型中的数据显示,科学预测商品的市场价格波动情况,有效利用商品的价格优势。

2)评估经济风险

经济风险,即Economic Exposure,它指的是由于经济前景的一些不确定因素,导致经济实体出现重大的经济损失。在处理经济风险的时候,做好的措施就是防患于未然,做好评估和预测,将经济风险扼杀在萌芽时期。人为的主观判断经济风险具有一定的可靠性,但是也存在很多的不足。将人工神经网络系统应用于评估经济风险,可以有效弥补人为判断风险的不足。人工神经网络先提取具体风险来源,然后在此基础上构建出一个模型,这个模型一般要符合实际情况,通过对模型的研究,得出风险评价系数,最终确定有效的解决方案。

2.4 控制领域

随着人工神经网络的不断发展,人们开始研究其在控制领域的应用。比如现在的机器人的摄像机控制、飞机控制等。它主要是通过控制图像传感器,再结合图像表面的非线性关系,进行计算和分析,另外,它还可以将图像传感器瞄准到处于运动状态中的目标物上。

2.5 交通运输

交通问题具有高度的非线性特点,它的数据处理是非常庞大和复杂的,这与人工神经网络有很大的吻合性。就目前来讲,人工神经网络应用到交通领域有模拟驾驶员的行为、分析交通的模式等等。

2.6 心理学

人工神经网络是对人脑神经元的信息处理能力的模拟,本身就带有一定的抽象性,它可以训练很多的认知过程,比如感觉、记忆、情绪等。人们通过对人工神经系统的不断研究,多个角度分析了其认知功能。就目前来看,人工神经网络可以分析人的认知,同时对认知方面有缺陷的病人进行模拟,取得了很大的进步。当然,人工神经网络应用于心理学领域也存在很多的问题,比如结果精确度不高、模拟算法的速度不够等,这些都需要人们持之以恒的研究。突破这些难题,促使人工神经网络有效应用于心理学领域。

3 结束语

综上所述,随着人工神经网络的不断发展,它特有的非线性适应能力和自身的模拟结构都有效推动了其应用范围。我们应该不断运用新技术,不断完善人工神经网络的功能,拓宽其应用范围,促进其智能化、功能化方向发展。

参考文献:

[1] 毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2011(12).

[2] 林和平,张秉正,乔幸娟.回归分析人工神经网络[J].吉林大学学报:信息科学版,2010(3).

[3] 李雷雷.人工神经网络在建筑工程估算中的应用研究[D].华北电力大学,2012.

[4] 隋英,付春菊,高兴燕.人工神经网络研究的发展与应用[J].大众科技,2010(5).

人工神经网络范文第6篇

关键词:人工神经网络;自动化;采煤技术;综放工作面

随着我国国民经济总量的增大,煤炭能源的消耗也是越来与而大,同时也对煤矿的开采提出了更高的要求。近年来,国家对煤矿安全越来越重视,管理也更加严格,很多不合安全规范的小型煤矿被关停。想在现有环境下提高采煤量,就必须加大科技方面的投入,采用最先进的自动化设备技术,宗放自动化采煤是当前世界上最为先进的采煤技术,是提高采煤生产效率的关键技术之一。人工神经系统可以较好的辅助综放工作面的工作,可对综放工作面进行控制生产,对提高采煤效率有着极为重要的意义。

一、人工神经网络的简单介绍

人工神经网络是一种非线性、交叉的科学,它通过计算机系统对生物神经信息进行模拟来解决实际工作中的问题,属于非线性、交叉的科学。经过近些年的发展,人工神经网落技术在自然科学、社会科学等各个领域的应用已经得到广泛应用。人工神经网络的广泛应用自然也推动了人工神经网路的研究,现在出现的具有不同功能作用的网络结构和算法系统,就是近年来研究的成果,人工神经网络的理论系统也日趋成熟,适用范围也越来越广。

通过模拟人体神经系统信号传输原理,人工神经网络的各个节点也与人体内的神经元相似,能够通过连接权值进行非常紧密的联系。在实际应用中,如果神经元的输出大大超过了网络内部神经元阀值的时候,这个人工神经网络就会输出信号,这个信号也就是成为了下个神经元输入的信号。人工神经网络是模拟人的神经系统创建的,自然与人的神经系统很相似,要通过不断的应用、训练才可以保持较为良好的状态,在实际操作中,人工神经网络的性能是由各个节点的激活函数、网络的拓扑结构以及网络的训练方法决定的。较为常用的BP算法就是通过对网络连接权值的不断调整来达到训练人工神经网络的目的。

二、人工神经网络的相关建模方法

就现有研究来看,人工神经网络的建模方法主要包括模糊建模和混合建模,这些具体而有效的建模方法给采煤综放工作面生产过程自动化提供了较为科学的理论指导,是提高采煤效率和降低采煤工人劳动强度的有效举措之一,以下是对人工神经网络建模的具体介绍。

(一)人工神经网络的模糊建模方法

在煤矿的实际工作中,传统的数学建模方法有其局限性,不能适应较为复杂的问题,严重影响了煤矿的生产效率。模糊理论正是在这种大背景下出现的,它通过有效的实验方法,将实验数据总结汇总,将实验汇总的数据作为模糊规则,然后依据相关模糊理论进行实际的人工神经网络建模。这种建模方法的优势是能够较为快速的预测出新输入数据接下来会输出的结果。煤矿在应用模糊建模方法后,对于生产过程的预算也就更为准确,便于企业做出相关决策。整个模糊建模方法主要由三个部分组成,既模糊化、推理机制、解模糊,这是模糊建模的一个有机整体,是这种建模方式的核心价值所在。

(二)人工神经网络的混合建模方法

除了模糊建模方法之外,人工神经网络还有一种混合建模方法,这种建模方法是依托智能算法的进步而出现的,现已广泛应用于煤矿生产。近年来,为了适应人工神经网络的发展,包括粒子群算法和遗传算法在内的智能算法取得了较大的发展,这种建模方可以对实际工作中比较复杂的参数进行优化处理,进而提高生产效率。

1.粒子群算法建模

粒子群建模简单来说就是利用较为成熟的计算机语言的算法对相关生物的群体行为进行模仿,然后进行建模,在具体操作中,粒子群算法建模要避免碰撞而飞离最近的个体、飞向目标、飞向群体中心,这也被称为粒子群建模方法的三大原则。

2.遗传算法

遗传算法就是将计算机技术和进化论联合运用于人工神经网络建模。在实际工作中,遗传算法应用了当前最为先进的编码技术和遗传操来做铺垫。在Holland体系中,GA就是一种较为简单的遗传算法,各种不同形式的二进制串就是其具体的操作对象。但在煤矿工作中,如果是要通过参数来进行问题分析,遗传算法的研究对象就可以是一个参数组,在这个参数组中,遗传算法具体是通过这个参数组的适应度来表现其好坏情况。通常情况下,遗传算法在具体操作中就是通过对基础的参数群进行有效分析,其选择个体是依据这个个体的适应值比例,然后通过交叉和变异进的方法诞生下一个组种群,这个过程可以持续下去,直到满足生产需求的参数值出现为止。遗传算法也是一种优选的方法,它将遗传算法的优点和人工神经网络的特点进行了有机结合,通过遗传算法可以进行前期模块的优选,建立一个合乎现实情况的非线性模型,然后进行与模糊建模方法相类似的实验数据收集,分析最为有效的网络结构,在满足预测的情况下实现了参数的优选。

三、人工神经网络应用在采煤技术上效果

通过上文介绍,在采煤中利用人工神经网络是为综放工作面生产过程实现自动化提供相对应的理论依据,减轻采煤的劳动强度并提高采煤效率是其目的所在;人工神经网落还能够对采煤工作中的相关生产设备的性能做有效的检查,能够在最快的时间内发现机械故障,及时的排除机械故障,极大的降低了煤矿安全事故的发生率;人工神经网络还能够将采煤生产设备工作面的具体信息,快速的反馈到地面,然后通过先进的计算机技术对数据进行相关处理,实现信息资源共享,采煤过程中对人工的依赖也会降低,为日后的无人操作打下了坚实的基础。

将现代化的人工神经网络应用于采煤,可以实现对综放工作面自动化的有效控制,它将整个采煤的综放工作面看做是个有机的整体,在条件允许的情况下进行仿真模拟,通常情况下都是应用MATLAB软件来及进行仿真模拟,可以系统化的管理整个采煤过程,排除采煤过程中的相关机械故障,在提高采煤效率的同时实现了安全生产,人工神经网络值得在采煤技术中大力推广、应用。

四、结束语

可以将综放工作面看做是整个采煤系统实现自动化,这也是日后采煤自动化发展的一个重要方向,这种思维模式有效避免了在没有考虑综放工作面控制功能而进行自动化的情况。多年的实践表明,神经网络技术应用于煤矿开采中可以有效分析、诊断采煤工作中的一些问题,为日后采煤规划提供了强而有力的依据,其在采煤领域的应用空间还非常宽阔,值得进一步研究、拓展。

参考文献:

[1]郑胜友.人工神经网络在采煤技术上的应用[J].科技风,2012(10).

[2]董丽丽,乔育锋,郭晓山.遗传算法和人工神经网络在煤矿突水预测中的应用研究[A]. 智能信息技术应用学会.Proceedings of 2010 International Conference on Management Science and Engineering (MSE 2010) (Volume 3)[C].智能信息技术应用学会:,2010(5).

[3]彭学前.采煤机故障诊断与故障预测研究[D].南京理工大学,2013.

[4]李家.人工神经网络在露天矿爆破参数优化中的应用研究[D].内蒙古科技大学,2013.

人工神经网络范文第7篇

关键词 人工神经网路 林分材种出材率 BP算法

引言

林分材种出材率是林分调查工作的重要指标,它可以进一步评价森林木材资源的经济价值,而研究森林木材,又可以合理正确的经营森林资源,达到人与自然和谐相处的目的。林分林种出材率就是原木材积于立木材积之比,我国现行的森林采伐限额制度、查处乱砍滥伐林木案件、制订林业发展规划、计划和编制森林经营方案、预测和计算、开展森林资源资产评估等等,都需掌握积蓄量和材种的出材率的指标。我国已经不断学习借鉴前苏联的先进技术编制自己的材种出材率表了,随着我国天然林保护工程的全面实施和林业分类经营的逐步推行,人工商品林比例的不断提高,我国森林结构和性质也有所变化,所以传统的统计学以难以解决很多问题,运用人工神经网络在林业生成与运用则是一个不二之选的方法,对林业的发展也有很大的理论价值和推广意义。

人工神经网络(Artificial Neural Network-ANN),简称“神经网络”,是由大量处理单元过极其丰富和完善的互联组成的非线性、自适应信息处理系统。它的提出是基于现代神经科学研究成果上,以模拟大脑神经网络处理、记忆信息的方式进行信息处理。涉及学科较多,较为广泛。

1 研究内容和方法

平均树高,平均胸径,林种年龄,立地质量,积蓄量,保留密度等等因素都会影响林分材种出材率,而林分林种出材率具有非线性和非确定性的因素,一般采用统计分析方法进行预测采样,需要大量的林木样本元素,模型涉及的许多参数无法或很难有较高的精确度。

人工神经网络(Artificial Neural Network)具有非线性,非局限性,自适应,自组织,自学习的特征,相较于传统的统计学方法,不同之处在于它的容错性和储存量,通过单元之间的相互作用,相互连接能模拟大脑的局限性。ANN的独到之处,也使得人们注意了ANN,并且广泛的应用于各种学科之中,如心理学,逻辑学,数学模型,遗传算法,语音识别,智能控制等等。当然,运用人工神经网络对林分林种出材率进行预测也同样具有很好的效果与实现。

研究主要完成,通过对数据的采样和分析处理,对神经网路预测模型的结构,参数进行优化,再应用到林分材种出材率的预测中。以c++程序设计为设计平台,运用人工神经网络中的BP算法,分析各隐含层神经元的数量,训练的次数,隐含层函数,样本数量,进行优化建立林分材种出材率的预测模型。

1.1BP人工神经网络

BP(Back-Propagation Network)神经网络是一种以误差逆传播算法(BP)训练的多层前馈网络,目前应用较为广泛的神经网络模型之一。BP神经网络能学习和存贮多个输入-输出模式映射关系,而且无需事前对这种映射关系的数学方程进行描述。它通过不断反向传播来调整神经网络的权值和阈值,使神经网络的误差平方和最小。BP神经网络模型拓扑结构由三层组成分别是输入层(input)、隐层(hidelaver)和输出层(output layer)。

BP人工神经网络主要以标准BP算法为主,而标准BP算法有存在许多问题,由于是非线性梯度优化算法,就会存在局部极小值问题,使得精确度受限;算法迭代系数过多,使得学习率降低,收敛速度降低;网络对初始化的值存在发散和麻痹;隐节点不确定性的选取。所以引进了几种BP算法:动量BP算法、学习速率可变的BP算法和LM算法(Levenberg-Marquardt)。动量BP算法以上一次修正结果来影响本次的修正,动量因子越大,梯度的动量就越大。学习效率可变的BP算法怎是力求算法的稳定,减小误差。为了在近似二阶训练速率进行修正时避免计算HeSSian矩阵,选择LM算法。所以为了神经网络计算的速度与精确度,所以运用不同的优化算法来改善BP网络中的局部极小值问题,提高收敛速度和避免了抖动性。

2 基于BP人工神经网络和林分材种出材率预测模型的建立

分析了大量的材种出材率的相关资料后,均有非线性的特征,对于模型的建立和预测,传统的识别系统在研究和实践中有很大的问题,而采用人工神经网络,不仅其特征是非线性,而且人工神经网络具有较为稳定的优越性,所以,对于林分材种出材率的预测和建立采用BP人工神经网络。

2.1建模工具

研究采用c++程序设计对数值的计算和预测,对模型进行编译和实现。c++语言是受到非常广泛应用的计算机编程语言,它支持过程化程序设计,面向对象程序设计等等程序设计风格。c++是一门独立的语言,在学习时,可以结合c语言的知识来学习,而c++又不依赖于c语言,所以我们可以不学c语言而直接学习C++。

用c++来模拟BP网络是相对较好的程序设计语言,以面向对象程序设计来设计和实现林分材种出材率的BP算法,直观而简洁。

2.2BP神经网络结构的确定

对于使用BP算法,关键在于隐含层层数和各层节点数。而神经元的输入输出又影响着隐含层层数,而对于BP万罗中的输入输出层是确定的,重点就在于隐含层层数,增加隐含层数可以提高网络的处理能力,是的训练复杂化,样本数目增加,收敛速度变慢等,而隐含层的节点数越多,可以提到其精确度。

研究过程中,多层隐含层会将训练复杂化,所以我们往往选择三层就够了,即一个输入层,一个隐含层,一个输出层的基本单层BP网络结构。最后确定以下四个神经元:平均树高、平均胸径、林种年龄、每公顷积蓄量作为输入单元。输出单元为林分材种出材率。

结论

以BP神经网络建立林分材种出材率的网络模型,使得出材率的精确度提高。根据样本的选取和整理,算法的优化,避免了异常数据和算法的不安全性对神经网络的学习影响,提高了网络的繁华能力,利用数据归一化节约了网络资源,学习负担减轻,避免了训练过程中的抖动与麻痹状态。岁模型的总体分析,减少神经元个数的输入,权值减少,极大的提高了网络训练中的收敛速度,也使得网络的稳定性和容错性提高。

参考文献:

人工神经网络范文第8篇

1.1拓扑结构调节

通过对静态邻域的各种结构以及它们对技术性能影响进行分析后得出,在拓扑适应性方面星形拓扑、VonNeumann拓扑以及环形拓扑最好。此外,人工神经网络技术性能与邻域密切相关,处理复杂问题时小邻域的人工神经网络技术性能较好,但是处理简单问题上大邻域的人工神经网络技术性能会更好。Chend从改进人工神经网络结构的角度出发,提出了一种具有双结构的人工神经网络技术。技术将神经网络单元分为M+1层,其中“1”指顶层,技术通过获得顶层神经网络单元的全局最优值影响其余各层的粒子对最优值的探索,以此提高神经网络单元搜索结果的多样性。该技术考虑到神经网络单元体表现以及粒子个体的表现,并将其作为触发条件控制领域变化从而提高寻优效率。提出了KRTG-人工神经网络技术,通过产生随机动态的网络拓扑结构并将平均值引入到粒子更新公式中,增加了种群的多样性,改善了粒子间信息的传播速度。

1.2结合其他技术改进

相关研究将遗传技术中遗传算子的选择、交叉、变异等过程与人工神经网络技术相结合,提出一种混合技术。改进后的技术提高人工神经网络技术的性能,增加种群的多样性并提高逃离局部最小的能力,可以将差分进化技术和人工神经网络技术相结合,通过两种技术的交叉执行来提高改进技术的效率。白俊强等将二阶振荡和自然选择两种方法融入到人工神经网络技术中,通过二阶振荡对技术速度公式进行更新,通过自然选择提高了神经网络单元中靠近最优值粒子的比重。通过收集粒子的取值信息构建记忆库,让库中信息和粒子自身极值共同决定粒子的寻优方向,从而提高寻优准确性。

2人工神经网络技术在计算机系统中的应用

2.1系统管理模块

系统管理模块主要是系统管理员对系统进行维护操作,包括用户的认证、数据的维护以及系统安全管理。系统用户认证模块,由于系统的用户包括专家用户,负责对评估因子进行筛选确定以及对评估因子进行打分操作;管理员,负责系统维护以及相关数据的录入、修改和删除操作;普通用户,所以系统需要对用户进行认证以便完成与其身份相对应的操作,确保系统安全。系统的后台维护模块主要用来完成数据库导出以及软件维护操作,系统安全管理模块主要对系统的用户权限进行管理。

2.2资源管理模块

资源管理模块主要是用来管理系统所有的安全驾驶理论知识体系的,包括文字、图片、视频和动画。主要操作有插入、修改、删除。文字信息管理模块,面向系统管理员,主要用来管理系统的文字信息,文字信息包括地点名称等信息,文字对应相应的知识点,大多以理论知识和测试题的模式存在于模块中。图片信息管理模块面向系统管理员,主要用来管理图片相关信息,包括图片名称、所属知识点信息。图片和文字一样,用来进行知识的展示。视频信息管理模块面向系统管理员,主要用来管理视频信息,采用人工神经网络技术。人工神经网络技术指以神经元方式在网络中传送音频、视频和多媒体文件的媒体传输技术。

2.3系统关键技术

2.3.1使用人工神经网络作为接口处理规范。

由于本系统是在浏览器中访问,需要访问核心数据库,在这里我们采用人工神经网络技术,可以对系统数据访问接口进行扩展,对数据进行格式化以提高可读性。在系统中我们采用的是标准的人工神经网络格式,其中报文分为报文的头和体两部分。

2.3.2系统网络拓扑结构。

为了保障系统的安全性,我们在这里采用两个服务器:一个是用于数据存储的服务器;另一个是用于用户请求处理的服务器。系统对于用户的使用分为内网用户和外网用户,内网用户是在内部局域网进行访问系统,针对的是学习系统的管理员,外部用户是互联网上的用户,针对的是进行在线学习的学习者。在服务器与内网、内网与外网之间都设置了防火墙,以保障数据的传输安全和数据库的安全。这样的拓扑结构有效地保障了系统的安全性和稳定性,其好处主要包括:人工神经网络三层结构将业务处理和数据处理的服务器分开,有利于系统的维护和升级,保障了系统数据的安全;分布式的网络布局,对于不同的用户有不同的访问方式,多渠道的访问方式有效地避免了不兼容的情况的发生,系统的可用性得到了提高。

2.4数据库设计

所选择的数据库需要有良好数据组织结构,可以使整个系统迅速、方便、准确地调用管理所需的数据,提高整个系统的性能。为了达到上述要求,系统采用神经元数据库。神经元数据库是一个对象——关系型数据库,它提供了开放、全面、集成的信息管理方法,数据存储具有透明性。有了一个高性能数据库作为基础,还需要好的数据库结构,数据库结构设计的好坏将直接影响系统的效率和实现的效果,好的数据结构设计会使得系统具有较快的响应速度,提高数据的完整性和一致性,大大提高整个系统的性能。

3结语

本文应用人工神经网络技术,确立了系统的三层体系结构,将系统分为了表现层、逻辑业务层和数据层;对系统的功能进行了介绍,介绍了所需关键的技术,构建了系统网络拓扑结构,在此基础上完成了对系统数据库的设计;按照上述系统设计对系统的功能进行了实现,展示出系统的一些操作界面与关键技术的实现代码,给用户提供了一个可靠的计算机应用系统。

人工神经网络范文第9篇

关键词:BP算法;神经网络;工业品出厂价格指数

中图分类号:TP183 文献标识码:A文章编号:1006-4311(2012)08-0112-02

0引言

工业品出厂价格指数(PPI)是衡量工业企业产品出厂价格变动趋势和变动程度的指数,是反映某一时期生产领域价格变动情况的重要经济指标,也是制定有关经济政策和国民经济核算的重要依据。

工业品出厂价格指数的调查范围是工业企业出售给本企业以外所有单位的各种生产资料和直接出售给居民用于生活消费的各种生活资料。其中,生产资料包括原材料工业、采掘工业和加工工业3类;生活资料包括一般日用品、食品、衣着和耐用消费品4类。在PPI的结构中,生产资料所占的权重较大,超过了70%;生活资料所占的权重只有不到30%。因此PPI在很大程度上反映的是工业企业生产成本的高低。目前我国PPI覆盖了全部39个工业行业大类,涉及186个种类,4000多种产品。

我国现行的工业品价格指数是采用算术平均法编制的。其中除包括工业企业售给商业、外贸、物资部门的产品外,还包括售给工业和其他部门的生产资料以及直接售给居民的生活消费品。通过工业生产价格指数能观察出厂价格变动对工业总产值的影响。工业品出厂价格指数的计算公式为:工业品出厂价格指数=工业总产值总指数/工业总产量总指数×100%。我国目前编制的工业品出厂价格指数的4种分组:①轻、重工业分组;②生产资料和生活资料分组;③工业部门分组;④工业行业分组。权数计算资料来源于工业经济普查数据。工业品出厂价格指数的权数确定,采用分摊权数。

在市场经济活动中,资源配置是通过价格涨跌引导市场主体的经济活动来完成的。因此,价格的波动对经济运行会有很大的影响,价格总水平的波动也是一个重要的宏观经济现象。通常认为PPI反映的是工业品进入流通领域的最初价格,是制定工业品批发价格和零售价格的基础,而CPI反映的是居民购买消费品的价格。

为抑制通货膨胀,中央银行需要准确把握通货膨胀的先行指标,从而正确把握经济和物价的未来走势并进行前瞻性调控。根据价格传导规律,PPI对CPI有一定的影响。研究表明PPI引导了CPI变动,其原因是生产资料价格指数、生活资料价格指数和原材料、燃料和动力价格指数都引导了CPI变动,PPI可以作为我国通货膨胀的先行指标,政府和学者可以利用PPI预测通货膨胀[1-2]。PPI是一个非常复杂的、受诸多因素影响的非线性系统。如果采用传统的计量经济模型无法很好地提高预测精度。

目前对PPI预测的研究较少,鉴于PPI的时间序列是是非线性的,为了准确和客观地预测PPI,采用人工神经网络预测方法。人工神经网络是目前一种有效的预测方法,大量的仿真实验和理论研究已经证明BP算法是一种有效的神经网络学习算法,它具有很强的处理非线性问题的能力,近年来已经广泛应用到经济领域中。但在实际应用中,BP算法也暴露出一些自身的缺点,如算法容易陷入局部极值点,收敛速度慢等,这使得BP算法只能解决小规模的问题,求得全局最优的可能性较小,这样限制了BP算法在实际中的应用。因此应用改进BP算法的人工神经网络模型预测PPI。

1PPI预测模型的建立

人工神经网络是理论化的人脑神经网络的数学模型,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。其信息的处理是通过学习动态修改各神经元之间的连接权值阈值来实现的。根据某一学习规则,通过修改神经元之间的连接权值和阈值,存储到神经网络模型中,建立输入层神经元与输出层神经元之间的高度非线性映射关系,并通过学习后的神经网络来识别新的模式或回忆过去的记忆。在各种神经网络模型中,80%-90%的模型采用误差反向传播神经网络(简称BP神经网络)或它的变化形式。BP神经网络是前馈网络的核心部分,体现了人工神经网络最精华的部分。1989年Robert Hecht-Nielson证明了对于任何的连续函数映射关系都可以用含有一个隐含层的BP神经网络来逼近。

BP神经网络具有非局域性、非线性、非定常性和非凸性,在信息处理方面具有如下显著特点:BP神经网络具有自适应和自组织能力,通过与外界环境的相互作用,从外界环境中获取知识,把环境的统计规律反映到自身结构上来,并能有机地融合多种信息。当外界环境发生变化时,只需输入新的资料让模型再学习即可很快跟踪环境的变化,可操作性强。BP神经网络模型的建立不需要有关体系的先验知识,主要依赖于资料,只需给网络若干训练实例,BP神经网络就可以通过自学习来完成,完全能够发现其隐含的信息,并有所创新。BP神经网络作为一个高度的非线性动态处理系统,具有很强的容错功能。由于神经元之间的高维、高密度的并行计算结构,神经网络具有很强的集体计算能力,完全可以进行高维数据的实时处理,同时也可以进行分布式联想存储。

工业品出厂价格指数(PPI)数据来源于《中国统计年鉴(2009年)》,PPI数据时间范围为1990年-2008年。在实际应用中,由于所采集的数据跨度较大,为提高训练速度和灵敏性以及有效避开Sigmoid函数的饱和区,一般要求输入数据的值在0-l之间。再有,为保证建立的模型具有一定的外推能力,最好使数据预处理后的值在0.2-0.8之间,把0-0.2和0.8-1.0的空间预留。下面是数据预处理和反预处理算法:①数据预处理法:y=(0.8-0.2)*(x-min(x))/ (max(x)-min(x))+0.2。②反预处理算法:x=(y-0.2)*(max(x)-min(x))/(0.8-0.2)+min(x)。其中:x是工业品出厂价格指数原始数据;y是预处理后的工业品出厂价格指数数据;max(x)和min(x)分别是工业品出厂价格指数原始数据取值范围的最大值与最小值。

我国历年PPI数据按顺序构成一组时间序列,利用时间序列分析方法对我国历年PPI数据时序进行检验识别,可知PPI数据服从4阶自回归模型AR(4),由此模型输入层单元数为4个,输出层单元数为1个。

适当的隐层数目及节点数决定于多种因素。如训练样本的多少、样本噪音的大小以及所面对问题的复杂程度。隐层在BP神经网络中起着很重要的作用,它具有高度的抽象功能,并可从输入单元中提取特征。隐层层数的选择与问题的复杂性有关,为了确保训练后人工神经网络模型的泛化能力和预测能力,应在满足精度要求的前提下取尽可能紧凑的网络结构。一个三层人工神经网络模型就可解决一般函数的拟合、逼近问题。因此三层人工神经网络能满足预报要求。由于BP网络在确定隐层单元数的问题上还没有成熟的理论可依,大都根据经验来定。目前比较有效的方法就是试错法。本文分别组建了隐层节点数从1-35的BP网络,为了防止出现过拟合现象,经过大量试算,最后根据试报效果,确定了较为理想的隐层单元数是6。

传统BP网络的学习算法实质上是一种简单的最速下降静态寻优算法,通常具有收敛速度慢、易陷入局部极小值和网络推广能力不强等方面的缺陷。本文采用MATI AB神经网络工具箱提供的改进快速学习算法,有效克服了传统BP网络学习算法的缺陷。Trainlm训练函数采用Levenberg-Marquardt优化方法,该训练函数的效率优于最速下降静态寻优算法。

2结果

利用1990年-2003年的我国PPI数据作为训练样本,采用改进BP算法的Trainlm训练函数进行训练构建的神经网络,然后采用2004年-2008年的PPI数据作为检验样本,利用训练好的BP网络对2004年-2008年的PPI进行预测,结果见表1。仿真实验表明我国PPI训练样本模拟值和实际值的平均相对误差为0.82%,模拟值和实际值的相关系数为0.994778;我国PPI检验样本预测值和实际值的平均相对误差为0.80%,预测值和实际值的相关系数为0.915313;2007年PPI预测值为102.6,PPI实际值为103.1,预测值和实际值的相对误差为-0.48%;2008年PPI的预测值为107.4,PPI实际值为106.9,预测值和实际值的相对误差仅为0.47%,这都与实际情况相近,结果较为满意。并对2011年和2012年的我国PPI做了预测,PPI预测值分别为107.3和107.6。

3结论

人工神经网络模型能够很好地捕捉我国PPI内在的规律性,无需设计任何数学模型,通过神经元之间的相互作用来完成整个人工神经网络的信息处理,并能得到很好的预测精度。

将人工神经网络模型应用于我国PPI预测,PPI预测值和实际值的平均相对误差为0.80%,预测误差小,PPI检验样本预测值与实际值的线性相关系数为0.915313,预测精度高,模型预测值和实际值能较好的吻合。

参考文献:

[1]孙红英,刘向荣,解玲丽.基于传导模型的2010年价格指数预测[J].辽宁工程技术大学学报(自然科学版),2010,5:941-944.

[2]孙红英,谢仁寿.基于G(1,1)模型的2010年中国价格指数预测分析[J].价值工程,2010,8:12-13.

人工神经网络范文第10篇

原理与方法

神经网络是一个具有高度非线性的超大规模连续时间动力系统。是由大量的处理单元(神经元)广泛互连而形成的网络。它是在现代神经科学研究成果的基础上提出的,反映了脑功能的基本特征。但它并不是人脑的真实描写,而只是它的某种抽象、简化与模拟。网络的信息处理由神经元之间的相互作用来实现;知识与信息的存储表现为网络元件互连间分布式的物理联系;网络的学习和计算决定于各神经元连接权系的动态演化过程。因此神经元构成了网络的基本运算单元。每个神经元具有自己的阈值。每个神经元的输入信号是所有与其相连的神经元的输出信号和加权后的和。而输出信号是其净输入信号的非线性函数。如果输入信号的加权集合高于其阈值,该神经元便被激活而输出相应的值。在人工神经网络中所存储的是单元之间连接的加权值阵列。

神经网络的工作过程主要由两个阶段组成,一个阶段是工作期,此时各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一阶段是学习期(自适应期,或设计期),此时各计算单元状态不变,各连接权值可修改(通过学习样本或其他方法),前一阶段较快,各单元的状态亦称短期记忆(STM),后一阶段慢的多,权及连接方式亦称长期记忆(LTM)〔1〕。

根据网络的拓扑结构和学习规则可将人工神经网络分为多种类型,如不含反馈的前向神经网络、层内有相互结合的前向网络、反馈网络、相互结合型网络等〔2〕。本文的人工神经网络模型是采用BP算法的多层前馈网络。

该模型的特点是信号由输入层单向传递到输出层,同一层神经元之间互不传递信息,每个神经元与邻近层所有神经元相连,连接权用Wij表示。各神经元的作用函数为Sigmoid函数,设神经网络输入层的p个节点,输出层有q个节点,k-1层的任意节点用l表示,k层的任意节点用j表示,k+1层的任意节点用l表示。Wij为k-1层的第i个神经元与k层的第j个神经元相连接的权值。k-1层的节点i输出为O(k-1)i,k层节点j的输出为:

k层节点j的输出为:

Okj=f(netkj)

设训练样本为(X,Ye),X为p维向量,加到输入层;Ye为q维向量,对应于期望输出;网络的实际输出Y也是q维向量。网络在接受样本对的训练过程中,采用BP算法,其权值调整量为:

ΔWij=-ηδkjO(k-1)i

其中,对于输出层为:

δkj=yj(1-yj)(yej-yj)

对于非输出层为:

η为训练步长,取0<η<1。

用样本集合反复训练网络,并不断修改权值,直到使实际输出向量达到要求,训练过程结束〔3〕。

上述人工神经网络可以完成多种信息处理任务,如从二进制数据中提取相关知识,完成最近邻模式分类,实现数据聚集等。而本文要用的是其极强的数学逼近映射能力,即开发合适的函数f:ARnBRn,以自组织的方式响应以下的样本集合:(x1,y1),(x2,y2)…,(xm,ym),其中yi=f(xi)。这里描述的是一般的数学抽象,像识别与分类这些计算都可以抽象为这样的一种近似数学映射。

所谓诊断,实质上是一个分类问题。即根据候诊者的症状,医学检查结果(如体温、心跳等)等一些情况,它们可以用一向量(e1,e2,…,em)来表示,将其归类为病人或非病人。这也可以转化为寻找一差别函数f使得:

(1)f(e1,e2,…,em)>ε, (e1,e2,…,em)∈T

(2)f(e1,e2,…,em)>ε, (e1,e2,…,em)T

其中集合T表示患病。

因此,病情诊断最终也可作为一类函数的逼近问题。

而许多研究已表明,前向神经网络可作为非线性逼近的标准型。对于实数空间的任一函数,只要它满足一定的条件,一定存在唯一的具有单一隐层的前向网络作为它的最优最佳逼近。而含有两个隐含层的前向网络可在任意的平方误差内逼近某一实函数〔3〕。

诊断步骤

肺癌病例数据选自1981~1994年在某医院住院的病人,共计551例。其中486例(88%)经病理学、细胞学诊断证实为肺癌。每一病例都包括多项数据,其中用于诊断的数据项有:病人的一般情况(如年龄、性别等),家族史、既往史、吸烟史、术后病理、X射线检查、CT检查、纤维支气管镜检查、PAT痰检等多达58项。因此,原则上 58项数据应作为神经网络的输入项,而神经网络的输出值就是病人是否患肺癌的结果。

1.网络训练集的确定:在最原始的551例病人数据中存在着各种各样的差别,如性别差异(419例男性,132例女性),诊断结果的差异(486例经证实为肺癌),所患肺癌种类的差异(鳞癌、小细胞癌、大细胞癌等),患病程度上的差异(早、中晚期的不同)等等。显然,训练数据集应最大限度地保证兼顾各种病例情况。经过仔细筛选,选择了含有460个病例的集合作为肺癌诊断用的网络的训练集。

2.神经网络输入和输出数据的预处理

按照人工神经网络的理论,神经网络的输入输出数据都应该属于(0,1)区间的实数,为此我们需对原始数据进行如下的规一化处理:

其中xi为原始数据项,而Max=max{xi∶xi∈X},Min=min{xi∶xi∈X}。这里X为原始数据集。经过(7)式变换后,yi将在(0,1)区间。因此,可作为神经网络的输入输出。

3.应用神经网络进行肺癌诊断

将描述病人各种情况的数据作为前向网络的输入数据加到其输入端,并按(1)~(6)式计算各神经元的输入和输出,同时调整神经元之间的连接权值以使网络的输出和实际的病例情况相符。即当病人确实患肺癌时网络的输出结果也恰好指示为肺癌,反之亦然。如果对所有的训练样本集网络的输出基本上(95%或更高)能保证与实际结果一致,则训练过程结束。我们认为神经网络已建立起病人的各种因素与他是否是肺癌患者之间的函数映射关系。对于一个新的候诊病人来说,只要将他的情况输入到训练好的神经网络中去,根据网络的输出结果就可以知道他是否已患肺癌。

表1 基于不同发病因素的诊断网络模型

型 训练集精度 测试集精度

基于遗传因素的诊断网 53.8% 46.3%

基于个人生活习惯的诊断网 57.1% 44.9%

基于病症的诊断网 89.4% 83.3%

基于医学检查结果的诊断网 98.5% 92.6%

上述结果表明不同类型的因素应分开来考虑。于是我们将58项输入数据分成四类,这四类有各自的BP诊断网,依次称为诊断一、诊断二、诊断三、诊断四。它们先单独测定,然后再将它们各自的结果综合起来得出最后的判断。

上述四种诊断网络所得结果的可靠性各不相同。其中,根据医学检查结果所作的诊断准确性最高,因此在最后的综合分析中要重点考虑它的诊断结果,我们给它设一个相对最高的权值。其次,根据病人的症状所作的诊断往往也具有较高的准确性,因此给它的权值也较高,但比医学检查结果的稍低。其他两类因素在有关肺癌的诊断中仅具参考作用,因而所设的权值相对较小。

最后的结果O为:

O=a1.O1+a2.O2+a3.O3+a4.O4

a1+a2+a3+a4=1

其中Oi,ai,i=1,2,3,4分别为各诊断网的输出及其对应的权值。

当O>0.5时最后的诊断结果为患肺癌,反之则正常。对所有的病例数据经上述方法的诊断结果见表2。

表2 神经网络对肺癌诊断结果分析

神经网络

诊断结果 训练数据 测试数据

肺癌患者 非肺癌患者 肺癌患者 非肺癌患者

+ 460 2 25 3

- 0 38 1 22

其中对于训练集,肺癌病人的正确检出率为100%,非肺癌病人误诊率为5%。对于测试集,肺癌病人的正确检出率为96.2%;非肺癌患者正确检出率为88%,误诊率为12%。

讨 论

1.本研究所采用的人工神经网络的肺癌诊断方法的结果较好地符合了已知数据,具有较高的准确性,特别是对于肺癌患者一般都能准确地做出诊断,有利于肺癌的早期发现和治疗。

2.要想进一步提高该方法的准确性,应该注意收集更多更全面的病例数据。人工神经网络主要是利用它能自动从数据集中抽取函数的关系的功能。如果我们所使用的数据越多越全面,则其中所蕴含的事物本身的规律性就越强,利用人工神经网络从中所抽取的函数关系就越具有普遍性,因而就更准确。

3.实现对肺癌的诊断的关键在于准确找到罹患肺癌的判定函数,可利用前向网络的函数逼近功能来实现。但是这里涉及到两个问题。首先,由于差别函数和预测率函数都是利用人工神经网络从已知的病例数据集中抽取出来的,它实际反映的是这些数据集中输入输出对的映射关系。因此要想保证诊断具有较高的准确性,就应该使用来建立函数关系的这些数据集(称训练集)具有充分的代表性,即这些数据应基本蕴含肺癌诊断的医学原理。这就涉及到如何选择网络合理的训练集及关键的输入项。另一个问题涉及到神经网络本身的要求,即网络的输入输出数据值都应在区间(0,1)中。这可以通过数据的编码和归一化来实现。

4.由于某些原因有些病人的病例数据不完整,约占总病例数据的10%左右。显然,如果按照传统的方法来建立肺癌病人的诊断模型〔4〕,这些有缺项的数据是不太好处理的,但是由于人工神经网络有较强的容错性,输入数据在某些项上的错误对网络最终结果的正确性影响不大。

参考文献

1.焦李成.神经网络系统理论.第1版.西安:西安电子科技大学出版社,1995,3

2.Wang Zhenni,Tham Ming T,Morris A.Multilayer Feedforward Neural Networks:A Canonical form Approximation of Nonlinearity,Int J.Control,1992,56(3):655~672.

3.庄镇泉,等.神经网络与神经计算机.北京:科学出版社,1992.

上一篇:神经网络算法范文 下一篇:神经科学范文