人工智能在教育教学的应用范文

时间:2023-08-18 15:16:15

人工智能在教育教学的应用

人工智能在教育教学的应用篇1

关键词:人工智能;教育;应用;问题

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0159-02

人工智能是研究如何构造智能机器(智能计算机)或智能系统,使其模拟、延伸、扩展人类智能的学科。随着人工智能的理论与技术在社会各个领域的广泛应用,其在教育领域内的应用也越来越受到重视,并取得了一定的研究成果。

一、人工智能教育应用的主要形式

人工智能在教育领域应用的最直接结果就是诞生了智能教学系统。智能教学系统是以计算机辅助教学为基础而兴起的,它是以学生为中心,以计算机为媒介,利用计算机模拟教学专家的思维过程而形成的开放式人机交互系统。目前,智能教学系统已成为人工智能在教育中应用的主要形式。智能教学系统主要是在知识表示、推理方法和自然语言理解等方面应用了人工智能原理。由于它综合了知识专家、教师与学生三者的活动,因此,与之相对应的,智能教学系统一般分成知识库、教学策略和学生模型三个基本模块,再加上一个自然语言智能接口。智能教学系统的功能具体来说有以下几条:了解每个学生的学习能力、认知特点和当前知识水平;能根据学生的不同特点选择适当的教学内容和教学方法,并可对学生进行有针对性的个别指导;允许学生用自然语言与“计算机导师”进行人机对话。智能教学系统的设计不仅要有计算机科学的知识,还需要有教育科学的理论指导。

二、人工智能在教育中应用的局限性分析

1.阻碍人工智能发展的关键因素。在人工智能的发展中,一直存在着对“计算机是否能代替人脑甚至超过人脑”的问题的讨论,实际上,以电子计算机为主要工具模拟人的某些思维活动而产生的人工智能是有局限的。①计算机处理问题的根本原理。要计算机解决某种问题,有三个基本的前提:必须把问题形式化;问题还必须是可计算的,即要有一定的算法;问题必须有合理的复杂度,即要避免指数爆炸。由于人的智能活动不能完全形式化,因此,机器就不能将人脑的智力活动全部复制出来。电子计算机最终只能把握0、1这两个开关代码,遇到不能形式化、不能找到算法或不能程序化的任务,计算机则难以执行。②人和机器之间的根本区别。智能模拟利用了人和机器的共性,即两者都是一个信息转换系统,但两者之间存在着不容忽视的本质区别。智能模拟与天然智能属于两种不同的进化系统,人类的智能是人类社会实践的产物,机器的智能是机械制造的结果。大脑和电脑的组织结构也不相同,两者属于两种不同的运动过程,前者是复杂的生理--心理过程,后者是机械--物理过程。智能模拟可以在局部上超过天然智能,但是,模拟的根本方法是功能模拟法,两个系统在结构和实际过程上是不一样的。智能模拟不具有人的思维的社会性,不具有主观世界。

2.人工智能在教育中应用的局限。就目前人工智能的发展水平以及人工智能本身的特点而言,它在教育中的应用也是有其局限性的。①与学生之间无法畅通交流。教育本质上是一种“交互”活动,而智能教学系统无法实现最充分、最真实的交互。目前自然语言理解的研究成果非常有限,远不能达到人人交流的要求。此外,就态度、品德、情感等教育问题而言,机器只能通过学生输入计算机的信息来判断其掌握和内化程度,而无法像人类教师通过自然状态的交流和观察来判断学生的真实情况,因此,“机器智能”很容易被蒙蔽“双眼”,无法做到像人与人之间那样自然畅通的交流。②决策和推理机制不完善。智能教学系统的关键智能所在是其决策和推理机制,即“教学策略”模块根据不同学生的具体情况通过推理做出灵活决策,这种决策基于学生模块提供的有关学生的知识水平、认知特点和学习风格,而这些不能完全被形式化。同时,随着教育理念的不断更新以及教学模式和教学方法的不断改进,系统所应用的教学策略模块用于评估和判断学生学习过程的能力是有限的。③人工智能并非适合所有的学习领域。根据加涅的学习结果分类,学习分为言语信息、智慧技能、认知策略、动作技能和态度五类。言语信息分为符号学习、事实学习和有组织的知识学习,这些属于可形式化内容,适用于智能教学系统;智慧技能分为辨别、具体概念、定义性概念、规则和高级规则,其中前四项属于可形式化内容,适用于智能教学系统,而高级规则属于复杂――形式化内容,部分内容不适用于智能教学系统;动作技能和态度领域的学习,在其认知成分中可以使用智能教学系统,但情感和行为成分等非形式化内容,则难以用智能教学系统来实现。因此,并不是所有的学习领域都适用于智能教学系统。智能教学系统在教育中应用的重点应放在认知领域中的符号学习、事实学习和有组织的知识学习、辨别、具体概念、定义性概念以及规则这些学习内容上。

三、人工智能教育应用的发展方向

近年来,随着计算机技术、网络技术、人工智能技术以及现代教育教学理论的发展,人工智能在教育中应用的发展呈现出以下几个趋势。

1.开始突破单一的个别化教学模式。长期以来,计算机辅助教学系统和智能教学系统都是强调个别化教学模式,这种模式在发挥学生的学习积极性、主动性和进行因人而异的指导等方面确实有许多优点。但是,随着认知学习理论研究的进展,人们发现在计算机辅助教学系统和智能教学系统中只强调个别化是不够的,在某些场合(例如问题求解)采用协作方式往往更能奏效。因此,近年来在智能教学系统中,协作型教学模式得到越来越多的重视和研究。

2.智能教学系统日益与超媒体技术相结合。超媒体系统具有良好的开发环境、灵活方便的用户界面以及图、文、声并茂的特点,而且其信息的组织方式与人类认知的联想记忆习惯相符,已成为目前一种最理想的信息载体和最有效的信息组织与信息管理技术,在许多领域尤其是教育领域有广阔的应用前景。把超媒体技术引入智能教学系统,从而发展成为智能超媒体辅助教学系统,可以大大改善计算机辅助教学系统的教学环境,激发学生的学习积极性,从而显著提高教学效果。

3.智能教学系统与网络的关系日益密切。网络的应用和普及为远程教育和终身教育提供了一个良好的空间。当前,智能教学与多媒体网络的结合成为人工智能在教育中应用的一个势不可挡的发展趋势。

4.传统人工智能与神经网络模糊决策机制相结合。传统人工智能从宏观角度开展认知模拟,可以部分地模拟人类的逻辑思维过程,而神经网络模糊决策机制从微观方面进行认知模拟,着力实现模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。今后将探索一种新的智能处理模型:把神经网络的模糊决策机制和符号专家系统的推理能力结合起来,利用多重知识源、多种模型进行复合协同处理。如果上述技术能够成熟运用,那将对人工智能的发展及其在教育中的应用起到决定性的作用。

参考文献:

[1]王士同.人工智能教程[M].北京:电子工业出版社,2001.

[2]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,1998.

[3]何克抗.计算机辅助教育[M].北京:高等教育出版社,1997.

[4]徐鹏,王以宁.国内人工智能教育应用研究现状与反思[J].现代远距离教育,2009,(5):3-5.

[5]王海芳,李锋.人工智能应用于教育的新进展[J].现代教育技术,2008,(13):18-20.

人工智能在教育教学的应用篇2

[关键词]人工智能;中学辅助教育;教育资源

[DOI]10.13939/ki.zgsc.2016.36.197

1 中学教育现状

教育乃立国之本,而中学教育乃是重中之重。一方面,中学生处于青春的成长期,各项综合素质逐渐完善中,中学教育意义和责任重大;另一方面,中学教育仍然是应试教育为主,仍然需要面对千军万马过独木桥的“中考”“高考”,中学教育很大程度左右了学生的未来。

目前的中学教育资源,分为公共教育资源――公办/民办学校教育,和社会教育资源――私人家教、补习班等,有如下两个特点。

1.1 学生得到的公共教育资源不足

学校班级结构的构成是:一名班主任教师,多名科任教师。在大多数学校中,无论是班主任教师,还是科任教师,均会承担其他班级的教学任务。可以看出,教师资源是非常有限的,加上“中考”“高考”的上线压力,教师往往会将有限的精力分散关注在所有的学生上,每个学生得到的公共教育资源并不多。

1.2 学生获取的社会教育资源不公

学生若在学校无法获取更多的教育资源,将不得不转向社会教育资源去求助。据统计,学生参与社会教育资源的成本在200元/小时,学习费用成本过高,进一步造成普通学生的社会教育资源也无法获取。

本文要探讨的,正是通过人工智能这一现代信息化技术,构建智能辅助学习系统,使中学生能够获取到更多、更公平的教育资源。

2 智能辅助学习

2.1 人工智能简介

人工智能(Artificial Intelligence)是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,能够对人的意识、思维等信息过程进行模拟。随着计算机科学技术的发展,特别是近年来大数据技术的成功应用,人工智能在越来越多的行业展现出蓬勃的冲击力。以谷歌围棋机器人“阿尔法”、微软助理机器人“小娜”等为代表的虚拟智能机器人,能像人那样思考,也具备超过常人的智能。

在国内,人工智能在教育领域的理论研究和教学实践表现得越来越活跃,尽管人工智能并不是为教育专门研发的,但是人工智能的不断发展,使得其在教育中的应用也越来越广泛,教育的智能化一直是教育界和教育技术领域的理想和目标。

2.2 智能辅助学习系统

智能辅助学习系统,其表现形式是能够为每个学生,配备一个虚拟教师。学生能够通过电子设备(如手机、计算机),与虚拟教师进行交流对话,咨询虚拟教师各学科的问题,并得到有效的学习辅助。

该智能辅助学习系统,具备以下几个特征。

2.2.1 虚拟教师跨学科能力

与传统的教师专一某一学科不同,虚拟教师并没有学科边界划分。只要学习系统研发出某一学科的学习算法,该虚拟教师就能够获取该门学科的能力。

2.2.2 虚拟教师深度自学习

虚拟教师的“智能”来源于三方面。一是学生基本信息档案,该档案涵盖了从小学教育开始的学科成绩、综合能力、爱好特长等,虚拟教师得到学生的人物画像。二是虚拟教师对学生的自学习,每一次双方的沟通交流,虚拟教师都能够不断更新发展学生的画像。三是虚拟教师对学校课堂内容的自学习,虚拟教师并不是独立于学校教育存在的,而是作为学习教育资源的一个补充,虚拟教师能够掌握课堂进展、作业部署、考试动态等信息。

2.2.3 接近自然语义的沟通

学生与虚拟教师之间,可以通过自然语义的语音和文字进行沟通,如 “今天数学作业第2题不会”“《荷塘月色》全文中心思想是什么”“Lets start a conversation”等。其他计算辅助手段为补充,如上传某道数学题图片,虚拟教师通过图形识别匹配,给出该题的解题思路和讲解。

2.3 优势分析

智能辅助学习系统,有三大核心优势。

一是“即学即问”,相比目前的学校教育和社会教育,学生在学习遇到困难时,只有有限的时间与教师交流,在智能辅助学习系统中学生将不受空间、时间限制,随时随地可以与虚拟教师互动,获取充足的教育资源。

二是“定制教学”,相比目前的教育形式,课堂上教师与学生是一对多的关系,教师不可能专为某个学生定制教学方案,在智能辅助学习系统虚拟教师与学生是一对一的关系,虚拟教师能够更了解学生,根据学生的具体情况制订最佳学习方案。

三是“受众广阔”,相比目前的公共教育资源紧缺、社会教育资源费用昂贵,智能辅助学习系统一旦推广,受众学生可无限增加,边际效应非常明显。并且计算机系统设计特有的水平扩展能力,能够随着学生人数的增加而增加,支撑广大的学生辅助学习。

2.4 前景预测

笔者比较看好人工智能在中学辅助教育中的落地前景,除了前文所述的人工智能技术发展,为中学教育带来的价值外,当前国家政策和社会环境也非常有利。

第一,未来10年国家政府和教育部门会大幅增加在教育信息化产业上的投入,随着《国家中长期教育改革和发展纲要(2010―2020年)》和《教育信息化十年发展规划(2011―2020年)》等相关规划相继出台,各级地方政府和教育部门都非常重视教育信息化产业的投入,人工智能+云计算是重中之重,人工智能技术的兴起必将教育信息化推向一个新的高度。

第二,教育信息化逐渐成为风口,根据前瞻产业研究《中国在线教育市场前景与投资战略规划分析报告》统计,2015年在线教育市场规模大约为479亿美元,而这一数字在2020年预计将增长到504亿美元。这个持续迅猛增长的市场正在吸引越来越多的创意和资本,教育领域中的人工智能也很快会成为热点,涉足其中的高科技公司也会越来越多。

3 结 论

本文通过智能辅助学习系统,探索了人工智能在中学辅助教育中的一个应用。虽然没有介绍具体的技术实现、系统研发,但对现状痛点、应用前景做了综合性分析概述,相信随着科学技术的持续发展、教育领域的融合开放,本文探索的这个应用将实现于市场,使广大中学生能够获取到更多、更公平的教育资源。

参考文献:

[1]何维贵.利用现代化教学手段打造高效课堂[J].广西教育(中等教育),2013(6).

[2]王斐.人工智能在中学教育教学中的应用现状分析[J].中国医学教育技术,2013(4).

[3]吴文铁.人工智能教育对于培养中学生信息素养的作用[J].电脑知识与技术,2008,4(35).

人工智能在教育教学的应用篇3

[关键词]大数据;教育管理;智能化;机遇与挑战

随着中国的高等教育正式进入普及化阶段,大众的关注点由注重教育规模的扩大化转向注重教育质量的高精尖。教育事关民族未来,为了能够在激烈的国际竞争中取得优势,明确当下乃至未来的教育发展趋势至关重要。智能化时代的到来,智能技术的研发及应用成为引发国家之间新一轮角逐的着力点。新技术的出现及逐步成熟能够为高校教学管理提供有力支持,智能教学管理将成为未来教学管理新常态。

一、智能技术应用与高校教学管理的契机

智能化技术的发展能够通过个人信息数据的收集,制定个性化管理方案,满足高校学生的个性化管理,促使其实现个性化发展。

(一)政策导向

自1956年达特茅斯会议召开以来,智能化时代初露端倪,智能化的发展在曲折中前进。2012年,各个国家纷纷出台人工智能发展战略,推动人工智能在多个领域的应用,中国也紧紧把握时代机遇,制定人工智能发展政策。2017年7月,国务院印发了《新一代人工智能发展规划》,指出要构建人工智能五大保障措施,分别是加强组织实施、加大支持力度、鼓励创新创业、加快人才培养、优化发展环境。各大重点高校纷纷成立“人工智能学院”,开始为社会培养、输送该领域的紧缺人才[1]。最近教育部又了《高等学校人工智能创新计划行动》,对人工智能的创新发展做出顶层规划和部署,推动人工智能与其他领域的深度结合。教育作为社会发展的助推器,“人工智能+教育”成为当前各界关注的重点推进领域。

(二)现实因素

从“互联网+”到“AI+”,人工智能正在逐渐改变着我们的生活。在科技快速发展的现在,我们每个人每时每刻都在进行着数据的交流与传递[2]。新形势下的国际竞争是围绕核心技术与创新型人才开展的竞争。为了维系传统大国地位,各个国家纷纷制定新一代信息化战略,以期在当前的国际竞争中继续取得领先地位。中国当前取得的成就远超预期,这一态势鼓舞了教育界人士,开始探索“人工智能”与“教育”的多领域结合。除此之外,2019年末随着新冠疫情的爆发,“停课不停学”的要求使在线教育成为教学领域的新图景。高校教学大数据监测显示,疫情期间全国高校在线课堂出勤率达到91%,教师在线教学认可度达到80%,学生在线教学满意率高达85%。线上课程的大规模实施及其良好成效,为未来高校教育教学工作的开展提供了新思路,同样传统的高校教育管理方式已经不适应于在线教学这种灵活多变的模式,因此,教育管理新“样态”的出现推动着教育管理方式的创新发展。

(三)技术支撑

随着人工智能时代的到来,学生的个性化发展成为当今教育评价中的重要指标,单一的教学管理模式已经不适应灵活多变的教学对象和教学要求,传统的教学管理方式模式单一刻板,难以实现学生个性化发展。智能技术的发展为教育领域创新发展提供了新契机。以泛在化、精准化、个性化、协同化、自动化为典型特征的智能教育迎合了当前的教育导向[3]。目前应用于人工智能教育的关键技术包括:知识表示方法、机器学习与深度学习技术、自然语言处理、智能和情感计算等[4]。“人工智能+教育”能够通过搜集、整理、分析教育数据,辅助教师对学生的个性化指导。从知识层面看,“人工智能+教育”能够促进知识生成、更新、传播、管理,解决知识陈腐老旧的问题;从学习者层面看,“人工智能+教育”能够自动感知学生的学习情况,采取适当方式引导学生集中注意力学习,使得学习者从被动学习转变为自发学习;从教育者层面看,它促进教师重新思考教育者的角色,从教书匠向教练员角色转变[5]。智能化的学习进度分析相较于传统步调统一的教学模式更具有灵活性,数据的挖掘技术、智慧学习还能够提供多层次的教学内容,迎合不同对象的发展需求;通过感知学生的学习状态、学习习惯、兴趣爱好能够分析并提供多种教学策略和学习策略,促进学生深度学习的实现。

二、智能化时代高校教学管理面临的问题

智能辅助教学应用虽取得了一定成效,但就目前来说,我国的人工智能与教学的融合仍然是低水平的。当前我国人工智能与教学活动的结合不足主要表现在:教育起点定位模糊、人工智能的教学应用集中开发以及技术不成熟且人工智能技术落地缓慢。

(一)智能教学管理定位模糊

教育与技术的结合过程中普遍共识是首先应当重视教育的起点和价值,其次强调技术性。当前,在人工智能与教育结合的过程中出现了过于强调技术研发及应用,忽视了教育承载的社会共同价值和文化创新发展功能,教学过程中缺乏实践反思的现象。技术人员缺乏教育教学知识,教学人员难以理解相关的智能技术工作原理,导致技术与教育并未叠加出理想的成效。当前教育界对于人工智能技术强烈追捧,夸大人工智能的教育教学成效,高校通过引入新型教学设备、采用智能教学技术,传授教育教学内容,对传统教学模式进行了全方位、多角度的改革。一方面这样大规模教学模式改革有助于改革面积的迅速铺开,加速智能教学改革进度,扩大智能教学普及面。另一方面,当前智能技术中的情感计算和言语处理并未发展到足以替代传统教学模式的地步,不加批判的盲目引入智能教学手段、忽视人的情感发展需求和人的价值,反而会起到负面效果。

(二)智能教学管理指向不明

高校教学管理涵盖教学计划制定、教学资源管理、学生学籍管理等诸多内容,涉及数据量巨大,且数据呈动态变化,因此,对教学管理工作的准确性、实时性及严谨性提出更高要求[6]。当前人工智能应用在教育教学领域的过程中主要关注点聚焦于教学过程管理,对于智能技术应用于教学过程中所产生的教学质量及其教学评价研究较少。一方面,在教学过程中,智能教学的开发及应用主要集中于在现有的教学科目上进行教学方法的更新换代,人工智能教育本身作为一个新兴事物还有待于研究及开发。另一方面,人工智能作为一个新兴事物,人们热衷于在多个教学领域进行尝试。但是在实践的过程中不可避免地产生重复建设和过度建设倾向。例如当今个性化发展的提法,致使人工智能在教学应用中过于强调其个性的一面,忽视其共性的养成。过于强调学习的个性化、碎片化、轻量化,对于学习时的纪律约束和行为习惯的养成重视程度不足。归根结底是人工智能与教育的结合发展处于初级阶段,应用指向不明确,应用标准不规范。再就学生个人信息的收集过程来讲也容易出现重复操作的倾向。信息数据跨介质互联困难,导致教育数据的冗杂、学生的负担加重、学校统计及收集也较为困难。

(三)智能教育技术落地迟缓

从早期的计算机辅助教学开始,我们就积极将信息技术产品引入课堂,首先引进的是计算机多媒体辅助教学系统,包括电脑、投影仪、大屏幕等。由于这些设备的引入,能够方便地将音频、视频、文本、动画等媒体集合在一起,给教师的教学提供了极大的方便[7]。多媒体技术的出现给当今教师教学、学生学习都提供了极大的便利,但我们不能忽视当前教学过程中师生运用智能技术挖掘学习资源的能力不足且新兴的智能技术应用不足。教师授课过程中仍然依赖单一的多媒体技术,对于学生个人学情关注较少,单一的教学方式和信息体量庞大的教学资源使学生对于教学内容丧失兴趣。学生在课后搜集相关的学习资源又不得其法,易产生学习倦怠心理。教育对象数量的增长及相应产生的数据给数据收集和管理提出了更高的要求。目前高校中虽然依托信息化系统实现了教学管理工作的数据化管理,但是管理流程及模式仍处于低水平阶段,面对时下日益繁多的科研信息、学生信息、教学信息等传统的信息处理技术严重滞后,影响了高校教学教务工作的高效实施。当前应各方要求,高校教学管理应当做到严谨、准确、及时、简明,数据收集、处理、分析技术应当迎来发展新局面,但大数据在其他领域中的推进已经取得初步成效,而高校的教学管理工作中仍然处于低层次的应用,并未能够有效地辅助高校教学教务工作的展开。

三、智能化时代高校教学管理的新常态

随着计算机、大数据、区块链的发展,教育生态的智能化成为一大亮点。高校要制定相应的发展战略,将智能技术运用在高校教育教学管理过程,提高管理水平[8]。智能化下的高校教学管理通过数据收集及管理、在实践中反复演习制定规范的智能教学运行标准、面向多种主体进行教学信息的搜集有助于做出科学的教学管理决策。

(一)智能教务系统辅助教学管理

智能化时代的高校教学管理中应注重“一个中心,三大主体”。即以人才培养为核心,人才培养过程包括知情意行四大环节,任何环节都缺一不可。三大主体是指教学管理之过程中涉及的三大群体,即学生、教师、管理人员。智能化时代的教学管理应当以智能化技术为支撑、以人才培养本身为主导,防止教学过程中出现的将知识传授作为教学工作的根本评价指标,忽视教育对象人性的培养。各主体应当将自己的角色定位与国家政策整体导向以及先进的技术相结合,更好的完善自己。学生应当主动寻进步,通过学习数据挖掘等智能技术,拓宽自己获取知识的来源;教师在教育过程中应当遵循以人为本的教学原则,避免盲目依赖智能化技术,通过学习及应用人工智能技术使其更好地辅助教学活动开展;教学管理人员应当不断完善教学信息管理平台,做好关于教学意见的搜集及问题及时处理,做好教学辅助工作。

(二)数据治理辅助处理冗杂数据

教育大数据,是指整个教育活动过程中所产生的以及根据教育需要采集到的,一切用于教育发展并可创造巨大潜在价值的数据集合[9]。随着教育教学过程的演进,教育过程会不断产生大量的数据,如何能够有效挖掘以及对于数据进行可视化表征是当前教育数据处理中的一大难题。由于教学过程中产生的教育数据是非线性的,因此智能教育管理系统中的模型应当具有复杂问题分析能力,当前高等教育中之所以存在大量的冗杂数据是因为教育数据搜集标准制定不明确、收集到大量的无效数据。因此当前高校教学管理中应当将更多的利益相关者以直接或者间接的方式对于高等教育数据管理工作提出建议,完善数据收集理论,改进教育数据收集和管理的机制,尽可能避免数据的冗杂和烦琐。以清晰、直观的数据表征方式对高校教学过程中的相关数据进行展示。对相关以提升教育教学管理成效为目的的教育数据进行伴随式收集、集成化管理以及实现数据资源的开放共享,避免相关数据的重复录入,形成教师、学生、教务管理人员之间的信息流通网络,为高校及时、准确地开展教学工作提供妥帖的技术支持。

(三)深化技术应用推进教学变革

构建基于数据挖掘技术、学习状态及情感感知技术、计算机智能技术、机器学习等技术的教学管理平台取代传统低效的教学管理平台。具有复杂适应能力的教学管理平台能够通过分析学习者学习内容和学习者个人学情,描绘个体学习图谱,使教学内容和教学计划能够根据学生的学情自适应调整。学生的学习进度和学情能够及时准确地反馈给教师和教务管理人员。教师可以根据其他方面的因素对学生的学习进度及内容做出部分调整,避免教学进度差距过于悬殊。智能教学平台能够借助自适应、大数据、云计算等技术,实现家长、学生、教师的全面连接[10]。未来智能教育平台将通过数据的搜集、整理、归纳、分析以及算法和算力支持为学生的学习、教师的教学、教务人员的管理工作等提供更加优质的服务。随着智能化时代的到来,传统的教学管理方式已经出现较多的局限性。为使高校的教学质量和教学效率进一步提升,智能技术与教育的融合势在必行。移动智能设备与大数据结合下的教学管理系统能够实现高校教学工作的便捷化、及时化、准确化,为高校教师和学生提供更加优化、更加精准的服务。

参考文献:

[1]唐怀坤.国内外人工智能的主要政策导向和发展动态[J].中国无线电,2018(5):45-46.

[2]罗维,周辉.大数据时代背景下我国人工智能前景研究[J].中国科技信息,2019(12):113-114.

[3]梁迎丽,刘陈.人工智能教育应用的现状分析、典型特征与发展趋势[J].中国电化教育,2018(3):24-30.

[4]闫志明,唐夏夏,秦旋,等.教育人工智能(EAI)的内涵、关键技术与应用趋势———美国《为人工智能的未来做好准备》和《国家人工智能研发战略规划》报告解析[J].远程教育杂志,2017,35(1):26-35.

[5]吴永和,刘博文,马晓玲.构筑“人工智能+教育”的生态系统[J].远程教育杂志,2017,35(5):27-39.

[6]王晓玲,刘嘉滨.高等教学管理中智能化管理技术应用[J].实验室研究与探索,2014,(2):247-249,278.

[7]王竹立,李小玉,林津.智能手机与“互联网+”课堂———信息技术与教学整合的新思维、新路径[J].远程教育杂志,2015,33(4):14-21.

[8]项丹.云计算与大数据时代下的高校教育教学管理信息化策略[J].中国成人教育,2017(6):40-43.

[9]杨现民,唐斯斯,李冀红.发展教育大数据:内涵、价值和挑战[J].现代远程教育研究,2016(1):50-61.

[10]华璐璐.人工智能促进教学变革研究[D].江苏师范大学,2018:30-35.

人工智能在教育教学的应用篇4

人工智能是新科技革命的重要推动力量,正在改变着人们的工作、学习以及生活。随着教育信息化2.0时代的到来,人工智能正加速融入到高等教育活动中;高等教育也将迎来人机协同的智能时代,必将会对传统的高等教育理念、教育方式等产生冲击。《高等学校人工智能创新行动计划》、《2019年教育信息化和网络安全工作要点》等一系列国家政策和文件的出台,为人工智能的发展提供了指引和坚实的保障。高校是人工智能发展的重要领域,但是目前对于该领域的研究热点以及未来的发展趋势的相关研究较少,基于此本文通过可视化分析探究人工智能在高等教育领域应用中的热点以及发展趋势,对人工智能应用于高等教育领域提供参考与借鉴。

二、研究设计

(一)数据来源

通过在中国知网(CNKI)中,以“人工智能&高等教育”以及“人工智能&高校”为主题词进行高级检索,检索条件为中文期刊,文献时间跨度为2016-2020年,共检索到期刊325篇。其中,CSSCI共43篇,这说明我国学者在人工智能应用于高等教育领域的深入研究较少,研究深度有待加深。将检索的文献选中,以SATI软件所支持的Endnote格式导出。

(二)研究过程和方法

本研究所采用的是共词分析法,它通过文献中共同出现的关键词之间的关联强度,反应该领域的研究热点以及对未来的发展趋势进行预测。研究过程为:首先,将导出的Endnote格式文献导入到SATI中,并将其转换成XML文件格式,进行关键词的词频统计,得出高频关键词的排序。然后,将利用SATI生成的共词矩阵导入到Ucinet中,并利用Netdraw对高频关键词生成的图谱进行中心度的分析。接着,再利用SATI生成关键词的相异矩阵(由于相似矩阵中为0的关系较多,会对聚类效果会产生影响),将相异矩阵导入到SPSS中进行关键词的聚类分析,进而分析出人工智能在高等教育领域的研究热点。最后,根据阅读的文献以及研究的热点提出人工智能在高等教育领域的发展趋势。

三、人工智能在高等教育领域的年度发文量介绍

绘制人工智能在高等教育领域应用的文献发文量的折线图,可以直观的看出人工智能应用于高等教育领域的年度发文趋势。如图所示,2016-2020年人工智能在高等教育领域的发文量呈现逐渐上升的趋势。在2016、2017年,发文量均在十篇以下,说明高等教育领域中人工智能的应用处于萌芽阶段。2018年发文量开始逐渐上升,虽然低于50篇,但是相比较于前两年有了较大的提升,说明高等教育领域中人工智能的应用已经开始初步发展。2019、2020年发文量明显得到提升,说明这两年我国学者开始逐渐关注人工智能在高等教育领域的应用,高等教育领域中人工智能的应用处于快速发展阶段。通过对2016-2020年文献发文量的解读,预测2021年总发文量仍然呈现上升趋势。

四、人工智能在高等教育领域的研究热点分析

利用SATI3.2、Uciet6.0以及SPSS26.0作为主要的研究工具,对导出的文献进行分析。论文中的关键词在很大程度上可以反映出该论文的研究方向以及所研究的主题,因此统计文献中关键词的频次,可以间接观察该领域的研究热点。本研究利用SATI3.2对检索到的文献进行关键词的词频统计,将表达意思相同的关键词进行合并(比如将人才培养与高校人才培养合并)剔除挑战、影响等词,选取频次不低于4次的为高频词。利用Ucinet对关键词的相似矩阵进行格式转换,转换成为##h格式,然后将其导入到Netdraw软件中,对关键词的相似矩阵进行中心度分析。结果如图所示,高频关键词用节点表示,点越大代表该关键词出现的次数越多,说明该关键词在整个网络中的作用越大;节点之间由实线连接线越粗,代表相连的关键词之间的关系越强。从以下两个方面分析下图:首先,节点大小,除“人工智能”“高等教育”“高校”外,人才培养、高校图书馆、大数据比其他节点要大,说明较多的文献涉及到该领域。因此,为人工智能在高等教育领域研究的热点。其次,连线距离,人工智能学院、思想政治教育、教育人工智能处于边缘处,并与其他关键词之间的连线较少,说明在该领域的研究较少,关注度不高,有可能成为未来人工智能在高等教育领域的研究方向。如图所示,高校教师、学科建设将各个节点连接了起来,丰富了人工智能在高等教育领域的研究体系。通过分析后,将高频关键词进行分组,处在同一分组内的关键词具有较高的相似度。因此共词聚类树状图可以展现人工智能在高等教育领域的研究方向。利用SATI导出关键词的相异矩阵,并将其导入到SPSS26.0中,利用系统聚类法对关键词的相异矩阵进行聚类分析,以Euclidean距离作为变量距离,使用瓦尔德法(Ward法)绘制聚类树状图。如图所示,图中纵向是24个高频关键词,横向的长度代表关键词之间的距离。根据聚类树的结果,笔者将人工智能在高等教育领域的研究热点大致分为以下三类:第一:人工智能促进教学模式的改革。包含教学模式、成人高等教育等关键词。由此我们可以看出高等教育领域的教学模式的改革大多为成人高等教育。成人高等教育作为我国高等教育的不可或缺的部分,为了促使其迅速发展,在教育教学过程中,应该充分结合成人学习的特点,制定相应的教学计划。第二:人工智能提高高校人才培养。包含虚拟现实、智慧教育、人才培养、学科建设、新工科、高校教学、人工智能技术、信息化服务等关键词。智能时代,对于人才的培养不再只局限于知识的传授,通过利用人工智能技术以及大数据技术对学习者的学习进行全方位评估与分析,了解学习者在学习过程中所遇到的问题,提高教学效率。该主题主要研究智能时代对高校人才培养的启示,从而制定出更加合适的人才培养模式。第三:人工智能完善高校智慧教育的发展。包含高校教师、高等教育、教育人工智能、大数据、高校图书馆、智慧图书馆、就业、教学改革、高校财务、思想政治教育等关键词。该研究主题包含两方面,一是对高等教育领域人工智能硬件应用的研究,如智慧图书馆的建设。高校图书馆以云计算、人工智能、大数据等新兴技术为支撑,为师生提供更加方便快捷的阅读方式。二是对高等教育领域教学改革的研究,智能时代的高等教育发生了整体性的变革,促进高校教学方式、教育理念等发生变化。

五、发展趋势讨论

结合阅读文献以及对人工智能在高等教育领域研究热点的分析,笔者提出人工智能应用于高等教育领域的未来发展趋势,包含以下几个方面:

(一)融合人工智能技术,完善高校教育人工智能

教育人工智能通过人工智能技术,以大数据作为基石,通过算法模型进行分析、模拟和判断,构建自适应学习环境,形成人机融合的教学的方式,探索学习者学习发生的条件,并为其创建新的学习条件。教育人工智能是多学科融合的新兴研究领域。高等教育人工智能的发展应当响应国家政策,并与各级政府以及企业携手前进。在发展的过程中还应不断提高全体师生的信息素养,以期促进教育人工智能的快速发展。

(二)延续教育使命,发展终身教育

西交利物浦大学校长吴酉民指出,“未来的大学应该成为一个可供终身学习的地方,支持人们有创意地生活的场所。政府、企业要携手并进,高校要对终身教育有足够的了解,充分利用各种资源,为迎接AI时代和终身教育时代做好准备。为了应对智能时代给各行业带来的冲击,高校应该贴合各行业的发展的现状,开展符合行业发展情境的课程,以更为方便、快捷的方式满足人们继续学习的需求。

(三)注重培养解决复杂问题的人工智能专业人才

国家要提高人工智能的发展,则需要增加高等教育人工智能的人才培养的能力,加大人才培养力度,提升人才培养水平。AI时代高等教育更应注重创新型人才的培养,要逐渐增加高层次人才培养的研究型大学,进而培养更多能解决复杂问题的综合型创新人才。兴办人工智能学院是高校培养人工智能专业人才的主要途径,高校在创办人工智能学院时,应结合国家政策以及学校自身的专业优势,既要符合发展的共性又要具有其自身的个性。

六、研究结论

本文利用SATI、SPSS、Ucinet软件对中国知网中2016-2020年人工智能应用于高等教育领域的相关文献进行可视化分析。研究发现,人工智能在高等教育领域的应用正处在快速发展期,研究的主要热点为人才培养、教学模式改革、智慧教育的完善。未来希望在其发展过程中应及时发现存在的问题以及新的发展方向。并且相关学者应该深入研究人工智能在高等教育领域的应用,发现其新的研究方向,拓宽其研究范围,使得人工智能在高等教育领域实现更深层次的应用。

人工智能在教育教学的应用篇5

关键词:人工智能,基础教育,专业发展

一、前言

人工智能(ArtificialIntelligence,简称AI)快速发展,在一定程度上促进了人们的思维方式、人际互动模式以及学习和教学方式的改变,我国教育部门不断重视AI技术在基础教育领域中的融合,以更好地促进中小学生的个性化发展。AI视域下,教师的工作环境将会越来越智慧化,智能阅卷、智能授课和智能评估逐渐成为可能,教师可以根据学生的学习进度和学习特征,有针对性地对学生开展个性化指导。同时,学生在课堂上也可以更熟练的使用平板电脑而不是手抄本进行交流。目前,AI技术已经成为教育系统性变革的内生变量,不断推动着教育模式的变革、教育理念的更新以及教育体系的重构,基础教育信息化进入了创新发展的2.0时代[1]。虽然我国AI教育发展水平落后于国际先进水平,尚未在在中小学教育中普及应用,但是我国教育部门已经制定和出台了相关政策,以推动基础教育和AI的不断融合和发展,可以预见,AI技术必将为基础教育发展赋予越来越强大的智慧支撑,推动基础教育现代化。

二、AI教育时代中小学教师面临的挑战

面对以AI为核心的信息技术,如何更好的促进学生发展,从适应到引领转变,实现自身的突破性发展,是教育工作者必须深思的问题。AI技术在一定程度上提高了教学水平和教学质量,但是在教师层面还是存在一些问题,使AI技术与基础教育在融合过程中面临一系列的挑战。1.与AI教育相配套的教学方法创新性不足AI教育作为一个高度依赖技术的跨学科领域,AI应用程序可以在一定程度上扮演教师的角色,观察学生的学习过程,分析他们的学习表现,并根据他们的需求为他们提供即时帮助。此外,了解AI技术的能力和特点,教师可以在课堂上采用合适的AI应用程序来提高学生的学习成绩、动机或参与度。新技术影响了教育体制和教学手段,在这样的背景下,教师在使用新技术时要关注教育主体、尊重教育主体,而不能秉持以往旧的认识。但是在现实教学中仍存在盲目学习的典型问题,教师未能针对学生的个性特征而进行因材施教,学生在学习的过程中存在“一刀切”的现象,而不是被个性化对待。2.AI师资力量薄弱AI教育属于多学科交叉领域,教师一方面要具备心理学、教育学和信息技术等各学科相关知识,另一方面要将这些知识进行整合和运用。目前虽然学生的学习意愿强烈,但是从当前AI的师资来看,具有AI学识的师资力量十分薄弱,教师普遍缺乏完整而系统讲授AI课程的能力和知识,部分教师简单地将AI教育视作机器人教育﹑编程教育、计算机辅助教学等,个别中小学的AI教师是由其他学科教师来兼任,此外,AI教师编制不足、师资质量不均衡也是突出的问题。教师师资队伍建设是改善AI教学质量的关键。3.教师培训缺乏针对性目前教师已了解到AI在教学方面发挥的积极作用,并认可AI对教学的促进作用,但大部分教师都是停留在简单的意识层面,在教学实践中并未真正去落实。虽然存在以上问题,但是大部分AI教育教师没有接受专业培训,在讲授AI知识时,缺乏深入性,只能浮于表面,有违学科初衷。4.实施路径单一AI教育作为新兴学科,是基于时代最新技术的教育,要求教师在专业发展过程中,一方面要注重掌握各学科知识,另一方面更要注重教师专业发展的实践性和情境性,强调学生在学习过程中的参与和体验。但是目前中小学AI教育实施路径比较单一,在课程设计上,教师主要停留在传统的信息技术与教学设计层面,学生在课堂学习和实践中难以系统而深入掌握AI的技术、方法和基本理念。在教授形式上,主要采用课堂教学的方式对AI知识进行讲解,而学生实践和体验的机会相对较少。

三、AI视域下中小学教师发展路径

中小学教师如何更好适应AI时代,更好的构建AI教育生态体系,以促进AI与基础教育的深度融合,主要有以下路径:1.培养信息素养信息素养的本质是全球信息化,人们需要具备的一种能力。面对AI技术的迅速发展,中小学教师应注重信息素养的培养,信息素养主要包括两方面内容,即信息技术素养和信息意识素养。在信息技术素养方面,中小学教师应呈现趣味性强的教学课件、流畅的运用多媒体、及时反馈学生的问题等调动学生的积极性,以激发学生各科的学习兴趣,培养良好的学习习惯。此外,中小学教师要保持对新技术的敏感性。信息意识素养是信息素养中的观念性成分,是教师对信息的态度、认识层面的关键要素,是信息素养的重要组成部分。中小学教师在信息意识层面,要积极接受新兴技术带来的学习和教学方式的改变,决定性意义转变的前提是更新观念。2.提升职业道德素养恪守职业道德:传道、授业、解惑是中小学教师的主要职责。随着AI与教育的融合,智能平板等设备可以在一定程度上代替教师讲授知识、解疑答难和阅卷评分,AI在得到科学利用的前提下,可以成为师生的强大助手,从而大幅提升教与学的效率。教师应积极面对AI技术给教育带来的便利,提高自身的自主学习能力和创造力,同时注重培养学生思维的创新性,呵护学生的好奇心和求知欲,鼓励学生发现和解决问题。引导学生树立正确价值观、道德观和法治观:如今AI技术迅速进入中小学生的课堂教学,深刻改变着学生的学习模式和师生互动模式,一方面教师要充分将AI技术有效整合到课堂,另一方面也要正视AI的使用边界,AI技术快速发展有可能带来伦理风险。在中小学阶段不乏这样的例子,有些学生利用课堂上学到的编程知识去充当黑客,或者产生网络成瘾行为,以上学生的偏差行为已经触及价值观的层面,对自身的身心健康产生不利影响。因此,面对AI技术的迅猛发展,教师要有效的应对信息技术带来的伦理挑战,深入研究思考并引导学生树立正确的价值观、道德观和法治观,提升学生的诚信意识和社会信用水平。3.更新教育教学观念改变传统单一教学模式:随着AI技术的发展,互联网、大数据分析、智能化推送等教育产品层出不穷,如果不能科学利用这些技术产品营造适合学生成长的教学生态环境,技术将无法真正促进学生学习效果和教师教学水平的提升。AI视域下,教师要接受并适应智能技术给教育带来的变化,转变传统教育观念和教师角色,同时,教师在教学中应考虑学生的认知发展的阶段性特征,适时了解学生的学习风格和学习策略及学习中遇到的学习障碍,利用多样的教学活动和教学过程将知识获取和能力培养结合起来,促进学生认知和非认知能力的发展,最终实现学生的全面和个性化发展。课堂教学中,教师应改变“灌输式”“注入式”等单一的教学模式,充分利用AI技术实现教学方法多样化,活跃课堂氛围,提高课堂效率,树立教学、体验和实践相结合的教学观,提升学生的动手能力,中小学AI教育在实施路径方面应该多元化,实现认知、实践和体验的有机结合。此外,教师要看到学生的不同进度和情感需求,借助于AI技术,根据学生的发展节奏制定不同的学习计划,做到因材施教,为每一位学生成长提供学伴式帮助。注重培养线上和线下相结合的自主学习能力:AI视域下信息技术与基础教育的融合,网络在线平台为教师提供了丰富的学习资源,教师要更新自身旧的知识框架,进而不断提高自身的知识体系。针对目前存在的教师培训缺乏针对性的现状,教师可以加强线上自主学习,学习教学中常用的AI技术和程序。首先,线上学习过程中,面对网络和AI应用提供的多种类别的学习内容,教师要根据所教学科和所任学段的学生发展特点,选择恰当的教学内容,以便信息技术可以更充分地服务于教学,从而提高教学水平。其次,教师在注重线上学习的同时,也要注重线下学习,教师在教学中可以组织课前、课后的学习讨论小组,就教学中遇到的问题进行面对面的沟通与交流。

四、结语

AI技术的迅速发展,给基础教育带来便利的同时也必然会带来较大的冲击与挑战,AI视域下,中小学教师应该以积极的心态去面对机遇和挑战,抢抓机遇、迎难而上,努力培养自身信息素养,提升职业道德素养,更新教育教学观念,在人与机器日益激烈的竞争中获得主导地位,在基础教育改革发展浪潮中实现跨越式自我发展。

参考文献:

[1]黄慕雄,张秀梅,陆春萍,等.学用脱节还是学以致用?—中小学教师信息技术学用转化质性研究[J].中国电化教育,2021,409:68-74.

人工智能在教育教学的应用篇6

关键词:人工智能;大学英语教学;后现代课程观

一、引言

人工智能与各领域的深度融合和创新,正在颠覆我们的生活,改变世界的面貌[1]。世界各大经济强国为抢占人工智能技术发展制高点,争先研制了各种人工智能发展战略和行动方案,试图占住未来科技发展先机。我国在继2016年5月发改委和科技部联合推出《“互联网+”人工智能三年行动实施方案》后,次年7月国务院印发《新一代人工智能发展规划》(以下简称《规划》)[2],全面部署了我国人工智能发展战略。2017年9月,教育部长陈宝生提出“课堂革命”的信息化时代教育改革新命题,人工智能驱动和赋能的课堂革命序幕从此拉开。2018年4月,教育部了《高等学校人工智能创新行动计划》,明确了高校在培养创新人才及科技创新等领域的目标和任务。人工智能与教育进入了融合创新阶段,正在迅猛地颠覆人类几千年沉淀的教育理念和方式,重构教育生态。智能语音技术、英语语言测评系统、语言翻译、智能口语陪练等技术,以及自适应系统、个性化学习中心和智能导师系统等广泛应用于大学英语教学领域,为大学英语教学带来了前所未有的机遇,为破解大学英语教学领域几十年来教学资源不足、“因材施教”难以践行、课程评估不科学等难题提供解决方案。显而易见,传统的教学目标、课程体系及教学模式、教师的专业知识不足以应对新一代人工智能技术的需求,我们必须积极求变,寻找人工智能与大学英语教育的契合点,方能在这场革命浪潮中幸存。

二、人工智能2.0和教育

人工智能被认为是迄今为止最具有颠覆性的技术[3],它正在加速落地,深刻地改变世界和人类生产、生活方式[1]。人工智能自诞生之日起就与教育休戚相关,对教育的变革也将是彻底的、全方位的。因此,我们必须充分认识它,方能抓住人工智能技术给教育带来的机遇,方能乘风破浪应对挑战。(一)人工智能的内涵、发展及核心技术人工智能。(ArtificialIntelligence,简称AI)这个名词,早在1956年由美国达特茅斯学院(DartmouthCollege)的一群年轻科学家提出,但是到目前为止没有一个科学、全面、准确的定义。学界公认的定义是,人工智能这门科学主要研究、模拟、延伸和扩展人的智能理论及相关方法与应用技术,通过计算机模拟人的智能,最终使之能像人一样思考、学习和认知,并能够有效地处理过去由人才能处理的问题[4]。人工智能,作为一门新兴的交叉学科,涉及的面十分广泛,涵盖多个大学科和技术领域,如计算机视觉、自然语言理解与交流、认知与推理、机器人学、博弈与伦理、机器学习、统计学、脑神经学等[1]。学界认为人工智能经历了三大发展浪潮。第一次是20世纪50至60年代以图灵测试为标志的启蒙期。20世纪80至90年代随着语音识别技术取得突破性进展,人工智能发展迎来了第二次发展浪潮。近年来,由于互联网技术、大数据技术、深度学习算法等技术的飞速发展,人工智能开启了第三次发展浪潮。大数据技术、深度学习和机器学习是人工智能第三次发展浪潮的标志性技术。人工智能的核心技术包括三个层面:基础技术、通用技术和应用技术[1]。在基础技术层面,机器学习被认为是其最重要的支撑技术,研究计算机如何模拟或实现人类行为,获取新的知识或技能,重新组织已有的知识结构使之不断改善自身性能的科学[1]。被广泛应用于图像识别、语音识别、机器翻译等领域的深度学习则是机器学习的一个重要分支,它加速了人工智能的发展。人工智能的通用技术层面内涵丰富,主要包括语音识别、计算机视觉、自然语言处理、决策和规划、运动与控制等。人工智能应用技术现在深入渗透各个行业领域,人类进入了人工智能时代,未来的一切将出现无限可能。(二)人工智能赋能教育。人工智能与教育息息相关。新一代人工智能技术在政策驱动、消费者需求升级驱动以及新技术迭代升级突飞猛进驱动下,已经迈入了与教育教学融合创新阶段,迈入了为变革课堂教学,实现教育创新赋能加力的阶段。自2015年至2019年,国家先后出台了《中国制造2025》(2015年)、《“互联网+”人工智能三年行动实施方案》(2016年)、《新一代人工智能发展规划》(2017年)、《高等学校人工智能创新行动计划》(2018年)、《中国教育现代化2035》(2019年)五项政策,加速了人工智能与教育的深度融合的进程。目前,我国居民生活水平整体提高,教育消费需求升级,家庭对教育的重视及投入大幅增加,对教师的要求、学习环境和条件的要求更高,在线学习需求旺盛,这在很大程度上也加速了人工智能技术在教育行业的广泛应用。人工智能三大核心应用技术即计算机视觉技术、智能语音技术和自然语言处理已经广泛开发应用于在线教育、智慧课堂、为智慧教学和智慧学习赋能加力[5]。目前,从基于语音识别的英语语音测评到基于图像识别的智能情绪分析,人工智能已经在教育领域已经实现十余种产品类型[6]。国外像Google,Alpha,Facebook等走在技术前列的知名公司,研发了各具竞争优势的AI教育软件,进军教育行业;国内的腾讯、科大讯飞、百度等也研发了各类学习软件和教学软件,并拥有海量用户。人工智能引领下的教育正朝智慧教育、智慧学习大步迈进。

三、人工智能给大学英语教学带来了机遇

大学英语教学改革的步伐从未停歇过,但是不管怎么努力都被冠以“费时低效”的罪名,教学资源不足、“因材施教”教育理念贯彻不到位、评价无法及时科学反哺教学等问题一直是大学英语教学改革中的顽固问题。人工智能时代,随着大数据技术、计算机视觉、智能语音技术和自然语言处理技术所催生的慕课、自适应学习系统、个人学习中心、智能导师等的广泛应用,这些问题将迎刃而解。(一)慕课的蓬勃发展,海量教学资源得以共享。慕课(MOOC),即大规模开放在线课程,是大数据时代的产物。2013年,中国迎来了慕课元年,从此中国大地掀起了一股慕课建设的热潮。从教育主管部门、高校、教材出版商、IT企业、教育培训机构到普通教师,都在共同致力于开发慕课平台,共建优质教学资源。短短的六年时间里,中国慕课在信息技术尤其是人工智能技术的驱动下实现了跨越式发展,目前,我国共有12500门慕课上线,超过2亿人次在校大学生和社会学习者学习慕课,6500万人次大学生获得慕课学分[7]。已经上线的慕课中,大学英语慕课的份额十分可观,为大学英语教学提供了海量教学资源。目前,中国大学MOOC,共有468所合作高校共推出了1291门国家精品慕课,其中包括60余门大学英语通识类课程、28门专门用途英语课程和21门跨文化类课程;中国高校外语慕课平台(UMOOCs),我国首个以外语学科特色为主的国际化慕课平台,自2018年3月23日正式启动以来共上线大学英语类课程40余门;国内外语类三大出版社也创建了特色课程平台:外语教育与研究出版社推出了U校园教学云平台、上海外语教育出版社创建了“WELearn课程中心”、高等教育出版社推出了i-Smart外语智能学习平台;清华大学研发的学堂在线上也有将近50门大学英语类课程。这些平台所推出的海量优质外语教学资源,学习者可以像逛超市一般按照自己的喜好和需求在平台上挑选课程,这较好地解决了大学英语过去一直教学资源不足的问题。除此以外,随着人工智能技术的迭代升级,机器人教师和虚拟教师的广泛应用,他们都将成为最好的老师时时陪伴,“同一个世界,同一个课堂”的愿景在不久的将来得以实现,大学英语教学改革路上教学资源不足不公的问题不再是制约大学英语教学发展的问题。(二)自适应学习广泛应用,“因材施教”教育理念得以践行。早在孔子时代就提倡“因材施教”的教学理念,要求教师在教学中应该根据学生的认知水平、学习能力及自身素质有的放矢地进行差别教学。大学英语教学改革几十年来,也一直致力于“因材施教”个性化的教学改革,但是劳而无功,究其因,主要是课堂人数多,教师无法每次课前准确掌握学生学习程度、课中和课后不能即时跟踪学生的学习情况,因此很难做到适时调整教学策略实施“因材施教”。2016年美国自适应学习平台Knewton及我国自主研制的智能自适应学习系统的投入使用,为教师、学生自己,甚至家长了解学生的学习状态,依据学生的学习兴趣、学习风格、学习需求选择适合的学习资源和途径提供了便捷。人工智能在自适应学习过程中所起的作用显而易见,主要体现在:科学而又高效的学习状态诊断;精准学习资源的推送;全过程学习数据的收集、分析与整合。因此,人工智能技术与大数据应用使得量化自我和定制学习的个性化教育成为可能[3],“因材施教”问题也将得以践行。(三)大数据护航,精准多维的课程评价得以实现。课程学习评价是教学中的重要环节。大学英语课程学习评估经历了过去的以终结性评估为主到终结性评估与形成性评估相结合的课程学习评价方式,但是不管怎样,过去评估形式的改变并没有改变评估重结果、轻过程、重整体、轻个体的结局。此外,由于技术的原因,课程考核根本无法顾及学生的情感因素。因此,这种单一的评价模式始终没法全面科学精准地反哺教学。人工智能通过即时摄录大数据分析使传统评价发生了根本性变化,所有学生的学习记录将被人工智能综合收集起来,互相参照、优化、聚合后分发,从而提高总体水平,彻底升级“教学相长”的含义[8]。尤其是智能导师系统及智能评测系统的开发利用,可以凭借人脸识别、语音识别、机器学习、自然语言处理等技术,不仅能全过程精准收集学习的学习数据,还能即时对学生的学习状态、情感感知等多种学习因素作出即时的诊断和评价。大数据保驾护航收集全过程学习数据、智能导师和智能评测提供多维即时诊断和评价,这才是具有实际意义和现实价值的课程学习评估。

四、大学英语教学面临新挑战

人工智能技术给大学英语带来无限机遇的同时,也倒逼大学英语教学必然积极识变、应变、求变,朝着教学目标高阶化、课程体系后现代化、教学模式智慧化、教师角色精细化方向发展,主动服务国家战略发展和学生的“学以成人”。(一)教学目标高阶化。新时代高要求。近两年,教育部罕见多次发文呼吁大学英语教学改革。2018年9月17日,教育部召开加强高校公共外语教学改革工作会议,提出要“实施面向非外语专业的公共外语教学改革”“培养高素质国际化复合型人才”[9]。“推进公共外语教学改革”也被列入2019年教育部“十大事件”之一。2019年3月29日教育部和中组部又联合召开“推进公共外语教学改革,大力培养高素质国际化专门人才”会议,重点讨论如何培养学生的“专业+外语”综合应用能力,为国家战略培养和储备“一精多会、一专多能”的国际化复合型人才[9]。教育部高等教育司吴岩司长在2019年第四届全国高等学校外语教育改革与发展高端论坛上提出高等外语教育要主动服务国家发展战略,要积极迎接新科技革命挑战,要全面融入高等教育强国建设,大力培养具有全球视野、通晓国际规则、熟练运用外语、精通中外谈判和沟通的高素质国际化人才[10]。新技术新要求。2018年4月,博鳌亚洲论坛上,大屏幕即时将嘉宾语音转换成中文又即时译成英文;2018年11月的第五届互联网大会上,不但有中文,还有英文的首个AI合成新闻主播的出现。翻译软件、智能机器人等日新月异,给人类教育提出了新的要求。在人工智能时代,人类几千年积累下来的知识,瞬间可以从智能机器人和资源库平台获取,使得人类靠知识传授的课程即将被淘汰。课程教学的重心不得不从曾经的知识传授转移到通过学生的个性化学习和自适应学习,培养信息获取和分析处理能力、终身学习能力、批判性思维能力和创新能力[5],以及人工智能所难以拥有的精神能力,包括情感能力、价值追求能力、美感能力和创新能力[3]。在这种高要求、新要求下,大学英语教学的目的就不再是简单的培养学生的英语应用能力,提高综合文化素养了。而是迈向更高阶的利用英语汲取和交流专业信息能力的培养;使用英语解决专业问题的学科思辨能力和创新能力的培养;同时发展其自主学习能力、提高其智能素养,使他们在各自的专业学习、研究和未来工作中有效地使用英语,满足国家、社会、学校和个人发展的需要。按照布鲁姆教育目标分类法,认知领域的教育目标按知识与认知过程两个维度分类[11]。在知识维度,知识被分为事实性知识、概念性知识、程序性知识和反省知识4种类型。在认知过程维度,认知过程维度,认知过程由低级到高级被分为记忆、理解、运用、分析、评价和创造6种水平[11]。人工智能时代的大学英语教学目标高阶性主要体现在:在知识维度,大学英语教学目标设立从事实性知识、概念性知识、程序性知识向反省认知知识迈进;在认知过程维度,从记忆、理解、运用向高阶的分析、评介、创造迈进。(二)课程体系后现代化。人工智能时代将迎来学校平台化、传统课堂网络化、课程市场化,人工智能技术随时从云端、海量资源库中为学生提取知识,并经由结构化推送给学生,经过学生深度学习之后进一步提炼加工,再次结构化。此外,人工智能超强的学习能力随时产生大量人类无法理解的暗知识(所谓暗知识,就是指那些人类根本无法感受到无法表达出来的,然而却能够发挥重要作用的知识)。“人类将进入一个知识大航海时代,我们将每天发现新的大陆和无数金银财宝”[12]。正如Schwab,J在Thepractical:Alanguageforcurriculum中所言:课程领域已步入穷途末日,按照现行的方法和原则已不能继续运行,也无以增进教育的发展[13]。现在需要的是适合于解决问题的新原则.....新的观点......新的方法。因此,大学英语目前线性的、统一的、封闭的现代课程体系必然受到冲击,取而代之的是非线性的、建构的、开放的小威廉.E.多尔所倡导的后现代课程模体[14]。人工智能时代,大学英语课程体系应该朝小威廉.E.多尔所提出的具有四R特点的后现代课程模体建构,即课程具有丰富性(rich)、回归性(recursive)、关联性(relational)和严密性(rigorous)。所谓丰富性,是指课程的深度、意义的层次、多种可能性或多重解释[14]。在人工智能时代,学生与教师、学生与同伴之间是学习伙伴的关系,他们随时都可以能产生新的疑问或知识,因此为了促使学生和教师产生转变和被转变,课程应具有“适量”的不确定性、异常性、无效性、模糊性、不平衡性、耗散性与生动的经验[14]。课程具有回归性是指课程的片段、组成部分和序列应该是任意组合的,不应该设置为孤立的单元,而应视其为反思的机会。也就是说在设置课程体系的时候,每一个知识,包括作业、测验等都应该提供对话和反思的余地,避免课程的重复性。关联性指建立教育与文化之间的关联。具有关联性的课程模体将摆脱过去课程体系仅仅由课程内容或教师来决定,课程模体处于一种不断建构的过程,它的内容和体系远远超越原有的课程内容。严密性是四个标准中最重要的[14]。自发组织建立的丰富的具有回归性的课程并非任意、无序的,而是具有学术逻辑和符合课程发展规律的,可以用数学思维准确度量的。只有这种非线性的、开放的、不断建构的课程模体才满足海量资源,优势整合的特点,才能有效解决学生日益增长的对英语能力提升的需求与优质英语资源分布不平衡直接的矛盾。(三)教学模式智慧化。人工智能赋能的课堂将首先是网络化、数字化、智能化的课堂,是实施个性化教学的创新能力培养课堂,是基于项目式学习的自主、合作、探究的课堂,是线上线下无缝衔接的混合式和翻转课堂,是平等交互、自适应学习、快乐幸福并追求个性全面和谐发展的高效课堂[5]。因此,大学英语教学应当遵循语言学习“输出驱动、输入优化、产出评价”和以“学生为中心”理念,从英语学科教学方法与移动新媒体技术相结合的视角,引入自适应学习系统、智能导师系统加强过程监控与评估,充分利用慕课、微课等建立具有可视化、可听化、协作化、互动化的大学英语“金课”教学模式,充分发挥线上线下教学互促和互补的优势,构建线上线下教学环节,形成课前预备、课中教学、课后巩固、课外丰富及教学反馈五个教学环节为一体的螺旋上升模式,实现知识从传递到知识提升,如图1。图1智能教学模式模拟图(四)教师角色精细化。智能语音、智能批改、智能翻译、教育机器人等人工智能技术广泛应用于英语教育,过去教学中一切重复性劳动和大部分管理工作都将被人工智能所取代,教师角色将发生重大改变。过去衡量优秀教师的素质体系:扎实的外语基本功、完善的知识理论体系、较强的外语教学能力[15],已经无法完全满足人工智能时代对大学英语教师的需求。未来的人工智能智慧课堂不需要教师,教师的角色将转型为课程的咨询师、学习的引导者、数据分析师、情感呵护者等,角色将越来越精细。除此以外,由于角色的精细分工,将来教师不可能再孤军奋战,而是走向团队合作[16]。今天的教育形势下,我们教师要引领学生提升自己的核心素养,引领学生学会认知(learntoknow),学会做事(learntodo),学会合作(learntoliveandworkto-gether),学会做人(learntobe)。

五、结语

人工智能与大学英语教学的融合创新,为解决大学英语教学改革40多年来教学资源不足、“因材施教”的以学生为中心的教学理念难以践行、评估重结果流于形式的顽固问题带来了契机。同时,人工智能对大学英语教学结构的颠覆性革命,也倒逼大学英语教学必须朝教学目标高阶化、课程体系后现代化、教学模式智慧化、教师角色精细化方向发展。

人工智能在教育教学的应用篇7

关键词:网络教学;Agent技术;个性化

中图分类号:G250.73 文献标识码:B 文章编号:1673-8454(2012)01-0068-03

一、引 言

近几年,随着互联网的快速发展,网络教学平台的不断涌现,网络教学系统的应用普及率越来越高,个性化教学系统的研究和开发成为网络教学中的关键问题和热点。史敏军运用Web挖掘技术与协同过滤技术,建立用户兴趣模型,并搭建了基于个性化服务技术的教学平台;陈丽花根据贝叶斯网络理论设计和实现了一种基于和SQL Server数据库技术的个性化教学系统;陈智勇提出了基于XML Web Service技术的教学资源集成方案,并根据此方案利用ASP. NET编程语言构建了一个教学资源综合平台。[1-3]网络教学系统虽然在应用中取得了一定的成果,但也存在一些问题,概括起来主要有:(1)系统缺乏智能性和自适应性,并且对系统用户采用基本相同的教学策略,难以实现按需学习和因材施教;(2)单一的教学模式使得呈现内容的界面比较简单,不能实现个性化的内容传导模式。针对目前网上教学系统存在的不足与难点,以个性化相关学习理论为指导,本文研究了基于Agent的网络教学构建技术,进而分析了对现有网络教学系统进行改进的方法,指出Agent技术在应用于网络教学的优势。

二、Agent技术分析

Agent技术源自分布式人工智能(DAI),是现代计算机技术和通信技术发展的必然结果。Agent是人工智能计算机软件领域内的一个新兴技术,Agent概念可追溯至1977年Hewitt提出的并发演员(actor)模型,从上个世纪80年代开始,Agent技术从分布式人工智能领域分离出来,并与其他领域的处理方法进行融合,成为一个交叉性的学术领域,涵盖人工智能、分布式系统、专家系统、知识工程和并行计算等多个领域,到了90年代,Agent技术进入迅猛发展阶段,多Agent系统的研究成为分布式人工智能的研究热点问题。近年来,Agent发展尤为迅速,研究者在社会的各个领域如电子商务、供应链、智能决策、软件工程等对Agent理论及其应用做了大量的研究,Agent技术逐渐成为人们关注的热点问题。目前,关于Agent的研究不仅受到了人工智能研究者的关注,也引起了机器人、数据通信、人机界面设计等多个领域研究者的关注,成为一个富有生机的研究领域,且有越来越多的研究者将Agent技术应用在不同的领域。

目前,对于Agent技术的定义还没有统一的标准,不同专业的人对Agent的理解也不大相同。大家普遍认为,Agent是一种在特定的环境下能够感知环境,并且能够灵活、自主地运行来实现一系列设计目标的、自主的计算程序或实体,它能够感知环境,并且对外界的信息做出判断和推理,从而来控制自己的决策和行动,完成一定的任务。[4]

Agent具有社会能力、自主性、自适应性和移动性等许多特性,这些特性决定了Agent技术不同于以往任何一种软件开发技术,利用Agent技术开发的软件实体将更具智能性,能在一定程度上实现程序的自动化和智能化。为了完成一项复杂的任务,可创建多个相互协作的Agent,以提高系统实际解决问题的能力。多个单个的自主Agent组成的整体是一个多Agent系统,多Agent系统不仅具备一般分布式系统所具有的实时性好、易于扩充、资源共享、灵活、可靠性高等特点,并且Agent之间能够通过相互协调、协作解决大量的复杂问题,使系统具有很强的鲁棒性、可靠性及自组织能力,非常适合于个性化网络教学平台的构建。

三、Agent技术在网络教学平台中的应用

1.基于多Agent技术的协同远程教学

远程教学主要以建构主义学习理论和教学理论为基本指导,借助于互联网并运用计算机多媒体处理技术,提供网上虚拟情景课堂进行教学,支持学生在线进行个性化的学习。其特点从两个方面可以体现:一是学生是学习的主体,通过互联网虚拟的情景课堂来进行交互式的自主学习;另一方面教师是教学的主体,要通过对授课的课程进行规划与设计,采用在线专题讨论和知识点总结、创立问题情景与综合评价、激励等措施,从而激发学生的学习兴趣以及学习的主动性,提高他们理解能力和掌握知识体系的能力,培养他们的创新精神,从而能督促学生进行广泛、深入的学习。因此,怎样发现和掌握不同学习主体的认知结构,针对不同的主体,有计划地建立动态的的学习情景,促使学生的学习活动与现有的认知结构相互作用,推动现有认知框架不断分化、协作、重组和扩展,进而实现学习目标,是远程教学模型设计的重中之重。

Agent是以主动服务的方式自动完成一组操作的计算机程序。一方面主动应该包括主动适应,即在完成操作的过程中,可以自动地获取关于操作的知识以及关于用户的偏好知识与意图,而且在以后的操作中加以利用;另一方面包括主动,也就是说无需用户发出指令,只要当前的状态符合一定的条件即可代表用户执行相应的操作。

基于Agent具有的各种优良、独有的特性,将Agent技术应用于远程教学环境,能从根本上克服现阶段远程教学平台的局限性:

第一,能够最大限度地支持教学过程与内容的个性化,增加趣味性,有效提高教学质量和改善教学效果;

第二,利用Agent的社会性特征,能满足协同学习的需要,把每类学生看成一个Agent,学生之间通过Agent的协作机制来完成协同学习,从而提高学生的学习质量与学习效果,那么同样也可以把老师看成一个个Agent,通过MAS的协作性和社会性与学生Agent交互信息,有效地掌握学生的学习状态;

第三,用Agent技术来处理学生的基本信息,能够有效地动态跟踪学生的学习行为及学习效果,为更加有效地建立学生信息管理模型提供可靠的依据。[5]

利用Agent的智能化思想来分析远程教学平台的总体需求并设计一体化解决方案,充分体现Agent技术在远程教学应用中的智能性、主动性,尤其是在流行的Web技术的基础上嵌入Agent技术,无疑会极大地促进远程教学平台的个性化与智能化,充分调动学生主体的自主学习兴趣,有效地提高学生的创新能力。然而,远程教学平台它本身就是一个非常庞大又复杂、不可预测的信息系统,一般会要覆盖教学过程中的每个环节,因而,通常将其划分成若干个子问题,来构造多个具有一定功能的Agent,在由这些Agent去协作处理教学过程中相应的子问题。基于多Agent的网络在协同教学系统模型,如图所示。

2.基于Agent技术的教育资源配送

教育资源配送系统(ERPS,Education Resources Purvey System)是指在各种媒介(如Internet等)综合环境下,为资源需求用户(如学生、教师以及各种教育教学机构)提供快捷、全面的各种媒体形式需要的教育资源的一种资源配送方式,信息资源配送系统是一种计算机软件,因此,它需要一种计算机技术来实现这种新的资源配送方式,多Agent技术本身拥有的诸多特性使其可以大规模地应用于教育资源的配送模式中。(1)多Agent的主动性非常适合于配送系统中的各个用户结点,Agent技术自身能很好地满足这些结点的自主性需求。(2)多Agent之间的协作和协调能力为资源配送环境中的各个结点之间的信息交互与共享提供了技术支持。(3)Agent的反应性能可以确保系统应对各种动态的、复杂的资源配送环境的变化,Agent的反应性还可以通过“感知―行为”模式来完成,行为通过与资源配送环境的交互来实现,它的特性就是能够快速响应环境的变化。(4)Agent的社会性特征符合配送系统所要求具备全局协调配送能力的要求,Agent的社会性指Agent能与其他Agent进行交互以便协作完成任务,它克服了单Agent解决复杂性问题的不足,为Agent的整体协作解决问题创造了条件。在教育资源配送系统中,节点用户对资源的动态要求以及配送环境的动态变化,都要求系统各个Agent能够通过合理、有效的协调交互机制达到全局的合理配送。基于Agent技术建立教育资源配送系统,能改变资源配送的方式,大大提升整个配送系统的效率。

3.Agent技术在网络教学其他方面的应用

文献[6]阐述了网络教学智能化、自适应化是目前网络教学发展的趋势和提高教学效果的有效途径,结合人工智能与网络教学,提出了一种基于多Agent的自适应学习系统,利用Agent的智能性、主动性来实现教学系统的智能化、自适应化,从而使教学真正做到个性化的学习,实现因材施教。文献[7]探讨了Agent技术在网络虚拟学习社区教学活动中的应用,基于Agent技术的虚拟学习社区可以改变传统的教学方式和学习方式,使学习方式从传统的独学变为群学、使学习结构从封闭变为开放,最终使教学从知识传授转变为知识建构。文献[8]从现有网络教学系统缺乏深入了解用户兴趣的实际现状出发提出了一种基于Agent的个性化教学系统,并结合神经网络技术,以用户兴趣追踪为出发点,探讨了采用启发式算法来获取用户兴趣特征的方法,从而以最快的速度学习到最新的用户兴趣。另外Agent技术还应用在教育信息化的其他各个方面。

四、总结

目前有关将Agent技术应用于网络教学领域的研究才刚刚起步,Agent技术在未来将大有用武之地,因此更好地利用日趋成熟的Agent技术推进网络教学建设是我们未来工作的重点之一。本文列举了Agent技术在网络教学领域的应用,概要分析了Agent技术在解决网络教学方面的优势,Agent技术的诸多优点使得将Agent技术应用于网络教学领域,将大大推动网络教育的发展。

参考文献:

[1]史敏军.基于个性化服务的教学系统研究[J].中国科技信息,2009(22):239.

[2]陈丽华.省略的个性化教学系统设计研究[J].大理学院学报,2009,8(8):22.

[3]陈智勇.基于XML WebService教学资源综合平台的设计与实现[J].中国医学教育技术,2009,23(3):267-268.

[4]王立春,陈世福等.多Agent多问题协商模型[J].软件学报,2002.13(8):1638-1639.

[5]高仲慧,林筑英等.基于多Agent的自适应远程教学系统模型[J].贵州师范大学学报(自然科学版)2009,27(3):96-97.

[6]崔惠萍,傅钢善.基于多Agent的自适应学习系统的研究[J].教育软件开发与应用,2006.

[7]李艳,郑金秋.智能Agent在网络虚拟学习社区教学活动中的应用[J].辽宁省交通高等专科学校学报,2006,20(6):223-224.

人工智能在教育教学的应用篇8

[关键词]多媒体;教育技术:光技术;虚拟仿真

[中图分类号]G40―057

[文献标识码]A

[论文编号]1009―8097(2009)13―0242―02

教学活动中,教师的主导作用不容忽视,教师是教学活动的组织者和引导者、是学习活动的评价者、是渐进层次学习的激发者;教学活动中“学生为主体、教师为主导”,教师现场的言传身教尤为重要,不要指望单靠学生个别化学习、自我学习机械操作,再好的学习资源未必带来预期的成效。而正确运用恰当的技术手段,实现师者,所以传道授业解惑也,真正解决课堂和远程等教学存在问题。本文将在以下进行探讨。

一 光技术在多媒体虚拟仿真课堂教学的应用

从认识论来看,学习的本质是立体的、精神的、多向的、开放的。真实的学习是人与自然、与人相互作用,在开放系统中进行互动,而教育技术则要通过创建学习环境来达到目的。学习环境由内容、媒体(包括软件和硬件)、人员(包括教育工作者和其他学习者)、方法和场所等要素组成,构成一个教育信息传播的系统,即:传播什么信息(内容),通过什么来储存和传递信息(媒体和人员),如何传递(方法),在哪里传递(场所)。在课堂上用何种技术、方法才能做到教师现场仿真的言传身教、师生互动和教师的主导作用呢?有没有一种理想的技术手段和方法能真实再现教学情景呢?本人认为采用光电三维成像技术能最好的虚拟仿真课堂真实的教学情景,促进学生个别化学习、自我学习。由于情景逼真,互动性好,虚拟地建立起与真实环境相近的学习场景,开发基于网络的、具有自然语言理解与产生功能的“人一机”交互学习环境,对多个不同课室教学、网络远程个体或集中教学,尤其是在职成年人学习最佳。适应当今信息化发展进程,适应未来教学模式向着更深层次发展的要求。本文只从观念技术的角度来探究光技术在多媒体虚拟仿真教学的应用,主要是在课堂教学,运用恰当的人工智能技术手段,再配合有线、无线、卫星、微波等网络通信技术,实现仿真互动,起到教师的主导作用,教师现场的言传身教逼真,实现教育人性化的活动,再现与真实环境相近的学习场景,符合教育技术理论逻辑起点教与学的属性。

二 光技术及其应用效果

1 光电子新技术

常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。光电子技术是以先进探测器和激光器为基础,由光学技术、电子技术、精密机械技术和计算机技术等密切结合而形成的一项高技术。它既改变了传统光学的单纯观察功能,又大大扩展了电子技术的功能。由于光电子技术具有探测精度高、传递信息速度快、信息容量大、抗干扰和保密能力强等优点,因而在军事上得到了广泛应用,在现代战争中已显示了其特有的威力。

而光电子三维成像技术和全息摄影术不同,不需要依靠连贯的激光束产生图像。它使用普通光束即可。普通照相机的镜头工作原理类似模拟计算机,通过程序的运行将外界传来的信息(光线)转换成平面媒介上(通常是胶片)的图像。

[因特网消息1999年7月7日报道],美国伊利诺依州大学电气工程师大卫布莱迪在数字计算机而非光学镜头的帮助下,利用射电天文学家绘制天空的数学方法从光线中提取出足够的信息来生成三维图像。研究人员用卤灯照亮一只小小的塑料恐龙,将来自恐龙的光线分离成两束。当这两束光线再度会合时,它们相互干扰,虽然强度不如没有受到过干扰的光线,但是所有的波型却都很和谐。在恐龙模型转动时,科学家们记录下来了128种干扰波。这些干扰波中包含有该物体三维图像的全部信息,计算机程序可以对它们作还原处理。

这项技术最大的优点是无论景深多大,它都能保持清晰的聚焦,这一点与传统光学镜头相比表现出极大的优势。决定图像解晰度的唯一因素就是物体离开镜头的距离。这一特点使其对于三维显微具有特别的应用意义。布莱迪设想他发明的技术可用来拍摄细胞在产生交互作用时的高清晰度图像。共焦显微技术采用的是扫描技术,聚焦平台来回移动,以获得细胞的细部信息,从而生成三维图像。利用这种方法,当细胞在移动时,要拍摄到细胞的移动过程就是非常困难的。有了布莱迪发明的科学方法,记录装置就可利用排列成圆圈的光学感应器帮助研究人员记录实时的三维数据。

科学家们指出,即使要拍摄的对象远离感应器,这项技术仍然有用。麻省理工学院电气工程师乔治说:“这个系统同样可以用来拍摄篮球比赛的三维影片。如果你的家中有三维播放机,你就可以在虚拟现实状态下观看篮球比赛,观看者会感觉自己仿佛就在场内一样。”

2 光电三维成像技术在多媒体虚拟仿真课堂教学的具体应用及效果

现在的有线、无线、卫星和微波等网络远程教学,学生面对的都是单向平面银幕,一是没有互动缺乏双向交流,而是画面平面呆板与真实情景差别太大,很难调动学生的兴趣。就是普通的现场课堂教学,应用多媒体课件,也由于画面内容很难反馈真实形象化的情景而大打折扣。如果能将课堂教学情景、课件内容立体可视化,再配合声音、资源库双向互动,完全模拟真实情景,与现场无异,那将是教育教学新的飞跃。有什么适当的技术能实现刺激鼓励指导学生的思考和自动学习方法呢?光电三维成像技术就能在课堂教学应用中虚拟仿真真实场景,而虚拟现实是指通过特殊的输入设备和一些能实现三维图形和三维音效的特殊输出设备来模拟人和环境之间的交互技术。假如远程课堂教学,通过有线、无线、卫星、微波等通信传输,使用课堂多媒体光电三维成像设备,主教室和各分教室双方的三维立体全息图像便瞬间出现在对方面前,就好像一个真人站在你面前一样,然后你便可以和他随意交谈,使用各种表情,那是一种呈现在空气中的光学立体影像,不需要任何屏幕之类的媒质,不像今天的网络卫星远程教学、可视电话还需要一个屏幕才能显像。光虚拟现实技术可很好地应用到虚拟学习环境的建立。它可以虚拟地建立起与真实环境相近的学习场景,使学生似乎已处于真实环境之中。

当然,屏幕还有作用,显示课件文本等其它信息。过去的所谓三维显像技术显示的并不是真正的三维图像,而是在二维平面上利用人体肉眼的双眼像差而虚拟出的“伪三维图像”,长期观看这种伪三维图像,会损伤视力或造成视觉疲劳。这样,教学所使用的各式方法(如演讲法、问题教学法、设计教学法、复述背诵法、小组研讨法、访问式教学法、辩论法、座谈研讨法、甚至实验教学)都能应用光电三维多媒体

虚拟仿真成像技术达成教学目标[手段]。当然,要真正将光技术应用于实践非一朝一夕,但可以采取过度方法,如先实现屏幕显示三维立体画面,学生观看而无需头盔等辅助设备,能实现师生声像远程互动,虚拟地建立起与真实环境比较相近的学习场景,再随光技术发展和实现,使学生似乎处于真实环境之中将成为现实。光电三维成像技术不但可以应用于多媒体虚拟仿真课堂教学,还可以应用在网络远程在线教学、虚拟学习社区等。由于有教师和学习者之间通过网络进行社会交互的一种虚拟仿真环境建构,有强烈的社交真实感和虚拟社区归属感,不仅可增强学生的在线学习的持久性,提高学习绩效,而且能加强合作和学习满足感,提升合作学习水平。现在,在线学习者只是独立的个体,容易产生焦虑、逆反心理和丧失学习动力,会导致学习的挫折感和低效率。

3 采用中间件技术

中间件(middleware)是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源,中间件位于客户机服务器的操作系统之上,管理计算资源和网络通信。满足大量应用的需要运行于多种硬件和OS平台支持分布计算,提供跨网络、硬件和OS平台的透明性的应用或服务的交互支持标准的协议支持标准的接口。利用中间件技术,将多媒体虚拟仿真应用类似于中间件,任何设计制作软件,包括现在应用的课程教学所需软件,如PowerPoint、Photoshop、Dreamweavcr、Flash等,都可无缝应用。教师无需专门培训,教学应用与以前无异,只是效果大为改观,真实再现场景,其它技术工作则由人工智能管理平台后的多媒体和课程制作人员负责,避免和改善教师计算机焦虑现象。

三 结合我校实践探讨多媒体人工智能课堂教学的管理模式

我校现有四个校区,分布在越秀区、海珠区、番禺区和珠海市,多媒体课室有279间,都基本配置了多媒设备,部分校区具有初级的网络多媒体教学平台。网络学院在省内有50来个教学点,上万名在读生,使用的是目前市场上唯一支持百万级用户的Blackboard网络教学平台。不过由于校区距离较远,不少老师要长年往返于各校区上课,虽然教师身临现场授课,但运作成本较高。网络教学点分布较广,学员分散,对学生来说,多媒体属于模拟交际而非学生直接参与的自然交际,缺乏自然语言进行人际交流的环境。而远程教育更需要互动和教师的主导作用,教师现场的言传身教尤为重要。

未来的新型多媒体教学将是以多媒体技术、计算机技术、网络通信技术、自动控制技术、传感技术、光技术、人工智能和虚拟仿真技术等的有机结合,能够全面整合网络各种“资源”而形成先进的网络多媒体教学平台。在这种教学平台上.多媒体教室不再是孤立的,它已融入到校园网教学系统中,并以校园网资源为“背景”构建出一个富有时代特色的现代化教学环境:即集教学、管理、娱乐为一体的“数字化校园”。多媒体课室是现代教学环境建设的重要组成部分,是教育技术信息传递的展示平台,是教师了解、联系、应用教育技术的桥梁。既然新型多媒体教学、特别是网络课堂教学如此重要,一般的管理就远不能适应现代化的课堂教学应用。

结合我校的教学实际,本人认为,未来的新型多媒体课堂教学将是一个系统集成,不但要从后端课堂教学管理考虑,还要联系前端课件制作。即多媒体课室管理人员既要参与后端维护保养,也要了解甚至参与前端课件制作,这就需要先进的多媒体人工智能管理平台管理,从制作到应用一条龙服务,时刻把握教师课堂教学需求的命脉,为管理和新技术应用于课堂教学提供依据。即教师只需在其中一个教室就可通过网络开启其它多个接收教室的多媒体设备(无须电教人员参与),对教师上课教室实施“直播”方式,通过安装在课室的特殊的多媒体光电三维成像、自动跟踪拾音等摄录设备,实现三维图形和三维音效来模拟人和环境之间场景的拾取,多个教室通过特殊的输入设备和一些能实现三维图形和三维音效的特殊输出设备,真实呈现在空气中的主课室教学光学立体影像,各分教室还可以现场与主讲教师交流。并同步录制仿真教学内容,作为课件保存录入资源库中。网络学院的学生可在课堂或家中电脑上,调用资源,远程课堂上的特殊设备也真实呈现在空气中的主课室教学光学立体影像,与现场无误。人工智能管理平台集中监测、控制和管理,教师可在办公室或家中的计算机上,利用人工智能管理平台的多媒体教学系统,远程开启网络教室,同在网络多媒体教室中的学生们实现远程点对点虚拟仿真场景答疑。可将多次答疑场景自动汇编入库,与相关课程智能结合,当点播网络虚拟课程,真实再现上课场景,学生有疑问时,可即时点击提问,人工智能管理平台随即快速智能搜索虚拟课程答疑库,如有相关知识即刻虚拟回复场景,如没有随即跳过继续上课,而此问题现场摄录保存到虚拟仿真场景答疑系统,在下次相关教师登陆远程点对点虚拟仿真场景答疑系统时,人工智能管理平台系统自动插入其中,与现场答疑无异,随答疑量增多,人工智能管理平台上的智能搜索虚拟课程答疑库容量增大,将能即时回复大多数疑难需求。

四 结束语

信息时代的到来,社会节奏的加快,知识呈现出高速增长和快速更新之势。随着科学技术的发展,还会有更多的新技术应用在教育技术中,光技术就是其中重要的一项,21世纪将是光技术应用发展的时代。

参考文献

[1]张祖忻.教育技术是一项解决教育问题的系统技术[J].现代教育技术,2006,(2):5―10.

[2]甘永成,王炜.虚拟学习社区多重内涵之解析与研究[J].现代远程教育研究,2005,(5):10―15.

上一篇:教育经济学重点范文 下一篇:高中语文必修字词范文

免责声明