机械零件加工范文

时间:2023-03-03 11:08:37

机械零件加工

机械零件加工范文第1篇

机械零件的设计与加工质量对最终的机械质量十分重要,因此,在进行机械零件加工工作时,需要专业的制造能力。我国大部分机械零件加工多采用数控加工形式,对数控机床、数控编程设计、工作效率都有很大要求。为了满足机械零件的质量与速度需求,必须加大对机械零件的设计要求与加工工艺要求。本文通过对设计加工工艺内容进行整理,对机械零件加工原则进行分析,进而促进我国机械零件行业的发展。

关键词:

机械零件;设计加工;加工工艺;内容及原则

科技的进步带动着许多领域的工作方式产生了改变,在机械零件加工领域,从传统的工业生产方式改变为数控生产模式[1]。科学技术的快速进步推动了机械零件行业的快速发展,在机械零件数控技术中,加工工艺内容与水平是衡量机械零件质量的重要指标。

一、机械零件设计加工工艺的具体内容及特点

1.机械零件加工工艺的内容

现在大多数机械零件加工工作都选择数控生产方式进行加工运作,在进行机械零件加工前,必须对加工工艺进行仔细的了解,再根据加工零件资料制定合理的加工方案,才能够确保机械零件的质量合格。在对机械零件进行加工前,确定加工工艺内容主要有以下三步骤。第一,当准备对机械零件进行加工时,应当选择适合机械零件的数控机床[2]。只有选择出恰当的数控机床,才能加工出合格质量的机械零件。选择好数控机床后,再确定具体的加工工序。不同种类的机械零件所经历的加工工序均有所不同,机械零件加工工作人员必须根据所加工的机械零件特点进行工序设计,再进行加工。第二,在根据机械零件的特点制定好机械零件的加工方案后,再开始对所需加工的机械零件图纸进行具体分析,研究出最适合该零件的加工技术。选择恰当的加工技术是整个加工工作的基础。第三,对机械零件的加工工艺设计,这一步骤是机械零件加工的核心步骤。对机械零件的加工工艺的设计关系到零件的质量好坏。因此,在进行机械零件设计时,需要清楚的对加工程序、基准选择、工具选择以及夹具和安装步骤的确定都十分重要,只有将这些东西整理清楚,才能制定出最适合机械零件的加工工艺,进而保证机械零件质量。

2.机械零件加工工艺的特点

由于机械零件加工会采用数控加工方式,因此,在机械零件加工工艺中处处体现着具有数控特点,在数控特点中又融合进机械零件加工自身所有的特点。主要的特点有三个。第一,机械零件加工工艺具有详细性。在进行机械零件加工前,需要做好充足的准备才能开始进行加工。为了保证机械零件的质量,在加工前需要制定完善的数控机床加工方案,选择适当的数控机床。在加工过程中,还应当对加工程序、刀具、方法及参数等多方面内容进行确定。在机械零件加工过程中,只有将这些资料都准备齐全,才能开始对机械零件进行加工。这样才能减少机械零件加工企业的损耗,确保机械零件的加工质量。第二,机械零件加工工艺的严密性。采用数控机床进行机械零件加工,能够提升机械零件的精密度,确保机械零件的质量[3]。并且在加工过程中,可以降低工人的工作量,提升工人的工作效率。由于采用数控机床加工,有可能在加工过程中发生问题而无法停止加工。因此,在进行机械零件加工前,必须确保在加工工艺程序设置上的严密与准确性。一点小的设置误差,都有可能造成机械零件报废,对机械零件的质量造成影响,严重时甚至会造成机械事故,对工作人员的生命造成威胁。第三,机械零件加工工艺需要进行合理的数学计算。采用数控机床方式进行加工,需要进行数控编程。而在数控编程工作中,对机械零件的长、宽、高等尺寸都需要进行设置。因此,在进行机械零件数控编程前,需要先利用数学知识对零件各个尺寸进行设计,对机械零件进行优化。

二、机械零件设计的原则

1.机械零件设计的定位基准原则

在机械零件进行加工时,需要设置机床与刀具的相对位置参数。在加工最初阶段,机械零件处于粗基准阶段,为了保证机械零件加工质量,需要对机械零件进行精准定位[4]。在进行机械零件加工过程中,需要根据零件自身特点来制定相应的定位基准。倘若不能选择恰当的定位基准,对于最终生产出来的机械零件质量有很大影响。在对机械零件加工位置进行定位时,有两个原则:第一,是对机械零件加工粗基准的原则。在选择粗基准定位时,首先需要确保机械零件加工的原材料充足,在加工表面需要预留出足够的余量。在选择夹具时,应当尽可能选择简单的夹具。第二,对机械零件加工精基准定位的原则。当加工定位选择为精基准定位时,为了方便定位,需要观察精基准面的选择恰当性。在机械零件加工时,需要慎重对精基准定位进行选择,以此来提升机械零件加工效率。

2.机械零件加工设计方法的选择原则

在进行机械零件加工设计方法的选择时,需要遵循两种选择原则。其一是需要符合经济适用性原则。如果设计的加工方法对于生产企业会产生较大的负担,如材料价格过大,设备需求过大等对企业自身的利益会产生影响,则不利于企业的发展。因此在选择时,需要根据生产企业自身的情况进行适当性选择。第二,应当遵循设计方法与实际零件匹配原则。在对机械零件的加工方法进行设计时,应当根据零件自身的形态来进行设计。同时还应当与机械零件的材料、工厂的设备、工人的水平等要求综合考虑来进行设计,否则容易造成机械零件的加工失败状况,对企业造成损失。结束语综上所述,机械零件的加工工艺具有自身的特点与需求,在进行机械零件的设计时,必须遵循相应的原则。否则,不仅会造成机械零件的加工失败,影响机械零件质量,严重时甚至有可能会发生机械事故,对企业造成损失。

参考文献:

[1]王东辉.连杆零件的机械加工工艺规程和专用夹具设计[J].科技展望,2014,23(17):22.

[2]计正寅.零件机械加工工艺设计原则分析[J].工业设计,2015,08(10):117-121.

[3]刘丹青.典型轴套类零件设计及加工工艺分析[J].赤子(上中旬),2015,24(45):341-342.

[4]王逸.浅析机械零件设计及加工工艺性[J].科技经济导刊,2016,10(22):70.

机械零件加工范文第2篇

关键词:机械零件;加工精度;分析

中图分类号:TU984 文献标识码:A 文章编号:

尽量减少各种不利因素对机械加工精度的影响,提高生产率,降低加工成本,已成为机械加工中值得深思的问题。

1 机械零件加工产生误差的主要因素

1.1 加工原理误差

主要是指采用了相似的成型或轮廓进行加工而产生的误差。这一加工方式虽然有原理上的误差,但是一般都可以简化机床结构或刀具形状,甚至提高生产效率等,都可以得到比较高的机械加工精度。所以,只要其误差不超过一定的范围,在机械加工生产中是可以得到比较广泛的运用的。

1.2 工艺系统的几何误差

如机床、夹具、刀具的制造误差,工件因定位和夹紧而产生的装夹误差,这一部分误差与工艺系统的初始状态有关。

1.2.1 机床的几何误差

对工件加工精度影响较大的机床误差有:主轴回转误差、导轨误差和传动链误差。机床的制造误差、安装误差和使用过程中的磨损是机床误差的根源。

1.2.2 夹具误差与装夹误差

夹具的作用是使工件相对于刀具和机床具有正确的位置,夹具误差主要是指夹具的定位元件、导向元件及夹具体等零件的加工与装配误差,它与夹具的制造和装配精度有关,直接影响工件加工表面的位置精度或尺寸精度,对被加工工件的位置精度影响最大。在设计夹具时,凡影响工件精度的有关技术要求必须给出严格的公差。粗加工用夹具一般取工件相应尺寸公差的1/5~1/10。精加工用夹具一般取工件相应尺寸公差的1/2~1/3。另外,夹具的磨损也将使夹具的误差增大,从而使工件的加工误差也相应增大。为了保证工件的加工精度,除了严格保证夹具的制造精度外,还必须注意提高夹具易磨损件的耐磨性,当磨损到一定限度以后,必须及时予以更换。

1.2.3 刀具误差

刀具误差是由于刀具制造误差和刀具磨损所引起的。机械加工中常用的刀具有:一般刀具、定尺寸刀具和成形刀具。一般刀具(如普通车刀等)的制造误差,对加工精度没有直接影响;定尺寸刀具(如钻头、铰刀、拉刀等)的尺寸误差直接影响被加工工件的尺寸精度;成形刀具和展成刀具(如成形车刀、齿轮刀具等)的制造误差,直接影响被加工工件表面的形状精度。另外,刀具安装不当或使用不当,也将影响加工精度。

1.3 工艺系统的动态误差

在加工过程中产生的切削力、切削热和摩擦,它们将引起工艺系统的受力变形、受热变形和磨损,影响调整后获得的工件与刀具之间的相对位置,造成加工误差,这一部分误差与加工过程有关,也称为加工过程误差。

1.3.1 定位误差

定位误差指的是由于工件在夹具上定位不准而造成的加工误差,它包括基准位移误差和基准不重合误差。一般情况下,加工过程的工序基准应与设计基准重合。在机床上对工件进行加工时,须选择工件上若干几何要素作为加工时的定位基准,如果所用的定位基准与设计基准不重合时,就会产生基准不重合误差。在采用调整法加工一批工件时,基准不重合误差等于定位基准相对于设计基准在工序尺寸方向上的最大变动量。采用试切法加工则不存在定位误差。而基准位移误差则是指工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,导致定位基准与限位基准不能重合,使各个工件的位置不一致,从而给加工尺寸所造成的误差。

1.3.2 工艺系统受力变形引起的误差

在进行零件加工时,加工工艺系统会在各种阻力的作用与反作用下产生一定程度的变形,使得了刀具、工件等位置发生一定的变化,也必然会造成机械零件加工误差的逐步增大。而这种因受力变形引起的误差,主要是由以下因素造成:

(1)机床的刚度。机床一般都是由很多零件、部件组成的,而这些零部件由于自身刚度不足等原因,必然会产生不同程度的误差。同时由于机床受到摩擦力、结合面接触变形、间隙过大等因素的影响,使得机床的整体刚度发生变化。

(2)加工零件自身的刚度。当加工零件自身的刚度相对于机床、刀具、夹具等来说比较低时,会由于机械零件自身的刚度不够而产生变形,进而导致了机械零件加工精度的降低。

例如车削细长轴时,在切削力的作用下,工件因弹性变形而出现“让刀”现象。随着刀具的进给,在工件的全长上切削深度将会由多变少,然后再由少变多,结果使零件产生腰鼓形。

1.3.3 工艺系统受热变形引起的误差

在机械零件加工过程中,其工艺系统一般都会受到各种热能的影响,进而产生了一定的温度,发生热变形,由于工艺系统热源分布的不均匀性及各环节结构、材料的不同,使工艺系统各部分的变形产生差异,这种热变形在很大程度上破坏了刀具、零件的正确位置以及运动等关系,从而产生了机械零件的加工误差,尤其对于精密加工,热变形引起的加工误差占总误差的一半以上。减少工艺系统热变形的途径:①减少工艺系统发热和采取隔热措施。②改善散热条件。③均衡温度场,加快温度场的平衡。④改善机床结构,合理选材,减小热变形。

1.3.4 内应力重新分布引起的误差

内应力是指外部载荷去除后,仍残存在工件内部的应力。

内应力是由于金属发生了不均匀的体积变化而产生的,体积变化的因素主要来自热加工或冷加工。有内应力的零件处于一种不稳定状态,一旦其内应力的平衡条件被打破,内应力的分布就会发生变化,从而引起新的变形,影响加工精度。减少或消除内应力的措施:①合理设计零件结构,尽量简化结构,使壁厚均匀、结构对称等,以减少内应力的产生。②合理安排热处理和时效处理。③合理安排工艺过程。

2 保证和提高机械加工精度的主要途径

保证和提高机械加工精度的主要途径大致可概括为以下几种:直接减小或消除误差法、转移误差法、补偿误差法、均分误差法、误差平均法、就地加工法。

2.1 直接减小或消除误差法。生产中应用较广的一种基本方法。它是在查明产生加工误差的主要因素之后,设法消除或减少这些因素。例如细长轴的车削,现在采用了大走刀反向车削法,基本消除了轴向切削力引起的弯曲变形。若辅之以弹簧顶尖,则可进一步消除热变形引起的热伸长的影响。

2.2 转移误差法。就是转移工艺系统的几何误差、受力变形和热变形等误差,使其从误差敏感方向转移到误差的非敏感方向。如磨削主轴锥孔保证其和轴颈的同轴度,不是靠机床主轴的回转精度来保证,而是靠夹具保证。

2.3 补偿误差法。人为地造出一种新的误差,去抵消或补偿原来工艺系统中存在的误差,尽量使两者大小相等、方向相反,从而达到减少加工误差,提高加工精度的目的。

2.4 均分误差法。在加工中,对于毛坯误差、定位误差引起的工序误差,可采取分组的方法来减少其影响。其实质就是把原始误差按其大小均分为n组,每组毛坯误差范围就缩小为原来的1/n,然后按各组分别调整加工。

2.5 误差平均法。利用有密切联系的表面之间的相互比较和相互修正或者利用互为基准进行加工,以达到很高的加工精度。在生产中,许多精密基准件(如平板、直尺、角度规、端齿分度盘等)都是利用误差平均法加工出来的。

2.6 就地加工法。在机械加工和装配中,有些精度问题牵涉到很多零部件的相互关系,如单纯依靠提高零部件的精度来满足设计要求,有时不仅困难,甚至不可能。而采用就地加工法(也称自身加工修配法)就可以较好地解决这种难题。

3 结束语

机械零件加工范文第3篇

关键词:机械加工;零件;精度

机械加工工艺是零件加工中的一项重要内容。在利用机械对零件进行加工过程中,通过对机械的力量进行应用,完成对零件的加工。零件对加工的精度的要求高,因此如果在实际加工中,采用的工艺不合理,将会导致零件加工的精度受到巨大影响,由此可见加强对该项内容的分析是必要的。

一、机械加工工艺

机械加工工艺由前期生产和后期生产两个部分共同组成,在这两个过程中对技术的要求都十分严格。严格的技术要求下,将半成品和原材料制造成成品,该过程中被称作机械过程。机械加工过程中还包括原材料的运输、存储、准备、零件加工、热处理等多项内容。由此可见,机械加工生中包含的内容十分丰富。现代企业在进行机械加工中,都通过先进的系统工程学对生产过程进行指导,确保生产合理性,同时也促进现代企业的生产效率,使产品的质量得到了提高。机械零部件的生产有多个过程中共同组成,机械加工是一个重要的环节,一般情况下,企业需要通过不同的工序完成对零部件单个或批量生产。

二、机械加工工艺对零件加工精度产生的影响

(一)内在影响

内在因素包括的内容如下:(1)系统几何精度存在误差。(2)机械安全存在不规范情况。如果机械在精度上有几何误差,对零件加工的精度会造成影响。对于机械加工工艺来说,其对机械设备的要求非常高,设备质量会影响零件的加工情况。一般来说,零件加工机械是规模较大的组合型机械,该类型的机械能够使零件在精度上要求得到满足。但是,需要注意,如果采用的为组合型机械,在对机械进行应用前,要做好相应的安装工作,如果安装出现问题,零部件的精度势必会受到影响。此外,加工机械在长期运行过程中,会出现磨损情况,这也将会导致组合机械的各部之间可能会存在些小缝隙,将会导致零件的精度受影响。

(二)受力影响

机械加工的受力影响主要体现在以下两方面:(1)系统实际运行能力较强,在运行过程中,系统应用的夹具、刀具等构件等结构要承受较强大压力,而该做作用的存在,会对导致相对位移的发生。(2)系统运行过程中,各个部件都会受到多方面力的影响,表现为系统中的部件,不仅需要承受来自系统的压力,而且还要承受零件施工压力。(3)部件之间的相互摩擦。由此可见,在受力影响下,零件加工的精度会受到影响。

(三)热变影响

热变影响因素分为以下几种:(1)刀具热变。零件加工中,经常会应用到刀具,为了使加工的零件能够达到要求标准,要对零件进行多次切割,切割过程中会存在摩擦力,此时由于摩擦原因,会产生大量的热量,该热量会导致零件发生变化,最终将会导致零件的精准度受到影响。(2)工件热变。如果在零件加工过程中,零件较长,而对该类零件加工的精准度的要求又较高,此时零件精准度将会受到影响。(3)自身热变。零件加工中,机床会与一些构件发生相互作用,导致机床的整体和自身温度上升,此时,将会导致机床自身切合度受到影响,最终将会导致加工的机械零件存在较大误差。

三、提升机械加工工艺精准度的合理措施

(一)严格控制加工过程

机械加工中,为了控制零件加工精度受几何误差的不良影响,零件加工企业,在进行机械设备选择时,要对机械的性能和各种情况进行认真考察,选择信誉良好的厂家,同时要通过合理的措施手段,检查机械设备的性能,重点检查机械自身是否存在误差问题,通过检查后,选择出最佳的机械设备,为零件加工打下一个坚实基础[3]。此外,如果因为生产原因,需要改造投入使用的机械设备,为了确保改造后机械运行的合理性,要对机械在日常运行中出现的各种误差情况进行详细统计分析,再将通过分析得到的误差结果,输入到机械设备的操作系统中,此时,机械设备会自动消除误差,提高零件的生产质量,减少误差的出现。

(二)减少外力干扰

零件加工中,挤压力和摩擦力,都会对零件的精度造成影响,而降低外力对零件加工造成的影响,就必须要减少这两种力。第一,日常加工中,技术人员要认真检查机械设备,若通过检查发现机械设备中的零部件结合较紧,则要及时做好相应的修正工作。第二,定期打磨机械化设备表面,提高接触面的光滑程度,从而减少接触面与零件之间的摩擦力,降低零件生产过程中,加工误差,从而使零件加工的质量能够得到进一步提升。

(三)控制热变因素

机械设备运行中,温度对零件加工的影响作用巨大,温度偏高会对细节设备的运行产生影响。加工零件中,温度偏高,应当利用冷水,进行降温,避免温度过高。例如,利用刀具反复切割,因为刀具与零件之间长时间摩擦,将会引起零件变形,此时,为了对零件变形的控制,需要利用冷水进行降温处理,从而降低热遍对零件加工产生的不良影响。

(四)厂房环境控制措施

厂房环境也会对零件加工精度产生一定影响,对于厂房的控制主要集中在以下几个方面:1.在厂房内安装空调系统,利用空调系统对厂房内的温度进行调整,从而使厂房内的温度始终都能处于适合机械零件加工生产的温度范围内,避免厂房温度对机械加的精准度造成不良影响。2.保持厂房内环境的“干净”,厂房内的环境相对来说比较复杂,在生产中会存在一些杂质对生产的精度造成不良影响,在具体生产中,要保持厂房内环境的相对干净,避免杂质影响机械加工的精准度。3.处理好机械加工中的乳化液烟气,确保另加工的精准度。

四、结束语

科技的快速发展,使机械加工工艺水平得到了进一步提升。在机械零件加工中,为了使企业生产的零部件的精度得到提高,将零部件的不合格率控制在一定范围内,提升企业零部件生产企业的竞争力,需要加强投入,加强对企业机械加工工艺的研究,将对零件加工精度造成不良影响的各项因素都控制在最低。

作者:雷凯淞 单位:中国航空规划设计研究总院有限公司

参考文献:

[1]孟祥辉.机械加工工艺产生误差的不良影响及处理对策[J].企业技术开发,2014,23:110-111.

[2]李文静.浅析机械加工工艺过程及对零件精度的影响[J].科技创新与应用,2013,13:77.

机械零件加工范文第4篇

机械零件的加工处理都会进行高温处理,受热之后的零件与常温小的零件肯定会存在误差,尤其是在加工的过程中受热不均匀,产生的误差会更大。此外,零件材质的不同,加热的方法不同,高温处理的温度不同等都会产生误差,具体的处理措施有:①减少工艺系统发热和采取隔热措施。②改善散热条件。③均衡温度场,加快温度场的平衡。④改善机床结构,合理选材,减小热变形。

2内应力重新分布引起的误差

内应力是相对于外应力而言的,所谓的内应力,具体是指加在物体外部的作用力消失之后,物体的内部仍旧存在的一种作用力。零件在加工的过程中必然会受到外力的作用,比如打磨、塑形、高温处理等等,处理结束后,残留的力使得加工的精密度产生了误差。对此,应该采用相应的措施尽量减少存在零件内部的内应力。常见的高温缓慢处理就是比较科学的办法。

3保证和提高机械加工精度的主要途径

在实际的机械零件加工过程中,有诸多的误差处理办法,需要工作人员依据零件生产加工的特性和实际生产情况,进行科学的选择,下面对几种主要的零件加工精度提升办法进行介绍:直接减小。或消除误差法。该种误差消除办法主要是明确具体的误差产生原因,根据确定的误差产生原因,具有针对性的提出具体的处理措施和办法,将损失降低到最小。转移误差法。零件的关键部位出现误差的影响是不可估量的,而一些非关键部件的误差则可以忽略,为此,在加工零件的过程中,我们可以将关键位置的误差转移到非关键位置上,这种处理措施我们称之为转移误差法。补偿误差法。人为地造出一种新的误差,去抵消或补偿原来工艺系统中存在的误差,尽量使两者大小相等、方向相反,从而达到减少加工误差,提高加工精度的目的。均分误差法。在加工中,对于毛坯误差、定位误差引起的工序误差,可采取分组的方法来减少其影响。其实质就是把原始误差按其大小均分为n组,每组毛坯误差范围就缩小为原来的1/n,然后按各组分别调整加工。误差平均法。利用有密切联系的表面之间的相互比较和相互修正或者利用互为基准进行加工,以达到很高的加工精度。而采用就地加工法就可以较好地解决这种难题。结束语综上所述,机械零件在加工的过程中不可避免的会出现误差,但是合理范围之内的误差是允许存在的,超出范围之内的误差则影响了机械设备的正常运作。只要加工人员,运用正确恰当的加工方法,严格遵守机械零件的加工程序,机械零件的加工精密度是可以得到提高的。

机械零件加工范文第5篇

关键词:零件;工装;箱体;套筒;齿轮

零件加工的工装设计是机械制造工艺和夹具设计的结合,它具有较强的实践性,涵盖的内容十分丰富,并且灵活性较强。机械零件中常见的箱体类零件、套筒类零件以及圆柱零件在加工时都有相应的工装,本文分别对其进行分析研究。

1 箱体零件加工的工装设计

箱体类零件分为简单低强度的箱体类零件和高强度复杂的箱体类零件。对于加工结构复杂的箱体类零件,编制合理的加工设计流程,有效利用各个车间的共有资源以及各类刀具、夹具以及充分分析工件受热后的变形规律,是对复杂箱体零件加工质量的保证。

在考虑零件加工的工装设计顺序时,对于某些有特定特征的工装设计零件,要先安排粗加工和半精加工,然后再安排精细加工和光整加工;而对于某些有不同的特征的工装设计零件,某些特征的粗加工则需要安排在其他特征的半精和精细加工之后,比如越程槽这种辅助特征的粗加工就在主特征的半精加工之后进行;还有对于零件的具有全部特征的工装设计零件,一般是遵循先基准后其他的原则,也就是必须先加工作为基准面的特征,再加工其他的表面特征。

2 套筒零件加工的工装设计

机器中套筒零件的应用在很多方面都发挥了重要作用,常见的套筒零件有液压系统的液压缸、轴的滑动轴承、夹具的导向套等。套筒类零件虽然结构、尺寸和用途各不相同,但是共同的特点就是结构简单。

长薄壁套筒工件的装夹加工,对不锈钢进行设计时,不锈钢的切削速度会稍微提高一些,这样切削的温度就会比一般的温度高些,若其刀具磨损程度加剧,则它的耐用度就会很大幅度的下降。为了保证合理的刀具耐用度,就必须要降低切削的速度,那么一般就会按加工普通碳钢的40%一60%作为参考。由于加工含碳量较低的不锈钢有较明显的粘刀现象,在切削过程中要选用非常好的效果的油和冷却效果比较好的切削液;选择锯片铣刀切削时,刀齿不要太多,并且它的齿槽还要深一点,尽量要将刀齿磨成错齿,这样对排屑和减少切削力有非常大的帮助。在切削不锈钢工件的时侯,注意的是对工件进行调质处理。通过对不锈钢调质的处理后,可以获得优良的综合力学性能,这样对其切削加工性能比有很大改善。通过正确的操作过程,在某些地方进行适当的改进,这样就可以让机械类零件加工的工装设计得到好的调理。

3 圆柱齿轮加工的工装设计

齿轮是机械传动中应用范围最广的零件之一,它的工装设计十分重要。对最常见的直齿圆柱齿轮减速器的工装设计时,我们在保证原工装设计的中心距不变、总速比变化比较小的状态下,把两级圆柱齿轮副的速度比重新进行了分配并加大模数和工作齿轮的宽度,再对齿轮材质和热处理等方面进行各方面的改进。

(1)改变齿轮的宽度。适当增加各级圆柱齿轮副的工作齿轮宽度,这样可以提高并平衡齿轮接触及弯曲疲劳强度。

(2)改变速比的分配。在保证圆柱齿轮副高速级和低速级的中心距不变的情况下,增大高速级速比的同时还要减小低速级速比,这样可以增大两级圆柱齿轮副等各方面的强度。

(3)材质和热处理。进行渗碳淬火处理时要合适的选择材料,比如20CrNi2Mo和 20CrMnTi的选择。20CrNi2Mo是一种优质低碳的合金钢,经渗碳淬火处理的齿轮齿面后,它的硬度会更高、心部韧性会更好,因此具有比用20CrMnTi材质制作的圆柱齿轮副更加优异的抗弯曲性能。

参考文献

[1] 李秀艳.高速动车组长大型材通用机械加工工装[J].内燃机车,2011,(6):26-28.

[2] 黄军军,王立夫,勾波等.通用加工工装结构的模块化设计[J].机械制造,2013,51(2):67-69.

[3] 黄军军,张保林,王雪岭等.五轴加工中心用通用加工工装结构的设计与夹具选型[J].机械制造,2013,51(10):76-78.

[4] 刘振明.刮刀式钻头机机械加工工艺改进及工装研制[J].机械工程师,2010,(9):170-171.

个人简介

机械零件加工范文第6篇

Abstract: In order to avoid the problem of product quality in machining process, the product quality is not stable, and the problem of false waste is analyzed. The reason, interval and solutions of the problem are presented, which is based on the fact that the product quality is not stable. This method is applied to actual production to improve the economic benefits of enterprises.

关键词:假正品;产生原因、区间;解决措施

Key words: false genuine;the reason and interval;the solution

中图分类号:TH2 文献标识码:A 文章编号:1006-4311(2017)24-0126-02

0 引言

机械制造企业,在对机械零件进行机械加工的过程中,因零件的工艺基准与设计基准不重合时,需要利用工艺尺寸链计算工序尺寸和公差,在此过程中会出现工序尺寸超差而设计尺寸合格的“假废品”现象。此时工艺人员必须计算出“假废品”出现的区间,在此区间安排复检;具体方法是:设计尺寸便于直接测量的,直接测量判断其是否合格;不便于直接测量的,便测量其他相关尺寸最后推算出设计尺寸再判断其是否合格,以防止“假废品”被当做真废品扔掉而造成不必要的经济损失。

除“假废品”外,在机械产品的加工中,还有一种与其相似的“假正品”现象。其产生原因与“假废品”现象相同,都是由于在机械加工中工艺基准与设计基准不重合时利用工艺尺寸链计算工序尺寸和公差时出现的,只不过它正好和“假废品”现象相反,前者是工序尺寸超差而设计尺寸合格,而“假正品”则是工序尺寸合格而设计尺寸超差。对此我们做了一定的研究。

1 案例

如图1所示,是某矿山企业输送机上用压板零件局部简图,在用调整法镗削两孔O1、O2时,均以M面为定位基准,需标注镗削两孔的工序尺寸。因该零件加工后,在检验两孔孔距时,其测量不方便,试标注出测量尺寸A的大小及偏差。若A超差,可否直接判断该模板为废品?

2 解题过程

3 结果分析

通过尺寸链的计算可以看出,测量尺寸A的公差为0.24,而设计尺寸80±0.1的公差为0.2,TA>T80,由此可知,若A超差,就可直接判定该压板因该尺寸不合格而为废品。若反过来,是否A合格,两孔中心距尺寸80±0.1mm就合格呢?现分析一下这个特例:假设压板加工好后测得A的实际尺寸为50.08mm,而两孔尺寸均为?准30.04mm,则两孔中心距为50.08+30.04=80.12(mm)。显然大于设计尺寸而超差,是不符合设计要求的,也就是该压板为废品。但工序尺寸是合格的,这就是前面提到的出现了“假正品”问题。若“假正品”问题不解决,工人将会将本工序产生的废品当做正品转入下一道工序继续进行加工,就会造成不必要的浪费。

4 解决措施

为此“假正品”问题的解决办法同“假废品”一样,他要求工艺人员在计算出工序尺寸和公差后,进一步将“假正品”出现的区间计算出并标明,保证工人在“假正品”出现的区间对工件进行复检,复检办法也同假废品一样,就是直接测量或推算出设计尺寸的实际值,将其与理论值相比较,若实际值在理论要求的范围内则为正品,否则即为废品,废品必须及时报废以免造成不必要的浪费。

那么“假正品”出现的区间如何计算?这是工艺人员应具备的基本能力,其 “假废品”区间的计算方法是将工序尺寸的公差比设计尺寸的公差减小的那一部分补出来,上下对称的补,补出的两部分即为“假废品”出现的区域,也就是要求复检的区域。同样的道理,“假正品”区间的确定办法是将工序尺寸的公差比设计尺寸的公差大出的部分减掉,上下对称的减,减去的两部分即为“假正品”出现的区域,也就是需要复检的区域。

以前述的例题为例。工序尺寸A的公差为0.24mm,设计尺寸的公差为0.2mm,工序尺寸的公差比设计尺寸的公差大0.04mm,所以将工序尺寸的公差从上向下减0.04mm,从下向上加0.04mm,分成三部分如下:

50区间为正品区,50与50为“假正品”出现的区域,即需复检区域。验证如下:

①当两孔为最大极限尺寸,测量尺寸A为50.06mm时,孔心距为80.1mm,出现最大极值。若A超过50.06mm,则出现废品,但若两孔尺寸小于最大极限尺寸,则有可能出现正品。若Amm大于50.1mm,则即使两孔为最小极限尺寸30mm,两孔中心距尺寸仍超差。

②两孔为最小极限尺寸,测量尺寸A为49.9mm时,孔心距为79.9mm,出现最小极值。若A小于49.9mm,则出现废品,但若两孔尺寸大于最小极限尺寸,则有可能出现正品。若A小于49.86mm,则即使两孔为最大极限尺寸,孔心距尺寸仍超差。由此得出结论:当测量尺寸A超出50mm范围时,能直接判断该模板为废品;当测量尺寸A=50mm时,压板为正品,无需检验;当测量尺寸A在50mm与50mm两个区间范围时,模板可能是正品,也可能是废品,必须复检。复检办法是:测出两孔和A的实际尺寸,推算出孔心距的实际值,与理论值比较判断其是否合格。若为正品则送入下一道工序继续进行加工,若为废品而且无法修复则可直接报废。

5 结语

综上所述,不论是“假废品”还是“假正品”,都是在机械加工生产过程中,所表现出来的实际的问题,严重影响着企业对产品质量的管理控制,是企业工艺人员必须认真对待的。在我们与某机械企业的机械加工工艺人员,一起将上述研究应用到机械零件的加工中,说明了尺寸链的计算是编制机械产品加工工艺中的重要环节,正确的计算与应用,就可以减少不必要的机械加工工时,达到缩短产品的生产周期,保证产品质量,进而提高经济效益的目的。

参考文献:

[1]吴拓.机械制造工艺与机床夹具[M].北京:机械工业出版社,2006.

[2]石莹.Y800X5000震动给料机参数设计[J].煤矿机械,2009,

30(6):19-20.

机械零件加工范文第7篇

根据微小型机械零件的几何特征,微小型机械零件主要包括微小型轴类零件,微小型三维结构零件,微小型平板类零件及微小型齿轮类零件[1]。各类型微小型零件被广泛应用在不同的场合中。

1.1微小型轴类零件

微小型轴类零件是微小型加工设备中经常遇到的典型零件之一,微小型轴类零件主要用于支撑微小的传动零部件以及传递扭转力矩和承受外界施加的载荷等场合。从其功用角度出发,微小型轴类零件的加工要求具有高的回转精度以及表面质量,因此对微小型零件的加工研究变得日益重要。当加工的微小型轴类零件具有较大的长径比时,由于加工过程中无法采用顶尖支撑,切削时在径向切削力的作用下极易使被加工的微小型轴类零件发生弯曲变形,造成被加工零件的翘尾现象。若加工的微小型轴类零件除了具有轴类零件所具有的典型特征之外,还具有微平面,微沟槽,微细孔等其他特征时,依靠单一的车削加工是无法完成这类微小型轴类零件加工的,需要配合其他加工方式。

1.2微小型三维结构零件

微小型三维结构零件的结构特征相对较为复杂,并不是只具有简单的回转类以及平面类特征。由于其结构特征的复杂性以及零件本身所特有的工艺特征,加大了零件加工的难度。加工过程中需要根据零件自身的工艺特点,合理地安排加工工艺,并选择尺寸相对较小,精度高,柔性好的微小型加工设备进行加工。

1.3微小型平板类零件以及齿轮类零件

微小型板类零件的主要结构特征是平面,除此之外还包括一些其他的结构特征,如台阶面,微型孔,微型槽及不规则的轮廓表面等。与微小型三维结构零件相比,微小型平板类零件的结构相对简单,加工方式相对单一,应用微细铣削和微细钻削加工技术即可满足这类零件的技术要求,完成微小型板类零件的加工。若微小型板类零件的厚度较薄时,加工时需要考虑零件的装夹方式,防止装夹时微型夹具对零件的作用力过大,使零件发生形变。微小型齿轮加工的难点及重点是其齿形的加工,齿形的加工精度直接关系到齿轮之间的啮合精度及装配之后的使用效果。目前,主要有微细成形铣削及微细滚削这两种微细切削加工方法用于微小型齿轮的加工。在应用微细成形铣削的加工方法加工微小型齿轮的过程中,成形刀具本身的制造精度对微小型齿轮的加工精度影响较大,同时由于加工系统的刚性和零件的装夹方式及系统的振动的影响,使加工完成的轮齿齿廓的形状误差较大,齿形明显失真。与微细成形铣削加工相比,微细滚削加工方法是基于范成法的成形工艺,加工过程中,滚削刀具的多个切削刃对工件进行连续切削,在加工效率与加工质量方面都要比微细成形铣削的加工方法高。

2微小型机械零件的加工方法

微小型零件的加工方法包括基于半导体的制造工艺技术、LIGA及准LIGA技术和应用常规的精密机床对微小型机械零件进行加工的方法以及目前处于重点研究的使用微小型加工设备进行微小型零件加工的微细切削加工等技术。基于半导体的制造工艺技术加工材料较为单一,且加工出的微小型零件的应用领域多为电子领域。LIGA及准LIGA技术加工出的微小型零件结构简单,多为二维或准三维微小型机械零件,且加工设备较昂贵。应用常规的精密机床进行微小型零件的加工存在着占用空间大,加工效率低,能源消耗大,资源浪费严重等问题。使用微小型加工设备进行微小型零件加工的微细切削加工技术加工材料广泛,可加工结构复杂的精密三维微小型机械零件,并能避免上述加工方法存在的问题,是微小型零件加工技术的研究重点。微细切削加工技术主要有微细车削加工,微细铣削加工,微细磨削加工等。与常规切削加工技术相比,微细切削加工技术的切削用量极小,且由于微小型零件的整体尺寸较小,微细切削加工过程中若依然采用常规尺度零件切削加工工艺,将无法满足加工精度。极小的切削用量要求加工设备要具有极高的的进给精度及定位精度和主轴回转精度。微细车削主要用于微小型轴类零件的圆柱面,端面等表面特征的加工。微细铣削主要用于加工微小型零件的平面,沟槽及复杂的表面等。目前微小型平板类零件加工主要依靠微细铣削的加工技术完成。微细钻削主要用于微小型零件上微细孔的加工,加工孔径受到钻头的制约。微细磨削主要用于表面精度要求极高的微小型零件的加工,是一项重要的微细切削加工技术。

3微小型机械零件的工艺分析

微小型机械零件的整体尺寸小,加工精度及表面质量要求高,因此微小型机械零件的加工工艺的制定难于常规尺度零件的加工工艺。根据微小型机械零件的几何特征可大致确定其应包含的加工工艺。若零件具有圆柱面、端面等回转类特征,则这类零件应包含车削工艺。若零件具有平面、微沟槽、微细孔等结构特征,则这类零件应包含铣削工艺或钻削工艺。在微小型机械零件的加工过程中,考虑到零件易发生变形,加工精度高及加工效率等方面,微小型机械零件的加工工艺的制定应着重考虑以下几点。

3.1先粗后精的加工原则

在微小型机械零件的加工过程中,优先安排粗加工工序,待粗加工工序全部完成之后在安排对零件进行半精加工与精加工的工序。粗加工过程中,在保证系统刚度的情况下,尽可能的选择直径较大的微细切削刀具,较大的进给量,背吃刀量及切削速度,减少刀具切削次数,去除大部分加工余量,缩短零件加工时间,提高加工效率。待对零件的粗加工工序完成之后,需要间隔一定的时间再安排零件的精加工工序,这样做的目的是使粗加工工序完成之后零件所发生的变形能够得到一定程度的恢复,进而使零件的加工精度得到一定的提高。

3.2最少的调用刀具及附件

在微小型机械零件的加工过程中,由于零件几何特征的不同,往往要涉及到车、铣、钻等不同种类的刀具,而工艺路线的优劣在很大程度上受到使用的刀具顺序的影响,因此应尽可能的减少刀具的使用,以减少刀具在安装过程中带来的累积误差,同一把刀具在使用过程中,应用其加工尽可能多的工件表面,并减少其在机床上安装于调整的次数。加工过程中对于附件的使用,也应遵循最少调用的原则,在附件的一次调用中,应使其最大限度的进行加工。

3.3减少工件装夹次数

由于微小型零件具有不同的几何特征,往往需要对其进行多次的装夹才能最终完成零件的加工。微小型零件的尺寸微小,多的装夹次数费时费力,并且多次的装夹会产生误差,影响零件的加工精度,所以应尽可能地在一次装夹过程中完成工件所有表面的加工,提高工件的加工精度。

4结束语

文章针对微小型机械零件的常规加工方法存在的诸多问题,根据微小型机械零件的结构特征,对其加工方法和加工工艺进行研究分析,目的是为了保证微小型零件的加工精度及各种功能性要求。

机械零件加工范文第8篇

关键词:煤矿机械;零件加工;误差分析

前言

机械产品的性能多种多样,其中耐用性与可靠性在很大程度上需要依靠精良的机械加工工艺。一个机械零件往往需要经过许多加工工艺才能完成,并且还要根据零件的大小、生产技术指标等因素选择具体的加工方式,进行针对性的加工。

1.机械加工过程中的误差形成分类

1.1定位过程与机床制造中形成的误差

位误差主要是在定位制造过程中出现数据误差或基准不能重合等原因造成的;机床制造过程中造成误差的原因分为三种:一是传动链误差,也就是传动链两端的传动元件之间进行相对运动所造成,而且随着传动链不断运动,产生的磨损过大,也会形成误差;二是导轨误差,导轨在运动中的磨损不平衡容易造成误差出现;三是主轴误差,主轴在瞬间回转的过程中会产生平均变动量,这种现象产生的误差会影响加工零件的精确度。

1.2刀具的几何误差和受力形变误差

刀具在经过长期的切削工作后会形成磨损情况,逐渐改变工件的形状与尺寸。刀具的自身尺寸与形状会形成刀具几何误差,从而在加工工件时影响工件的加工精度。例如在煤矿机的加工中,如果工件在切削时刚度不足就容易产生形变,这种形变误差对于机械加工而言影响是非常大的。此外,在切削过程中,力度大小会不断变化,也会造成受力形变的误差。

2.加工过程中的误差补偿法分析

误差补偿也就是在加工过程中,最大限度的降低加工误差情况,制造出一种与之前误差不同的新误差形式,补偿加工工艺中的原始误差。例如在制造数控机床的滚珠丝杆时,机械师可以刻意的将螺距磨小,在装配时产生的拉伸力会将螺距拉长,这时螺距就会达到标准大小,从而补偿原始误差。

2.1直接减少误差

工作人员在明确发现误差情况以后,可以直接采取改进措施。例如,在切削细长轴时,工件受到剧烈温度影响而产生形变,工作人员可以进行反向切削的方式直接将形变减小;在磨削薄片工件的两个端片时,可以将所有工件都利用环氧树脂粘强剂粘连在同一块平板上,将工件与平板都固定在吸盘上,上端面磨平之后取下,以上端面磨削程度为基准对其它平面进行磨平,可以直接减少薄片形变。

2.2有效误差分组

在机械加工过程中,每个工序的工艺能力和加工精度都是标准化的,但是对于加工半成品时很难控制其精度。因此可以将半成品的尺寸按照误差大小分为几个小组,以减少误差情况。机械师可以刻意调整工件与刀具之间的位置,以缩小工件的尺寸范围达到降低误差的目的。

3.加工工艺原则及要求

3.1矿零件加工工艺原则

矿机械零件的加工工艺直接关系到煤矿的生产效率。在这一过程中,很多因素都与煤矿的安全生产息息相关,在一定程度上还能直接决定煤矿的生产效率。因此,在设计矿机械的零件时,一方面应根据其规格、零件的大小以及零件的质量进行仔细的检查。另一方面,应在规范工艺原则的前提下,积极改进零件加工技术水平,有效保证其加工精度,从而提高矿机械零件的有效利用率。在矿机械零件的加工过程中,对其加工工艺的要求也是十分严苛的。主要包括以下几点:

(1)确立目标。矿机械零件的加工是建立在机械设置的整体要求之上的。只有当零件满足矿机械的要求,才能保证煤矿的生产效率。

(2)确保质量。在机械加工前,应严格把好原材料的质量关,包括零件的质地和耐热性等情况,确保原材料的质量,是矿机械零件加工的先决条件。

(3)确定毛坯。在矿机械零件的加工工艺中,对毛坯的质量也有很好的要求,确定合适的毛坯能大大促进矿产事业的发展。

4.制定工艺路线

在全方位了解相关零件特征的基础上,应清晰的了解零件表面的处理方式,只有这样才能为零件加工提供更好的基础。完成这一项工作之后,应将零件划分成不同的类型,其划分类型主要包括精度、粗糙程度及其区域分布。再根据划分情况制定加工工艺路线。

在整个加工过程中,应注重设备的选择,加工设备的质量与零件的加工质量是密不可分的。其设备的选择根据零件生产量的不同也不尽相同。如需大批量的生产矿零件,应选择专用的工具夹和通用机床;如需小批量的生产矿零件,对于零件的切削用量应由主控人员来操作。总的来看,在矿零件的成产中,不能轻易更改相关零件的规格和切削用量,只有这样,才能保证矿零件生产的安全性和合理性。

4.1矿零件加工工艺的要求

煤矿机械零件加工工艺中应始终遵循“两高一低”原则,高品质、高质量及低成本。应在保证加工质量的基础上,最大限度地减少生产成本,从而提高煤矿生产的经济效益。其要求应包含以下几个方面:

(1)技术前提。优质的加工技术是煤矿生产的先决条件。即使现阶段的煤矿产业得到了一定的发展,但是其整体技术水平还是较落后,所以,应以提高矿机械零件的加工技术为己任。

(2)设备的引进。在矿机械零件的生产过程中,先进的设备与机械是必不可少的条件之一。应尽可能拓宽自身的视野,向西方发达国家引起先进的设备,以促进我国煤矿事业的发展。

(3)加工理念的树立。在矿机械零件加工中,应积极提倡加工自动化与机械化,引导相关人员树立正确的加工理念,积极的学习先进技术,为更好地加工矿机械零件提供有效保障。

5.结束语

随着国际机械加工工艺技术的不断进步,我国机械加工技术水平不断提高。技术是煤矿效益的基本前提,尽管煤矿产业的发展较为快速,但是其机械加工工艺水平发展较为缓慢。因此必须学习国际先进技术、引进先进设备,大力提高机械加工工艺水平,以提高质量为前提,降低生产成本,全面提高煤矿生产的经济效益。

参考文献:

[1]姜利平.煤矿零件机械加工误差分析与工艺要求浅谈[J].科技创新与应用,2013,(05):125.

[2]赵荣华.机械加工精度误差分析及改进措施探讨[J].现代商贸工业,2012,(01):293-294.

[3]江敦清.浅谈机械加工工艺对零件加工精度的影响[J].黑龙江科技信息,2010,(16):7.

机械零件加工范文第9篇

关键词:加工原理;去毛刺;抛光

随着我国工业技术的快速发展,对机械产品的精密度逐渐增加。传统的加工工艺已经很难满足当前人们对机械零件的精度要求。在实际加工过程中,工件的稳定性、功能性等方面必须遵守严格的标准。据相关部门统计,机械制造业是劳动力作为集中的产业,这也就增加了控制零件精密度的难度。通常来说,一家企业的加工费用就会占总成本的15%,这大大增加了企业的成本负担。而在精密机械零件的加工中最难克服的问题就是去毛刺和抛光。伴随着科学技术的发展,国内外企业已经研究出了集中新方法新工艺,在机械零件的表面处理上取得了很好的效果,能够满足不同的生产需求。下面我们就针对其中的三种新工艺进行分析和研究。

1 加工原理

1.1 磨粒流加工原理。在磨粒流加工过程中,夹具配合工件形加工通道,2个相对的磨料缸使磨料在这个通道中来回挤动。磨料均匀而渐进地对通道表或边角进行研磨,产生抛光、倒角作用。

1.2 热能去毛刺加工技术原理。热能去毛刺方法是利用高温清除零件的毛刺和飞边。被加工零件置于密封燃烧腔内,将可燃气体(天然气/甲烷/氢气)和氧气按一定比例、压力充入腔内,可燃气体包裹零件的里外以及毛刺、飞边,密密充斥零件内、外部,孔内,甚至盲孔里面。由火花塞点燃气体,瞬间产生燃点以上的高温。由于毛刺、飞边高于零部件表面,当温度急剧上升到毛刺、飞边自燃点以上时,小体积的毛刺、飞边燃烧。毛刺燃烧至工件主体,温度迅速降到自燃点以下时,腔里多余的氧气和毛刺混合化为氧化粉尘。加工原理如图1所示,这一过程很短,仅足以将毛刺、飞边烧掉,而不至于影响到工件本身。燃烧后,落在工件的所有表面上的毛刺和飞边的氧化残留物可以用溶剂清洗掉。

1.3 电化学加工去毛刺、抛光 (简称ECM/ECD/ECP)原理。在零件加工的过程中,零件内部通道的交界处粗糙同时有毛刺,这不仅影响产品的质量,而且减少了零件的使用寿命。这个问题一直困扰着零件制造企业。在生产实践中采用电化学去毛刺的方法能够解决这个问题。这一技术主要是针对工件选择的部分进行加工。具体的加工原理可以参照图2。主要就是通过接通电流的方式瞬间溶解零件上的毛刺,同事还能对零件内部交界处形成精准的倒圆边角。加工的时间一般也就在十秒到三十秒之间。使用这种技术能够提高零件加工的效率。

2 工艺特点

2.1 磨粒流加工工艺特点。这种加工工艺的目标是为了能够有效地改善零件的性能,提高零件的质量和使用年限,同时减少加工人员的劳动,提高生产效率。例如对汽车进气管的加工,为了对表面进行抛光,应该先切开抛光之后再焊接起来。这不仅对零件的美观和使用产生影响,还会影响生产效率。二使用磨粒流抛光技术则能够不必切割就能够直接进行抛光。甚至是能够完成对质量要求十分严格的零件加工。

2.2 热能去毛刺加工工艺特点。这种加工工艺不仅能够有效地去除毛刺,还能够不影响工件的尺寸和自身的结构特点。使用传统去毛刺技术往往需要人员在加工完成之后进行质量检查,看是否完全去除干净,而使用这种技术则不需要再次检验,生产效率大大提高,质量也有保证。以前的技术只能针对一种或几种零件进行加工,而这种技术则能够对几乎所有材质的零件进行加工。这种加工技术还能够把一些类似的零件放在一起处理,针对尺寸不同的零件,只需要改变其加工参数不需要改变时间就可以进行处理。这不仅减少了企业的生产成本,还延长了零件的使用寿命。

2.3 电化学加工工艺特点。这种加工工艺具有自身的特色,其是一种效率很高的生产技术,能够加工各种金属零件,不仅能够进行去毛刺加工技术,还能够保证制造的零件更加的精确规整。对铸造业、机械加工领域的零件都可以使用这种技术,去除毛刺量一般在0.01-0.5mm之间。大多数情况下能够控制在0.01-25mm的范围内。而且光洁度一般能够改善五到十个等级,生产出的零件表面更加光滑而且还很均匀。

3 新工艺应用实例

3.1 磨粒流加工应用实例。这种新型加工工艺的最大优势就是能够满足不同零件尺寸的需求。小到0.2mm的小孔或者直径为1.5mm的齿轮,大到直径为50mm的通道,甚至是1.2mm的叶轮都能够轻松实现。如果是加工大型机械设备的零件则需要设置专门的输送通道。

磨粒流加工工艺特点:这种方法主要被使用在金属材料微量除去的情况下,这种方法能够准确并灵活稳定的除去零件内部的毛刺,进而达到产品的生产质量。当前在汽车行业和制造业被广泛使用,优点也是有目共睹的。具体来说,它的优点在于能够进入到比较复杂的零件内部,通过设备使内部光滑;进排工作也能够保证均匀性和完整性。对于批量零件来说能够保证每个零件的加工效果一样。例如,在汽缸头铸件的磨粒在生产过程中,能够达到每小时生产三十件,粗糙程度也有下降很多,而且生产过程中的废气排放也减少了7%,发动机功率增加了6%,行驶公里数也增加了5%。

3.2 热能去毛刺加工应用实例。由于这种去毛刺加工工艺能够根据需要去掉任意部分的毛刺,甚至是一些手工都无法做到的位置,例如零件交界处等,能够在零件生产、汽车零部件生产方面取得很好的效果。总的来说,这种去毛刺工艺的优点是能够降低整体加工成本,提高单位时间内生产零件数,避免重复加工。

3.3 电化学加工应用实例。电化学抛光的典型应用包括:有高纯净度要求的零件、人体手术植入件、瓶模以及各种各样的不锈钢零件。其中,ECM适用于加工常规加工方法不能加工的特殊轮廓或特别的边角形状,ECD适用于加工工件很难到达孔和边角进行去毛刺,ECP可以提供铣削三维轮廓表面的高质量抛光效果。

4 结束语

综上所述,文章主要针对精密机械零件生产过程中的去毛刺和抛光两道工序的新工艺进行了分析和总结,这种方法适合大范围的零件生产,特别是适合汽车零件和机械零件等,能够进一步提高模具类型零件的加工技术。伴随着这项新工艺的不断发展,未来必然会在机械生产领域、汽车制造领域广泛使用。同时,这也说明了我国制造业技术的不断发展,给企业带来了新的生机,我国的制造业领域发展的也会更好更快。

参考文献

[1]郭应竹.磨粒流加工在航空发动机制造中的应用[J].机械设计与研究,1985(1):73-78.

[2]王晓明.脉冲电化学及其复合光整加工机理和表面特性的研究[D].大连:大连理工大学,2002.

机械零件加工范文第10篇

1CAD/CAM技术概述

CAD/CAM(计算机辅助设计与制造),其含义是指制造人员根据产品设计和制造流程与产品设计,在计算机系统支持下,进行设计和制造的一种技术。一般来说,一个完整意义上的CAD/CAM系统是由计算机、设备及附加生产设备等硬件和控制这些硬件运行的程序、指令及软件组成的。CAM是CAD/CAM集成系统里重要的组成部分,涉及到了许多科学领域,如计算数学、计算机科学与工程、人机工程、机械设计、电子技术及其他许多工程技术。经过四十几年的发展,CAM技术在机械制造等一些领域起到了非常重要的作用。

2CAD/CAM技术在机械零件设计和加工中的应用

(1)形象直观的设计。设计人员一般是要根据使用要求来设计零件的,在设计的时候一般需要先考虑零件的空间几何模型,因为我们设想出来的零件的形状大多数都是三维立体,所以进行设计零件的最佳方法是建立起能够反映零件形状的三维几何模型,它可以让我们更直接地进行创新和设计。

(2)零件的设计与修改非常方便。运用三维软件,可以很快的修改已经建立模型的零件,得到一个新的零件的三维造型,从而得到我们所需要的零件,能够很好的完善设计。另外可以把已经有的三维模型做相应的修改,这样就可以很快捷方便地得到新型零件,能够很好的解决复杂零件的几何造型问题,大大减少设计时间,同时也有效的缩短了零件设计周期,另外CAD/CAM软件都具有标准件库,因此只需要对其中的部分零部件进行相应的设计和制造,从而大大提高了零件设计和制造的效率。

(3)零件材料选择物理性能的优越性。CAD/CAM软件能够在建立模型的过程中直接选择零件的物理性能,这包括零件的颜色、材质和质量特性等,使我们能够对零件从里到外的进行很精确的描述,这样也更能将设计者的想法体现出来。

(4)运动和装配仿真功能的应用。CAD/CAM软件大多数都有运动和装配仿真功能。我们可以把设计的相关的标准件和各个零部件使用装配功能根据机器设备的要求给组装起来,我们可以很直观地在组装的过程中查看各个零部件之间的情况,记录在安装中出现问题的部件,然后直接进行修改,直到安装正确为止。而且这个软件可以直接把相关零部件的修改正确的记录在各个零件部的模型里。同时,运用CAD/CAM软件可以把整体设备来进行运动仿真,通过分析仿真运动的演示,可以使我们更好地更直接地观看设计的零部件的方方面面的情况,从而修改可能出现问题的零件,以此来保证零件设计的准确性,从而有效避开了在加工中也许会出现的一些问题。

(5)智能化编程和加工。使用三维软件能够进行自动智能化编程。首先进行三维建立模型,然后根据零件的结构特点,制定加工工艺。确定加工的方法以及进给速度、刀具、刀间距等参数,并且自动生成了刀具路径,对刀具路径进行模拟检查,以确保加工路线是正确的。再自动生成NC程序,并且用CNC传输软件把NC程序传输到相应的数控机床。准备好加工毛坯、夹具、刀具后,在数控机床上进行加工。

(6)保障零件的加工质量。当我们用CAD/CAM软件进行零件设计和编程,大多数都需要把相应的计算机配套给数控设备,当这些计算机组成局域网后,我们就可以经过网络进行控制和管理,从而实现了生产加工智能化和生产车间管理自动化。而且有鉴于数控加工设备的特点,从而有效地使零件加工的质量得到了有力的保障,尤其是零件加工的一致性。

3CAD/CAM技术的未来展望

伴随着计算机网络技术的普及和应用的广泛,CAD/CAM技术也得到了进一步的更广泛的应用以及进一步的提高。

(1)数据标准化。CAD/CAM软件大多都拥有基本的标准零件库,以确保在机器设备仿真安装调试时能够随时调用,同时零件设计过程中也可以根据自己的需要建立适合自己的零件库,这样就能让我们在以后的工作中减少工作量。此外,零件库中的零件也能在CAD软件中进行对应的修改,从而让我们能够快速的获得我们所需要的新零件。

(2)应用智能化。CAD/CAM软件的参数设计和特征造型让我们能够更加的快速准确的修改新零件的三维建模与原有零件。同时网络技术和计算机的使用让我们把实现生产管理自动化变成了现实。CAD/CAM软件的一个很重要的标志就是智能化设计,CAD/CAM系统一般包括经验储存、智能库、专家系统自动学习和推论规则功能。软件开发就是要将系统和产品的设计加工相结合,使用户能够很轻松的把工作任务完成。

(3)使用集成化。在现代的制造技术中,因为生产加工需要,我们需要把CAD/CAM技术跟其他的一些有关领域的技术配合应用。用以对应越来越高的零件加工要求。一般的企业提供给CAD/CAM一体化所需的解决方案就是集成,企业中每个环节统一考虑,不可分割。实际上整个企业的生产过程就是信息的采集,传递以及加工处理的过程。

(4)网络化。随着互联网技术的不断进步,如何构造在互联网体系上的CAD/CAM集成化系统成为人们议论的热点。尤其是根据网络的远程零件设计制造理念所提出来的,使CAD/CAM技术和互联网技术更好的融和在一体,将来也能够得到进一步的发展。互联网跟CAD/CAM技术的结合,增强了使用的灵活性。以后的人机交互界面会更加方便和友善,还可以引入声控式、触摸式等各种各样的操作方式。

(5)逆向工程的应用。在具备零件产品的实体的基础上,对零件来测量,此时再使用相关的数据对零件进行实体建模。这样的设计方式一般能够有效地减小设计的时间,是零件设计的更新与改进的必要方法。

4结语

在零件设计和加工过程中,由于采用CAD/CAM技术,同时在加工过程中使用了相应的配套的设备,很大程度降低在理论设计与采取普通方式加工所造成的误差,使加工效率大大的提高了,制造周期缩短了,零件的质量得到保证了,使企业的经济效益得到了更大程度的提高。提高了企业对市场的应对能力,在全球化市场的竞争中,实现优势互补,增强企业的竞争实力。

参考文献

[1] 王宁国.CAD/CAM技术的发展历程[J].中外企业家,2011(7).

[2] 刘晓冰,高天一.CAD技术的发展趋势及主流软件产品[J].中国制造业信息化,2003(4).

[3] 唐婕.基于Pro/ENGINEER的压铸模具CAD系统研究[J].四川大学,2005(6).

上一篇:小零件范文 下一篇:森源电气范文

友情链接